Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Local Weather Types by thermal periods: deepening the knowledge about Lisbon’s urban climate
    Publication . Reis, Cláudia; Lopes, António; Correia, Ezequiel; Fragoso, Marcelo
    Urbanized hot spots incorporate a great diversity of microclimates dependent, among other factors, on local meteorological conditions. Until today, detailed analysis of the combination of climatic variables at local scale are very scarce in urban areas. Thus, there is an urgent need to produce a LocalWeather Type (LWT) classification that allows to exhaustively distinguish di erent urban thermal patterns. In this study, hourly data from air temperature, wind speed and direction, accumulated precipitation, cloud cover and specific humidity (2009–2018) were integrated in a cluster analysis (K-means) in order to produce a LWT classification for Lisbon’s urban area. This dataset was divided by daytime and nighttime and thermal periods, which were generated considering the annual cycle of air temperatures. Therefore, eight LWT sets were generated. Results show that N and NW LWT are quite frequent throughout the year, with a moderate speed (daily average of 4–6 m/s). In contrast, the frequency of rainy LWT is considerably lower, especially in summer (below 10%). Moreover, during this season the moisture content of the air masses is higher, particularly at night. This methodology will allow deepening the knowledge about the multiple Urban Heat Island (UHI) patterns in Lisbon.
  • Heatwaves and summer urban heat islands: a daily cycle approach to unveil the urban thermal signal changes in Lisbon, Portugal
    Publication . Oliveira, Ana; Lopes, António; Correia, Ezequiel; Niza, Samuel; Soares, Amílcar
    Lisbon is a European Mediterranean city, greatly exposed to heatwaves (HW), according to recent trends and climate change prospects. Considering the Atlantic influence, air temperature observations from Lisbon’s mesoscale network are used to investigate the interactions between background weather and the urban thermal signal (UTS) in summer. Days are classified according to the prevailing regional wind direction, and hourly UTS is compared between HW and non‐HW conditions. Northern‐wind days predominate, revealing greater maximum air temperatures (up to 40 °C) and greater thermal amplitudes (approximately 10 °C), and account for 37 out of 49 HW days; southern‐wind days have milder temperatures, and no HWs occur. Results show that the wind direction groups are significantly different. While southern‐wind days have minor UTS variations, northern‐wind days have a consistent UTS daily cycle: a diurnal urban cooling island (UCI) (often lower than –1.0 °C), a late afternoon peak urban heat island (UHI) (occasionally surpassing 4.0 °C), and a stable nocturnal UHI (1.5 °C median intensity). UHI/UCI intensities are not significantly different between HW and non‐HW conditions, although the synoptic influence is noted. Results indicate that, in Lisbon, the UHI intensity does not increase during HW events, although it is significantly affected by wind. As such, local climate change adaptation strategies must be based on scenarios that account for the synergies between potential changes in regional air temperature and wind.