Repository logo
 
Loading...
Profile Picture
Person

Almeida Ministro, Augusto Manuel

Search Results

Now showing 1 - 2 of 2
  • Molecular changes in cardiac tissue as a new marker to predict cardiac dysfunction induced by radiotherapy
    Publication . Ribeiro, Sónia; Simões, Ana Rita; Rocha, Filipe; Vala, Inês Sofia; Pinto, Ana Teresa; Ministro, Augusto; Poli, Maria Esmeralda; Diegues, Isabel Maria; Pina, Maria Filomena; Benadjaoud, Mohamed Amine; Flamant, Stephane; Tamarat, Radia; Osório, Hugo; Pais, Diogo; Casal, Diogo; Pinto, Fausto J.; Matthiesen, Rune; Fiuza, Manuela; Santos, Susana Constantino Rosa
    The contribution of radiotherapy, per se, to late cardiotoxicity remains controversial. To clarify its impact on the development of early cardiac dysfunction, we developed an experimental model in which the hearts of rats were exposed, in a fractionated plan, to clinically relevant doses of ionizing radiation for oncological patients that undergo thoracic radiotherapy. Rat hearts were exposed to daily doses of 0.04, 0.3, and 1.2 Gy for 23 days, achieving cumulative doses of 0.92, 6.9, and 27.6 Gy, respectively. We demonstrate that myocardial deformation, assessed by global longitudinal strain, was impaired (a relative percentage reduction of >15% from baseline) in a dose-dependent manner at 18 months. Moreover, by scanning electron microscopy, the microvascular density in the cardiac apex was significantly decreased exclusively at 27.6 Gy dosage. Before GLS impairment detection, several tools (qRT-PCR, mass spectrometry, and western blot) were used to assess molecular changes in the cardiac tissue. The number/expression of several genes, proteins, and KEGG pathways, related to inflammation, fibrosis, and cardiac muscle contraction, were differently expressed in the cardiac tissue according to the cumulative dose. Subclinical cardiac dysfunction occurs in a dose-dependent manner as detected by molecular changes in cardiac tissue, a predictor of the severity of global longitudinal strain impairment. Moreover, there was no dose threshold below which no myocardial deformation impairment was detected. Our findings i) contribute to developing new markers and exploring non-invasive magnetic resonance imaging to assess cardiac tissue changes as an early predictor of cardiac dysfunction; ii) should raise red flags, since there is no dose threshold below which no myocardial deformation impairment was detected and should be considered in radiation-based imaging and -guided therapeutic cardiac procedures; and iii) highlights the need for personalized clinical approaches.
  • Early impairment of paracrine and phenotypic features in resident cardiac mesenchymal stromal cells after thoracic radiotherapy
    Publication . Picchio, Vittorio; Gaetani, Roberto; Pagano, Francesca; Derevyanchuk, Yuriy; Pagliarosi, Olivia; Floris, Erica; Cozzolino, Claudia; Bernava, Giacomo; Bordin, Antonella; Rocha, Filipe; Pereira, Ana; Ministro, Augusto; Pinto, Ana; De Falco, Elena; Serino, Gianpaolo; Massai, Diana; Tamarat, Radia; Pesce, Maurizio; Santos, Susana Constantino Rosa; Messina, Elisa; Chimenti, Isotta
    Radiotherapy-induced cardiac toxicity and consequent diseases still represent potential severe late complications for many cancer survivors who undergo therapeutic thoracic irradiation. We aimed to assess the phenotypic and paracrine features of resident cardiac mesenchymal stromal cells (CMSCs) at early follow-up after the end of thoracic irradiation of the heart as an early sign and/or mechanism of cardiac toxicity anticipating late organ dysfunction. Resident CMSCs were isolated from a rat model of fractionated thoracic irradiation with accurate and clinically relevant heart dosimetry that developed delayed dose-dependent cardiac dysfunction after 1 year. Cells were isolated 6 and 12 weeks after the end of radiotherapy and fully characterized at the transcriptional, paracrine, and functional levels. CMSCs displayed several altered features in a dose- and time-dependent trend, with the most impaired characteristics observed in those exposed in situ to the highest radiation dose with time. In particular, altered features included impaired cell migration and 3D growth and a and significant association of transcriptomic data with GO terms related to altered cytokine and growth factor signaling. Indeed, the altered paracrine profile of CMSCs derived from the group at the highest dose at the 12-week follow-up gave significantly reduced angiogenic support to endothelial cells and polarized macrophages toward a pro-inflammatory profile. Data collected in a clinically relevant rat model of heart irradiation simulating thoracic radiotherapy suggest that early paracrine and transcriptional alterations of the cardiac stroma may represent a dose- and time-dependent biological substrate for the delayed cardiac dysfunction phenotype observed in vivo.