Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Local climate zones in five southern European cities: an improved GIS-based classification method based on Copernicus data
    Publication . Oliveira, Ana; Lopes, António; Niza, Samuel
    While climate change projections for the Mediterranean region indicate an increased exposure to heatwaves (HW), such prospects are particularly challenging in urban areas, where thermal stress can be exacerbated by the Urban Heat Island (UHI) effect. In that regard, understanding spatial patterns of thermal performance is of the utmost importance, in order to address corresponding adaptation measures. Local Climate Zones (LCZ) have become the standard typification of Land Cover/Land Use classes, according to their climatic response. However, the corresponding satellite- based classification method from the World Urban Database and Access Portal Tools (WUDAPT) presents accuracy issues when applied to European cities. Several studies have provided alternative LCZ methodologies, but these usually require data which is not often readily available (e.g. high-resolution digital surface models), therefore rendereing them hard to replicate. This study addresses this issue by developing an alternative geographic information system (GIS)-based method, and the corresponding toolbox, to translate Copernicus datasets into LCZ maps: Urban Atlas and Corine Land Cover shapefiles are used as the baseline dataset for the reclassification. The method was proven to be accurate in the five cities used in the case study - Athens, Barcelona, Lisbon, Marseille, and Naples - 81% overall accuracy, and 0.79 Kappa coefficient, on average. Results reveal the presence of a diurnal surface UHI, with lower land surface temperatures (LST) found in tree covered areas. However, similar LST found in the other LCZ classes (e.g. between compact and sparsely built-up areas) indicates that diurnal patterns of the urban energy balance components must be considered to better characterise the UHI of these cities.
  • Local climate zones datasets from five Southern European cities: Copernicus based classification maps of Athens, Barcelona, Lisbon, Marseille and Naples
    Publication . Oliveira, Ana; Lopes, António; Niza, Samuel
    Here, we provide Local Climate Zones (LCZ) map datasets from five Southern European Mediterranean cities: Athens (Greece), Barcelona (Spain), Lisbon (Portugal), Marseille (France) and Naples (Italy). The maps were produced according to a geographic information system (GIS)-based classification method, using freely available Copernicus Land Monitoring Service (CLMS) input data. Several maps are provided: (i) five LCZv1 maps (one per city) depicting urban LCZ's aggregated by density (no building height information); (ii) five LCZv1_leaf maps (one per city), identical to the previously mentioned ones, with tree cover LCZ classes A and B reclassification according to the Dominant Leaf Type (DLT) (deciduous or coniferous); (iii) two LCZv1_BH maps (Athens and Lisbon) distinguishing urban LCZ classes 123 and 456 according to the dominant building height (BH); and (iv) two LCZv1_leaf_BH maps (Athens and Lisbon) identical to the previous ones with added DLT-based land cover classification. The LCZ classification maps are available in both ArcGIS .lyr layer and GeoTIFF raster formats (Appendix 1 and 2), with a spatial resolution of 50×50m pixels, and are suitable to urban climate-related studies, particularly at the metropolitan and city scales of analysis. The data here provided is related to the article entitled «Local Climate Zones in five Southern European cities: an improved GIS-based classification method based on free data from the Copernicus Land Monitoring Service» [1], and the corresponding method/ArcGIS based custom Toolbox is freely available in «Local Climate Zones classification from Copernicus Land Monitoring Service datasets: an ArcGIS-based Toolbox» [2].
  • Local climate zones classification method from Copernicus land monitoring service datasets: an ArcGIS-based toolbox
    Publication . Oliveira, Ana; Lopes, António; Niza, Samuel
    Local Climate Zones (LCZ) have become a worldwide standard for identifying land cover classes, according to their climate-relevant morphological parameters. The LCZ's are mostly used to evaluate urban climate performance, particularly the relationship between the urban heat island effect (UHI) and the characteristics of the built-up environment. The World Urban Database and Access Portal Tools (WUDAPT) has provided a supervised LCZ classification method based only on moderate resolution free satellite imagery, mostly Landsat 7 or 8 (30 m pixel size, in the visible spectrum brands); however, its' results are less accurate for European cities. Conversely, alternative geographic information system (GIS)-based methods developed so far require information that is hardly available to all, such as building footprints or heights. Here, the ArcGIS based LCZ from Copernicus Toolbox (LCZC) provides an alternative classification method that uses only freely accessible information from the Copernicus Land Monitoring Service (CLMS), being possible to replicate it in 800 European urban locations. The method combines Urban Atlas (UA) and Corine Land Cover (CLC) with Tree Cover Density, Dominant Leaf Type and Grassland information, to produce a higher-resolution baseline shapefile that is classified according to each feature's dominant characteristics. The LCZC toolbox output is a LCZ raster map. It has been validated in five European cities: Athens, Barcelona, Lisbon, Marseille, and Naples.•The LCZC toolbox provides an alternative LCZ GIS-based classification, based on freely accessible CLMS datasets.•The use of CLMS shapefile higher-resolution inputs, particularly the UA and CLC datasets, ensures an output LCZ map that has greater detail and higher accuracy.•The availability of CLMS information in 800 European urban areas guarantees that the method can be replicated in those locations.