Repository logo
 

Search Results

Now showing 1 - 1 of 1
  • Modeling the influence of summer sea and estuarine breezes on heat stress in Lisbon (Portugal) using GRAMM-SCI
    Publication . Reis, Cláudia; Oettl, Dietmar; Lopes, António; Nouri, A. Santos; Vasconcelos, João
    In this study, the influence of the Tagus river and Atlantic Ocean breezes in a Mediterranean city (Lisbon) on outdoor thermal comfort was analyzed during the thermal summer days. Hourly wind fields were modeled using the GRAMM-SCI software, initialized with ERA5 reanalysis data. The Universal Thermal Climate Index (UTCI) was calculated for 80 weather stations across the city. Additionally, the UTCI anomalies (ΔUTCI) relative to a reference site (the airport weather station) were calculated during breeze and non-breeze events (typically N/NW winds). Results showed that sea breezes can reduce UTCI levels by up to 2,2◦ C during typical breeze days and up to 5,1◦ C during heatwave breeze events. The effect of these breezes on heat stress conditions is felt up to 4 km from the Tagus river, but especially on the areas up to 500 m. However, in 50 % of the cases where no thermal stress was recorded at the airport during breeze events, Lisbon’s riverfront can be more uncomfortable (moderate heat stress) than the northern part of the city (from 2 to 8 km). Additionally, cooling effect of the breezes is only significant enough to cause a transition to a more comfortable UTCI class (especially from very strong to strong heat stress and from strong to moderate heat stress) during heatwaves (strong to very strong heat stress) and on areas up to 1,5 km from the estuary. The promotion of wind corridors is, therefore, crucial to insuring the progression of sea breezes in urban areas and to reduce heat stress.