Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • Molecular and functional characterization of grapevine NIPs through heterologous expression in aqy-null Saccharomyces cerevisiae
    Publication . Farzana, Sabir; Gomes, Sara; Loureiro-Dias, Maria C.; Soveral, Graça; Prista, Catarina
    Plant Nodulin 26-like Intrinsic Proteins (NIPs) are multifunctional membrane channels of the Major Intrinsic Protein (MIP) family. Unlike other homologs, they have low intrinsic water permeability. NIPs possess diverse substrate selectivity, ranging from water to glycerol and to other small solutes, depending on the group-specific amino acid composition at aromatic/Arg (ar/R) constriction. We cloned three NIPs (NIP1;1, NIP5;1, and NIP6;1) from grapevine (cv. Touriga Nacional). Their expression in the membrane of aqy-null Saccharomyces cerevisiae enabled their functional characterization for water and glycerol transport through stopped-flow spectroscopy. VvTnNIP1;1 demonstrated high water as well as glycerol permeability, whereas VvTnNIP6;1 was impermeable to water but presented high glycerol permeability. Their transport activities were declined by cytosolic acidification, implying that internal-pH can regulate NIPs gating. Furthermore, an extension of C-terminal in VvTnNIP6;1M homolog, led to improved channel activity, suggesting that NIPs gating is putatively regulated by C-terminal. Yeast growth assays in the presence of diverse substrates suggest that the transmembrane flux of metalloids (As, B, and Se) and the heavy metal (Cd) are facilitated through grapevine NIPs. This is the first molecular and functional characterization of grapevine NIPs, providing crucial insights into understanding their role for uptake and translocation of small solutes, and extrusion of toxic compounds in grapevine
  • Insights into the selectivity mechanisms of grapevine NIP aquaporins
    Publication . Sabir, Farzana; Di Pizzio, Antonella; Loureiro-Dias, M. C.; Casini, Angela; Soveral, Graça; Prista, Catarina
    Nodulin 26-like intrinsic proteins (NIPs) of the plant aquaporin family majorly facilitate the transport of physiologically relevant solutes. The present study intended to investigate how substrate selectivity in grapevine NIPs is influenced by the aromatic/arginine (ar/R) selectivity filter within the pore and the possible underlying mechanisms. A mutational approach was used to interchange the ar/R residues between grapevine NIPs (VvTnNIP1;1 withUniversidade de Lisboa, VvTnNIP6;1, and VvTnNIP2;1 with VvTnNIP5;1). Their functional characterization by stopped-flow spectroscopy in Saccharomyces cerevisiae revealed that mutations in residues of H2/H5 helices in VvTnNIP1;1 and VvTnNIP6;1 caused a general decline in membrane glycerol permeability but did not impart the expected substrate conductivity in the mutants. This result suggests that ar/R filter substitution could alter the NIP channel activity, but it was not su cient to interchange their substrate preferences. Further, homology modeling analyses evidenced that variations in the pore radius combined with the di erences in the channel’s physicochemical properties (hydrophilicity/hydrophobicity) may drive substrate selectivity. Furthermore, yeast growth assays showed that H5 residue substitution alleviated the sensitivity of VvTnNIP2;1 and VvTnNIP5;1 to As, B, and Se, implying importance of H5 sequence for substrate selection. These results contribute to the knowledge of the overall determinants of substrate selectivity in NIPs
  • Exploring the three PIPs and three TIPs of grapevine for transport of water and atypical substrates through heterologous expression in aqy-null yeast
    Publication . Sabir, Farzana; Leandro, Maria José; Martins, Ana Paula; Loureiro-Dias, Maria; Moura, Teresa F.; Soveral, Graça; Prista, Catarina
    Aquaporins are membrane channels that facilitate the transport of water and other small molecules across the cellular membranes. We examined the role of six aquaporins of Vitis vinifera (cv. Touriga nacional) in the transport of water and atypical substrates (other than water) in an aqy-null strain of Saccharomyces cerevisiae. Their functional characterization for water transport was performed by stopped-flow fluorescence spectroscopy. The evaluation of permeability coefficients (Pf) and activation energies (Ea) revealed that three aquaporins (VvTnPIP2;1, VvTnTIP1;1 and VvTnTIP2;2) are functional for water transport, while the other three (VvTnPIP1;4, VvTnPIP2;3 and VvTnTIP4;1) are non-functional. TIPs (VvTnTIP1;1 and VvTnTIP2;2) exhibited higher water permeability than VvTnPIP2;1. All functional aquaporins were found to be sensitive to HgCl2, since their water conductivity was reduced (24–38%) by the addition of 0.5 mM HgCl2. Expression of Vitis aquaporins caused different sensitive phenotypes to yeast strains when grown under hyperosmotic stress generated by KCl or sorbitol. Our results also indicate that Vitis aquaporins are putative transporters of other small molecules of physiological importance. Their sequence analyses revealed the presence of signature sequences for transport of ammonia, boron, CO2, H2O2 and urea. The phenotypic growth variations of yeast cells showed that heterologous expression of Vitis aquaporins increased susceptibility to externally applied boron and H2O2, suggesting the contribution of Vitis aquaporins in the transport of these species
  • The grapevine (Vitis vinifera) aquaporin VvNIP2;1 is a silicon channel localized at the plasma membrane highly expressed in roots
    Publication . Noronha, Henrique; Silva, Angélica; Mitani-Ueno, Namiki; Conde, Carlos; Sabir, Farzana; Prista, Catarina; Soveral, Graça; Isenring, Paul; Feng Ma, Jiang; Bélanger, Richard R.; Gerós, Hernâni
    Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated over 0.2 % Si (dw) in leaves when irrigated with 1.5 mM Si for one month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, as well as the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and if gapevine can benefit from Si fertilization
  • Grapevine aquaporins: gating of a tonoplast intrinsic protein (TIP2; 1) by cytosolic pH
    Publication . Leitão, Luís; Prista, Catarina; Moura, Teresa F.; Loureiro-Dias, Maria; Soveral, Graça
    Grapevine (Vitis vinifera L.) is one of the oldest and most important perennial crops being considered as a fruit ligneous tree model system in which the water status appears crucial for high fruit and wine quality, controlling productivity and alcohol level. V. vinifera genome contains 28 genes coding for aquaporins, which acting in a concerted and regulated manner appear relevant for plant withstanding extremely unfavorable drought conditions essential for the quality of berries and wine. Several Vv aquaporins have been reported to be expressed in roots, shoots, berries and leaves with clear cultivar differences in their expression level, making their in vivo biochemical characterization a difficult task. In this work V. vinifera cv. Touriga nacional VvTnPIP1;1, VvTnPIP2;2 and VvTnTIP2;1 were expressed in yeast and water transport activity was characterized in intact cells of the transformants. The three aquaporins were localized in the yeast plasma membrane but only VvTnTIP2;1 expression enhanced the water permeability with a concomitant decrease of the activation energy of water transport. Acidification of yeast cytosol resulted in loss of VvTnTIP2;1 activity. Sequence analysis revealed the presence of a His131 residue, unusual in TIPs. By site directed mutagenesis, replacement of this residue by aspartic acid or alanine resulted in loss of pHin dependence while replacement by lysine resulted in total loss of activity. In addition to characterization of VvTn aquaporins, these results shed light on the gating of a specific tonoplast aquaporin by cytosolic pH