Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Spartina versicolor Fabre: Another case of Spartina trans-Atlantic introduction?
    Publication . Baumel, A.; Rousseau-Gueutin, M.; Sapienza-Bianchi, C.; Gareil, A.; Duong, N.; Rousseau, H.; Coriton, O.; Amirouche, R.; Sciandrello, S.; Duarte, Bernardo; Caçador, Isabel; Castillo, J. M.; Ainouche, M.
    Intercontinental introductions are widespread in the genus Spartina, with important ecological and evolutionary consequences. The native or introduced status of Spartina species is then critical with regard to biodiversity assessment, especially for vulnerable Mediterranean coastline ecosystems. Spartina versicolor was first recorded in southern France in 1849, then successively in various places on the European and North-African Mediterranean and Atlantic coasts. This species is considered to be either a European native or an invasive species introduced from North America which has a high morphological similarity to the Atlantic American species Spartina patens. We performed extensive sampling of S. versicolor in Europe and North Africa (from natural populations and herbarium collections) and compared these samples to other European and American Spartina species (including S. patens). Chromosome counts were reported for the first time and revealed that S. versicolor is tetraploid (2n = 4x = 40). Phylogenetic analyses based on chloroplast and nuclear ribosomal DNA sequences did not reveal any molecular variation within S. versicolor. In this species, a single haplotype, that is identical to one haplotype of S. patens, was found in the four chloroplast and the nuclear ribosomal ITS regions investigated. In addition, simple sequence repeat markers were used and revealed a low level of genetic diversity within S. versicolor, suggesting that the introduction of S. versicolor occurred from a narrow genetic pool of S. patens from North America.
  • A tale of two spartinas: Climatic, photobiological and isotopic insights on the fitness of non-indigenous versus native species
    Publication . Duarte, Bernardo; Baeta, Alexandra; Rousseau-Gueutin, M.; Ainouche, M.; Marques, J. C.; Caçador, Isabel
    Salt marshes are facing a new threat: the invasion by non-indigenous species (NIS), Although its introduction time is not established yet, in 1999 Spartina versicolor was already identified as a NIS in the Mediterranean marshes, significantly spreading its area of colonization. Using the Mediterranean native Spartina maritima as a reference, the present research studied the ecophysiological fitness of this NIS in its new environment, as a tool to understand its potential invasiveness. It was found that Spartina versicolor had a stable photobiological pattern, with only minor fluctuations during an annual cycle, and lower efficiencies comparated to S. maritima. The NIS seems to be rather insensitive to the observed abiotic factors fluctuations (salinity and pH of the sediment), and thus contrasts with the native S. maritima, known to be salinity dependent with higher productivity values in higher salinity environments. Most of the differences observed between the photobiology of these species could be explained by their nitrogen nutrition (here evaluated by the δ15N stable isotope) and directly related with the Mediterranean climate. Enhanced by a higher N availability during winter, the primary production of S. maritima which lead to dilution of the foliar δ15N concentration in the newly formed biomass, similarly to what is observed along a rainfall gradient. On the other hand, S. versicolor showed an increased δ15N in its tissues along the annual rainfall gradient, probably due to a δ15N concentration effect during low biomass production periods (winter and autumn). Together with the photobiological traits, these isotopic data point out to a climatic misfit of S. versicolor to the Mediterranean climate compared to the native S. maritima. This appears to be the major constrain shaping the ecophysiological fitness of this NIS, its primary production and consequently, its spreading rate along the Mediterranean marshes.