Browsing by Author "Socodato, Renato"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Microglia dysfunction caused by the loss of Rhoa disrupts neuronal physiology and leads to neurodegenerationPublication . Socodato, Renato; Portugal, Camila C.; Canedo, Teresa; Rodrigues, Artur; Almeida, Tiago O.; Henriques, Joana F.; Vaz, Sandra H.; Magalhães, João; Silva, Cátia M.; Baptista, Filipa I.; Alves, Renata L.; Coelho-Santos, Vanessa; Silva, Ana Paula; Paes de Carvalho, Roberto; Magalhães, Ana; Brakebusch, Cord; Sebastião, Ana M; Summavielle, Teresa; Ambrósio, António F.; Relvas, João B.Nervous tissue homeostasis requires the regulation of microglia activity. Using conditional gene targeting in mice, we demonstrate that genetic ablation of the small GTPase Rhoa in adult microglia is sufficient to trigger spontaneous microglia activation, producing a neurological phenotype (including synapse and neuron loss, impairment of long-term potentiation [LTP], formation of β-amyloid plaques, and memory deficits). Mechanistically, loss of Rhoa in microglia triggers Src activation and Src-mediated tumor necrosis factor (TNF) production, leading to excitotoxic glutamate secretion. Inhibiting Src in microglia Rhoa-deficient mice attenuates microglia dysregulation and the ensuing neurological phenotype. We also find that the Rhoa/Src signaling pathway is disrupted in microglia of the APP/PS1 mouse model of Alzheimer disease and that low doses of Aβ oligomers trigger microglia neurotoxic polarization through the disruption of Rhoa-to-Src signaling. Overall, our results indicate that disturbing Rho GTPase signaling in microglia can directly cause neurodegeneration.
- Novel ocellatin peptides mitigate LPS-induced ROS formation and NF-kB activation in microglia and hippocampal neuronsPublication . Sousa, Nayara A.; Oliveira, Guilherme A. L.; de Oliveira, Ana Patrícia; Lopes, André Luís F.; Iles, Bruno; Nogueira, Kerolayne M.; Araújo, Thiago S. L.; Souza, Luan K. M.; Araújo, Alyne R.; Ramos-Jesus, Joilson; Plácido, Alexandra; Amaral, Constança Pais Do; Campelo, Yuri D. M.; Barbosa, Eder Alves; Portugal, Camila C.; Socodato, Renato; Lobo, Andrea; Relvas, Joao; Bemquerer, Marcelo; Eaton, Peter; Leite, José Roberto S. A.; Medeiros, Jand Venes R.Cutaneous secretions of amphibians have bioactive compounds, such as peptides, with potential for biotechnological applications. Therefore, this study aimed to determine the primary structure and investigate peptides obtained from the cutaneous secretions of the amphibian, Leptodactylus vastus, as a source of bioactive molecules. The peptides obtained possessed the amino acid sequences, GVVDILKGAAKDLAGH and GVVDILKGAAKDLAGHLASKV, with monoisotopic masses of [M + H]± = 1563.8 Da and [M + H]± = 2062.4 Da, respectively. The molecules were characterized as peptides of the class of ocellatins and were named as Ocellatin-K1(1-16) and Ocellatin-K1(1-21). Functional analysis revealed that Ocellatin-K1(1-16) and Ocellatin-K1(1-21) showed weak antibacterial activity. However, treatment of mice with these ocellatins reduced the nitrite and malondialdehyde content. Moreover, superoxide dismutase enzymatic activity and glutathione concentration were increased in the hippocampus of mice. In addition, Ocellatin-K1(1-16) and Ocellatin-K1(1-21) were effective in impairing lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) formation and NF-kB activation in living microglia. We incubated hippocampal neurons with microglial conditioned media treated with LPS and LPS in the presence of Ocellatin-K1(1-16) and Ocellatin-K1(1-21) and observed that both peptides reduced the oxidative stress in hippocampal neurons. Furthermore, these ocellatins demonstrated low cytotoxicity towards erythrocytes. These functional properties suggest possible to neuromodulatory therapeutic applications.
