Browsing by Author "Rebelo, H."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Bat diversity boosts ecosystem services: Evidence from pine processionary moth predationPublication . Augusto, A.M.; Raposeira, H.; Horta, P.; Mata, V.A.; Aizpurua, O.; Alberdi, A.; Jones, G.; Razgour, O.; Santos, S.A.P.; Russo, D.; Rebelo, H.Coniferous forests contribute to the European economy; however, they have experienced a decline since the late 1990s due to an invasive pest known as the pine processionary moth, Thaumetopoea pityocampa. The impacts of this pest are increasingly exacerbated by climate change. Traditional control strategies involving pesticides have had negative effects on public health and the environment. Instead, forest managers seek a more ecological and sustainable approach to management that promotes the natural actions of pest control agents. This study aims to evaluate the role of bats in suppressing pine processionary moths in pine forests and examine how the bat community composition and abundance influence pest consumption. Bats were sampled in the mountainous environment of the Serra da Estrela in central Portugal to collect faecal samples for DNA meta-barcoding analysis. We assessed the relationship between a) bat richness, b) bat relative abundance, c) bat diet richness, and the frequency of pine processionary moth consumption. Our findings indicate that sites with the highest bat species richness and abundance exhibit the highest levels of pine processionary moth consumption. The intensity of pine processionary moth consumption is independent of insect diversity within the site. The highest occur- rence of pine processionary moth presence in bat diets is primarily observed in species that forage in cluttered habitats. A typical predator of pine processionary moths among bats is likely to be a forest-dwelling species that specialises in consuming Lepidoptera. These species primarily use short-range echolocation calls, which are relatively inaudible to tympanate moths, suitable for locating prey in cluttered environments, employing a gleaning hunting strategy. Examples include species from the genera Plecotus, Myotis, and Rhinolophus. This study enhances our understanding of the potential pest consumption services provided by bats in pine forests. The insights gained from this research can inform integrated pest management practices in forestry.
- Bat diversity boosts ecosystem services: Evidence from pine processionary moth predationPublication . Augusto, Ana Margarida; Raposeira, H.; Horta, P.; Mata, V.A.; Aizpurua, O.; Alberdi, A.; Jones, G.; Razgour, O.; Santos, S.A.P.; Russo, D.; Rebelo, H.Coniferous forests contribute to the European economy; however, they have experienced a decline since the late 1990s due to an invasive pest known as the pine processionary moth, Thaumetopoea pityocampa. The impacts of this pest are increasingly exacerbated by climate change. Traditional control strategies involving pesticides have had negative effects on public health and the environment. Instead, forest managers seek a more ecological and sustainable approach to management that promotes the natural actions of pest control agents. This study aims to evaluate the role of bats in suppressing pine processionary moths in pine forests and examine how the bat community composition and abundance influence pest consumption. Bats were sampled in the mountainous environment of the Serra da Estrela in central Portugal to collect faecal samples for DNA meta-barcoding analysis. We assessed the relationship between a) bat richness, b) bat relative abundance, c) bat diet richness, and the frequency of pine processionary moth consumption. Our findings indicate that sites with the highest bat species richness and abundance exhibit the highest levels of pine processionary moth consumption. The intensity of pine processionary moth consumption is independent of insect diversity within the site. The highest occurrence of pine processionary moth presence in bat diets is primarily observed in species that forage in cluttered habitats. A typical predator of pine processionary moths among bats is likely to be a forest-dwelling species that specialises in consuming Lepidoptera. These species primarily use short-range echolocation calls, which are relatively inaudible to tympanate moths, suitable for locating prey in cluttered environments, employing a gleaning hunting strategy. Examples include species from the genera Plecotus, Myotis, and Rhinolophus. This study enhances our understanding of the potential pest consumption services provided by bats in pine forests. The insights gained from this research can inform integrated pest management practices in forestry.
- Landscape influences bat suppression of pine processionary moth: Implications for pest managementPublication . Augusto, Ana Margarida; Pereira, S.; Rodrigues, S.; Marques, F.; Aizpurua, O.; Alberdi, A.; Jones, G.; Razgour, O.; Marques, T.A.; Russo, D.; Rebelo, H.Bats provide important ecosystem services, particularly in agriculture, yet integrating bat management into conservation plans remains challenging. Some landscape features considerably influence bat presence, diversity, and ecosystem service provision. Understanding the relationship between landscape structure, composition, pest suppression, and ecosystem services is crucial. We modelled areas where bats most effectively suppress pine processionary moths (Thaumetopoea pityocampa), considering landscape characteristics to predict ecosystem services and optimise pest suppression in Serra da Estrela, Portugal. Faecal samples collected during fieldwork were analysed for pine processionary moth presence in bat diets. Lasso regression assessed spatial landscape variables to create an “optimal landscape” for predation. Landscape structure and composition influenced pest suppression differently, with the greatest impact within a 5000-m buffer. “Riparian edge” and “tree cover density” were key habitat structure variables supporting bat navigation and access to hunting areas, while “other forest” and “vineyard/orchard” areas were important composition variables. Optimising landscape composition involves incorporating diverse forest within agroforestry systems to enhance pest suppression by creating habitats reflecting bats' foraging preferences. We recommend strategies focusing on riparian edge conservation, selective canopy reduction, and promoting diverse forest compositions. These strategies aim to create mosaic landscapes balancing land uses, fostering optimal conditions for bat foraging. Our study shows edges provide the highest rates of bats-pine processionary moth interactions. However, caution is needed to avoid excessive fragmentation, which may reduce habitat suitability and increase pest presence before effective bat predation. A balanced approach, focusing on edge creation without over-fragmenting the landscape, is key to promoting sustainable pest management.
- Vegetation canopy height shapes bats’ occupancy: a remote sensing approachPublication . Martins, F. C.; Godinho, S.; Guiomar, N.; Medinas, D.; Rebelo, H.; Segurado, P.; Marques, J. T.Anthropogenic activities have significantly altered land cover on a global scale. These changes often have a negative effect on biodiversity limiting the distribution of species. The extent of the effect on species’ distribution depends on the landscape composition and configuration at a local and landscape level. To better understand this effect on a large scale, we evaluated how land cover and vegetation structure shape bat species’ occurrence while considering species’ imperfect detection. We hypothesize that intensification of anthropogenic activities in agriculture, for example, reduces heterogeneity of land cover and vegetation structure, and thereby, limits bat occurrence. To investigate this, we conducted acoustic bat sampling across 59 locations in southern Portugal, each with three spatial replicates. We derived fine-scale vegetation structural metrics by combining spaceborne LiDAR (GEDI) and synthetic aperture radar data (Sentinel-1 and ALOS/PALSAR-2). Additionally, we included land cover metrics and high-resolution climate data from CHELSA. Our findings revealed an important relationship between bat species’ occupancy and vegetation structure, particularly with vegetation canopy height. Moreover, forest and shrubland proportions were the main land cover types influencing bat species responses. All species’ best-ranking occupancy models included at least one climatic variable (temperature, humidity, or potential evapotranspiration), demonstrating the importance of climate when predicting bat dis- tribution. Our acoustic surveys had a species’ detection probability varying from 0.19 to 0.86, and it was influenced by night conditions. These findings underscore the importance of modeling imperfect detection, especially for highly vagile and elusive organisms like bats. Our results demonstrate the effectiveness of using vegetation and landscape metrics derived from high-resolution remote sensing data to model species distribution in the context of biodiversity monitoring and conservation.
