Browsing by Author "Monteiro, A.A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Dry matter and area partitioning, radiation interception and radiation-use efficiency in open-field bell pepperPublication . Vieira, M.I.; Melo-Abreu, J.P.; Ferreira, M.E.; Monteiro, A.A.The objective of this study was to determine some key components of a model for bell pepper growth and yield under non-limiting water and nutrient conditions using data from field trials conducted in Southern Portugal. DM partitioning, at least before fruiting, and specific area indices for leaves, stems and fruits were conservative in relation to normalized thermal time. The interception model had a good performance. It was based on the exponential extinction of radiation on the area covered by the plants, the ellipsoidal leaf-angle distributionmodel (X-parameter 2.48 and 2.89), and absorptivities of the leaves for PAR and NIR, 0.8 and 0.2, respectively. Radiation-use efficiency (RUE) was determined and presented in four different forms. RUE did not change substantially throughout the growing season. RUE of irrigated pepper crops grown in our experiments was around 1.6 g MJ 1 of intercepted PAR. The models and parameter values presented in this study may be useful to simulate the development and growth of fieldgrown pepper crop
- Initial in vitro evaluations of antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteriaPublication . Aires, A.; Mota, V.R.; Saavedra, M.J.; Monteiro, A.A.; Simões, M.; Rosa, E.A.S.; Bennett, R.N.Aims: The aim of the study was to evaluate the in vitro antibacterial effects of glucosinolate hydrolysis products (GHP) against plant pathogenic micro-organisms namely Agrobacterium tumefaciens, Erwinia chrysanthemi, Pseudomonas cichorii, Pseudomonas tomato, Xanthomonas campestris and Xanthomonas juglandis. Methods and Results: Using a disc diffusion assay, seven different doses of 10 GHP were tested against each bacteria. The results showed that the isothiocyanates were potent antibacterials, whilst the other GHP were much less efficient. Moreover, the antibacterial effects were dose-dependent, increasing with the dose applied; 2-phenylethylisothiocyanate and sulforaphane showed the strongest inhibitory effects. The overall results show a great potential for using the isothiocyanates as an alternative tool to control undesired bacterial growth in plants. Conclusions: Glucosinolate hydrolysis products and more specifically the isothiocyanates: benzylisothiocyanate, 2-phenylethylisothiocyanate, the isothiocyanate Mix and sulforaphane, were effective phytochemicals against the in vitro growth of the phytopathogenic bacteria. The antibacterial activity exhibited by these phytochemicals reinforces their potential as alternatives to the traditional chemical control of phytopathogenic bacteria. Significance and Impact of the Study: This current in vitro study is the first providing comparative data on GHP as potential control agents for plant pathogenic bacteria. However, more studies are needed to determine their possible allelopathic impacts e.g. inhibition of plant growth and negative effects on beneficial soil bacteria and fungi (mycorrhizae)
