Browsing by Author "Gomes, Diana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Absence of Synergism between a Dual-AMP Biogel and Antibiotics Used as Therapeutic Agents for Diabetic Foot InfectionsPublication . Soares, Rui Silva; Gomes, Diana; Serrano, Isa; Cunha, Eva; Tavares, Luís; Oliveira, ManuelaDiabetic foot infections (DFIs) are frequently linked to diabetic-related morbidity and death because of the ineffectiveness of conventional antibiotics against multidrug-resistant bacteria. Pexiganan and nisin A are antimicrobial peptides (AMPs), and their application may complement conventional antibiotics in DFI treatment. A collagen 3D model, previously established to mimic a soft-tissue collagen matrix, was used to evaluate the antibacterial efficacy of a guar gum gel containing pexiganan and nisin alone and combined with three antimicrobials toward the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa isolated from infected foot ulcers. Antimicrobials and bacterial diffusion were confirmed by spot-on-lawn and bacterial growth by bacterial count (cfu/mL). Our main conclusion was that the dual-AMP biogel combined with gentamicin, clindamycin, or vancomycin was not able to significantly reduce bacterial growth or eradicate S. aureus and P. aeruginosa DFI isolates. We further reported an antagonism between dual-AMP and dual-AMP combined with antibiotics against S. aureus.
- Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolatesPublication . Santos, Raquel; Gomes, Diana; Macedo, Hermes; Barros, Diogo; Tibério, Catarina; Veiga, Ana Salomé; Tavares, Luís; Castanho, Miguel A. R. B.; Oliveira, ManuelaDiabetic patients frequently develop diabetic foot ulcers (DFUs), particularly those patients vulnerable to Staphylococcus aureus opportunistic infections. It is urgent to find new treatments for bacterial infections. The antimicrobial peptide (AMP) nisin is a potential candidate, mainly due to its broad spectrum of action against pathogens. Considering that AMP can be degraded or inactivated before reaching its target at therapeutic concentrations, it is mandatory to establish effective AMP delivery systems, with the natural polysaccharide guar gum being one of the most promising. We analysed the antimicrobial potential of nisin against 23 S. aureus DFU biofilm-producing isolates. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) were determined for nisin diluted in HCl and incorporated in guar gum gel. Statistical analysis was performed using the Wilcoxon matched-pair test. Nisin was effective against all isolates, including some multidrug-resistant clinical isolates, independent of whether it is incorporated in guar gum. While differences among MIC, MBC and MBIC values were observed for HCl- and guar gum- nisin, no significant differences were found between MBEC values. Inhibitory activity of both systems seems to differ only twofold, which does not compromise guar gum gel efficiency as a delivery system. Our results highlight the potential of nisin as a substitute for or complementary therapy to current antibiotics used for treating DFU infections, which is extremely relevant considering the increase in multidrug-resistant bacteria dissemination. The guar gum gel represents an alternative, practical and safe delivery system for AMPs, allowing the development of novel topical therapies as treatments for bacterial skin infections.
