Browsing by Author "Eichmann, Anne"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retinaPublication . Barbacena, Pedro; Dominguez-Cejudo, Maria Angeles; Fonseca, Catarina; Gómez-González, Manuel; Faure, Laura M.; Zarkada, Georgia; Pena, Andreia; Pezzarossa, Anna; Ramalho, Daniela; Giarratano, Ylenia; Ouarné, Marie; Barata, David; Fortunato, Isabela C.; Henao Mišíková, Lenka; Mauldin, Ian; Carvalho, Yulia; Trepat, Xavier; Roca-Cusachs, Pere; Eichmann, Anne; Bernabeu, Miguel O.; Franco, ClaudioBlood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.
- Defective flow-migration coupling causes arteriovenous malformations in hereditary hemorrhagic telangiectasiaPublication . Park, Hyojin; Furtado, Jessica; Poulet, Mathilde; Chung, Minhwan; Yun, Sanguk; Lee, Sungwoon; Sessa, William C.; Franco, Claudio; Schwartz, Martin A.; Eichmann, AnneBackground: Activin receptor-like kinase 1 (ALK1) is an endothelial transmembrane serine threonine kinase receptor for BMP family ligands that plays a critical role in cardiovascular development and pathology. Loss-of-function mutations in the ALK1 gene cause type 2 hereditary hemorrhagic telangiectasia, a devastating disorder that leads to arteriovenous malformations. Here, we show that ALK1 controls endothelial cell polarization against the direction of blood flow and flow-induced endothelial migration from veins through capillaries into arterioles. Methods: Using Cre lines that recombine in different subsets of arterial, capillary-venous, or endothelial tip cells, we show that capillary-venous Alk1 deletion was sufficient to induce arteriovenous malformation formation in the postnatal retina. Results: ALK1 deletion impaired capillary-venous endothelial cell polarization against the direction of blood flow in vivo and in vitro. Mechanistically, ALK1-deficient cells exhibited increased integrin signaling interaction with vascular endothelial growth factor receptor 2, which enhanced downstream YAP/TAZ nuclear translocation. Pharmacologic inhibition of integrin or YAP/TAZ signaling rescued flow migration coupling and prevented vascular malformations in Alk1-deficient mice. Conclusions: Our study reveals ALK1 as an essential driver of flow-induced endothelial cell migration and identifies loss of flow-migration coupling as a driver of arteriovenous malformation formation in hereditary hemorrhagic telangiectasia disease. Integrin-YAP/TAZ signaling blockers are new potential targets to prevent vascular malformations in patients with hereditary hemorrhagic telangiectasia.
- Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia modelsPublication . Cristofaro, Brunella; Yu Shi; Faria, Marcella; Suchting, Steven; Leroyer, Aurelie S.; Trindade, Alexandre; Duarte, Antonio; Zovein, Ann C.; Iruela-Arispe, M. Luisa; Nih, Lina R.; Kubis, Nathalie; Henrion, Daniel; Loufrani, Laurent; Todiras, Mihail; Schleifenbaum, Johanna; Gollasch, Maik; Zhuang, Zhen W.; Simons, Michael; Eichmann, Anne; Le Noble, FerdinandArteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Deltalike 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic lossand gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4+/− mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4+/− mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality.
