Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/59293
Registo completo
Campo DCValorIdioma
degois.publication.firstPage15pt_PT
degois.publication.lastPage26pt_PT
degois.publication.titleMaterials Science and Engineering Cpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0928493118335549pt_PT
dc.contributor.authorMartin, Victor-
dc.contributor.authorRibeiro, Isabel A. C.-
dc.contributor.authorAlves, Marta M.-
dc.contributor.authorGonçalves, Lídia-
dc.contributor.authorClaudio, Ricardo A.-
dc.contributor.authorGrenho, Liliana-
dc.contributor.authorFernandes, Maria H.-
dc.contributor.authorGomes, Pedro-
dc.contributor.authorSantos, Catarina F.-
dc.contributor.authorBettencourt, Ana-
dc.date.accessioned2023-09-14T13:25:14Z-
dc.date.available2023-09-14T13:25:14Z-
dc.date.issued2019-
dc.identifier.citationMartin V, Ribeiro IA, Alves MM, Gonçalves L, Claudio RA, Grenho L, et al. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Materials Science and Engineering: C [Internet]. 1 de agosto de 2019;101:15–26. Disponível em: https://www.sciencedirect.com/science/article/pii/S0928493118335549pt_PT
dc.identifier.urihttp://hdl.handle.net/10451/59293-
dc.description.abstract3D-printing and additive manufacturing can be powerful techniques to design customized structures and produce synthetic bone grafts with multifunctional effects suitable for bone repair. In our work we aimed the development of novel multifunctionalized 3D printed poly(lactic acid) (PLA) scaffolds with bioinspired surface coatings able to reduce bacterial biofilm formation while favoring human bone marrow-derived mesenchymal stem cells (hMSCs) activity. For that purpose, 3D printing was used to prepare PLA scaffolds that were further multifunctionalized with collagen (Col), minocycline (MH) and bioinspired citrate- hydroxyapatite nanoparticles (cHA). PLA-Col-MH-cHA scaffolds provide a closer structural support approximation to native bone architecture with uniform macroporous, adequate wettability and an excellent compressive strength. The addition of MH resulted in an adequate antibiotic release profile that by being compatible with local drug delivery therapy was translated into antibacterial activities against Staphylococcus aureus, a main pathogen associated to bone-related infections. Subsequently, the hMSCs response to these scaffolds revealed that the incorporation of cHA significantly stimulated the adhesion, proliferation and osteogenesis-related gene expression (RUNX2, OCN and OPN) of hMSCs. Furthermore, the association of a bioinspired material (cHA) with the antibiotic MH resulted in a combined effect of an enhanced osteogenic activity. These findings, together with the antibiofilm activity depicted strengthen the appropriateness of this 3D-printed PLA-Col-MH-cHA scaffold for future use in bone repair. By targeting bone repair while mitigating the typical infections associated to bone implants, our 3D scaffolds deliver an integrated strategy with the combined effects further envisaging an increase in the success rate of bone-implanted devices.pt_PT
dc.description.sponsorshipThe authors would like to thank Fundação para a Ciência e Tecnologia (FCT) for the financial support under iMED.ULisboa project Pest-UID/DTP/04138/2014, CQE project UID/QUI/00100/2013, and through IDMEC, under LAETA, project UID/EMS/50022/2019. Financial support from the European Union (FEDER funds POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/QUI/50006/2013 is acknowledged. Marta M. Alves is grateful for grant (SFRH/BPD/76646/2011) from FCT. Authors would like also to thank to Dra Mădălina Kaya from the Department of Collagen Research (Romania) for the gift of collagen, the Designer Nuno Monge for the scaffold drawings, and to Micronsense-Metrologia Industrial (Leiria, Portugal) for the μCT analysis.pt_PT
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/EXCL%2FCTM-NAN%2F0166%2F2012/PTpt_PT
dc.relationUID/DTP/04138/2014pt_PT
dc.relationUID/QUI/00100/2013pt_PT
dc.relationUID/EMS/50022/2019pt_PT
dc.relationPOCI/01/0145/FEDER/007265pt_PT
dc.relationPT2020 UID/QUI/50006/2013pt_PT
dc.relationSFRH/BPD/76646/2011pt_PT
dc.rightsrestrictedAccesspt_PT
dc.subjectAdditive manufacturingpt_PT
dc.subjectLocal-drug-deliverypt_PT
dc.subjectTetracyclinespt_PT
dc.subjectStaphylococcus aureuspt_PT
dc.subjectAntibiofilmpt_PT
dc.subjectBone regenerationpt_PT
dc.titleEngineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regenerationpt_PT
dc.typearticlept_PT
dc.date.updated2023-02-27T18:56:22Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.slugcv-prod-2420943-
dc.peerreviewedyespt_PT
degois.publication.volume101pt_PT
dc.identifier.doi10.1016/j.msec.2019.03.056pt_PT
rcaap.cv.cienciaid7211-22BA-86AD | Lídia Maria Diogo Gonçalves-
dc.identifier.eid2-s2.0-85063368674-
Aparece nas colecções:FF - CiênciaVitae - Faculdade de Farmácia

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Martin_et_al_2019.pdf3,17 MBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.