Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/58133
Título: Soil Landscape Modelling – placing place in its place
Autor: Fonseca, Inês
Freire, Sérgio
Brasil, Ricardo
Rocha, Jorge
Tenedório, José A.
Palavras-chave: Landscape
Artificial Neural Networks
Soil maps
Geographical Information Systems
Data: 2013
Editora: APGEOM
Citação: Fonseca, I.L., Freire, S., Brasil, R., Rocha, J., & Tenedório, J. (2013). Soil Landscape Modelling – placing place in its place, In. Adélia Nunes, Lúcio Cunha, João Santos, Anabela Ramos, Rui Ferreira, Isabel Paiva, Luca Dimuccio (Eds.), Proceedings of the VI Congresso Nacional de Geomorfologia: Geomorfologia – Novos e Velhos Desafios, (pp. 151-155), APGEOM. ISBN 978-989-96462-4-7.
Resumo: Landscape variables, which are also factors of soil formation, can be combined with existing soil map data to train Artificial Neural Networks (ANNs) in order to predict soil types in unmapped areas. In this study, the impact of location data and proximity of the training data on the performance of ANN models, for two catchments in northern Portugal, is evaluated. Results are largely concurrent between catchments, indicating that using latitude and longitude data produces more accurate models, whilst taking into account the spatial autocorrelative properties of input data makes ANN models converge for a better “local” rather than “global” solution. The conclusion is that hillslopes show some degree of connectivity which is passed onto soils, and conforms to the principles of the catena concept.
Peer review: yes
URI: http://hdl.handle.net/10451/58133
ISBN: 978-989-96462-4-7
Aparece nas colecções:IGOT - Livros e Capítulos de Livros

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
GeomorfologiaIV_2013_1.pdf378,82 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.