Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/56667
Registo completo
Campo DCValorIdioma
degois.publication.firstPage112pt_PT
degois.publication.issue3pt_PT
degois.publication.titleFirept_PT
dc.relation.publisherversionhttps://www.mdpi.com/2571-6255/6/3/112pt_PT
dc.contributor.authorBergonse, Rafaello-
dc.contributor.authorOliveira, Sandra-
dc.contributor.authorZêzere, José-
dc.contributor.authorMoreira, Francisco-
dc.contributor.authorRibeiro, Paulo Flores-
dc.contributor.authorLeal, Miguel-
dc.contributor.authorSantos, José Manuel Lima-
dc.date.accessioned2023-03-15T12:31:11Z-
dc.date.available2023-03-15T12:31:11Z-
dc.date.issued2023-
dc.identifier.citationBergonse, R., Oliveira, S., Zêzere, J. L., Moreira, F., Ribeiro, P. F., Leal, M., & Santos, J. M. L. (2023). Differentiating fire regimes and their biophysical drivers in Central Portugal. Fire, 6(3), 112. http://dx.doi.org/10.3390/fire6030112pt_PT
dc.identifier.issn2571-6255-
dc.identifier.urihttp://hdl.handle.net/10451/56667-
dc.description.abstractWe characterize fire regimes in central Portugal and investigate the degree to which the differences between regimes are influenced by a set of biophysical drivers. Using civil parishes as units of analysis, we employ three complementary parameters to describe the fire regime over a reference period of 44 years (1975–2018), namely cumulative percentage of parish area burned, Gini concentration index of burned area over time, and area-weighted total number of wildfires. Cluster analysis is used to aggregate parishes into groups with similar fire regimes based on these parameters. A classification tree model is then used to assess the capacity of a set of potential biophysical drivers to discriminate between the different parish groups. The results allowed us to distinguish four types of fire regime and show that these can be significantly differentiated using the biophysical drivers, of which land use/land cover (LULC), slope, and spring rainfall are the most important. Among LULC classes, shrubland and herbaceous vegetation play the foremost role, followed by agriculture. Our results highlight the importance of vegetation type, availability, and rate of regeneration, as well as that of topography, in influencing fire regimes in the study area, while suggesting that these regimes should be subject to specific wildfire prevention and mitigation policies.pt_PT
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relationPCIF/AGT/0136/2017pt_PT
dc.relationContract 2020.03873.CEECINDpt_PT
dc.relationUIDB/00295/2020pt_PT
dc.relationUIDP/00295/2020pt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectFire regimept_PT
dc.subjectBiophysical driverspt_PT
dc.subjectMachine learningpt_PT
dc.subjectClassification and regression treespt_PT
dc.subjectCentral Portugalpt_PT
dc.titleDifferentiating fire regimes and their biophysical drivers in Central Portugalpt_PT
dc.typearticlept_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.peerreviewedyespt_PT
degois.publication.volume6pt_PT
dc.identifier.doi10.3390/fire6030112pt_PT
Aparece nas colecções:IGOT - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Bergonse_Oliveira_Zezere_Moreira_Ribeiro_Leal_Santos_2023.pdf5,33 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.