Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/53365
Registo completo
Campo DCValorIdioma
degois.publication.firstPage52pt_PT
degois.publication.issue1pt_PT
degois.publication.titleFishespt_PT
dc.contributor.authorNeves, Ana-
dc.contributor.authorVieira, Ana Rita-
dc.contributor.authorSequeira, Vera-
dc.contributor.authorSilva, Elisabete-
dc.contributor.authorSilva, Frederica-
dc.contributor.authorDuarte, Ana Marta-
dc.contributor.authorMendes, Susana-
dc.contributor.authorGanhão, Rui-
dc.contributor.authorAssis, Carlos-
dc.contributor.authorSampaio e rebelo, Rui-
dc.contributor.authorMagalhães, Maria Filomena-
dc.contributor.authorGil, Maria Manuel-
dc.contributor.authorGordo, Leonel Serrano-
dc.date.accessioned2022-06-09T16:58:34Z-
dc.date.available2022-06-09T16:58:34Z-
dc.date.issued2022-02-
dc.identifier.citation: Neves, A.; Vieira, A.R.; Sequeira, V.; Silva, E.; Silva, F.; Duarte, A.M.; Mendes, S.; Ganhão, R.; Assis, C.; Rebelo, R.; et al. Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus. Fishes 2022, 7, 52. https://doi.org/ 10.3390/fishes7010052pt_PT
dc.identifier.urihttp://hdl.handle.net/10451/53365-
dc.description.abstractGrowth modelling is essential to inform fisheries management but is often hampered by sampling biases and imperfect data. Additional methods such as interpolating data through back-calculation may be used to account for sampling bias but are often complex and time-consuming. Here, we present an approach to improve plausibility in growth estimates when small individuals are under-sampled, based on Bayesian fitting growth models using Markov Chain Monte Carlo (MCMC) with informative priors on growth parameters. Focusing on the blue jack mackerel, Trachurus picturatus, which is an important commercial fish in the southern northeast Atlantic, this Bayesian approach was evaluated in relation to standard growth model fitting methods, using both direct readings and back-calculation data. Matched growth parameter estimates were obtained with the von Bertalanffy growth function applied to back-calculated length at age and the Bayesian fitting, using MCMC to direct age readings, with both outperforming all other methods assessed. These results indicate that Bayesian inference may be a powerful addition in growth modelling using imperfect data and should be considered further in age and growth studies, provided relevant biological information can be gathered and included in the analyses.pt_PT
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relationEuropean Maritime and Fisheries Fund MAR2020pt_PT
dc.relationFCT CEECIND/02705/2017pt_PT
dc.relationFCT CEECIND/01528/2017pt_PT
dc.relationFCT UIBD/04292/2020pt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.titleModelling Fish Growth with Imperfect Data: The Case of Trachurus picturatuspt_PT
dc.typearticlept_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.peerreviewedyespt_PT
degois.publication.volume7pt_PT
dc.identifier.doi10.3390/fishes7010052pt_PT
Aparece nas colecções:cE3c - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
fishes-07-00052.pdf612,21 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.