Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/53319
Título: A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia
Autor: van der Ende, Emma L.
Bron, Esther E.
Poos, Jackie M.
Jiskoot, Lize C.
Panman, Jessica L.
Papma, Janne M.
Meeter, Lieke H.
Dopper, Elise G. P.
Wilke, Carlo
Synofzik, Matthis
Heller, Carolin
Miltenberger-Miltenyi, Gabriel
van Minkelen, Rick
Mitchell, Sara
Moore, Katrina
Nacmias, Benedetta
Nicholas, Jennifer
Öijerstedt, Linn
Olives, Jaume
Ourselin, Sebastien
Padovani, Alessandro
Swift, Imogen J.
Peakman, Georgia
Pievani, Michela
Pijnenburg, Yolande
Polito, Cristina
Premi, Enrico
Prioni, Sara
Prix, Catharina
Rademakers, Rosa
Redaelli, Veronica
Rittman, Tim
Sogorb-Esteve, Aitana
Rogaeva, Ekaterina
Rosa-Neto, Pedro
Rossi, Giacomina
Rosser, Martin
Santiago, Beatriz
Scarpini, Elio
Schönecker, Sonja
Semler, Elisa
Shafei, Rachelle
Shoesmith, Christen
Bouzigues, Arabella
Tábuas-Pereira, Miguel
Tainta, Mikel
Taipa, Ricardo
Tang-Wai, David
Thomas, David L.
Thompson, Paul
Thonberg, Hakan
Timberlake, Carolyn
Tiraboschi, Pietro
Todd, Emily
Borroni, Barbara
Van Damme, Philip
Vandenbulcke, Mathieu
Veldsman, Michele
Verdelho, Ana
Villanua, Jorge
Warren, Jason
Woollacott, Ione
Wlasich, Elisabeth
Zulaica, Miren
Sanchez-Valle, Raquel
Moreno, Fermin
Graff, Caroline
Laforce, Robert
Galimberti, Daniela
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
Rowe, James B.
De Mendonça, Alexandre
Tagliavini, Fabrizio
Santana, Isabel
Ducharme, Simon
Butler, Christopher R.
Gerhard, Alexander
Levin, Johannes
Danek, Adrian
Otto, Markus
Pijnenburg, Yolande A. L.
Sorbi, Sandro
Zetterberg, Henrik
Niessen, Wiro J.
Rohrer, Jonathan D.
Klein, Stefan
van Swieten, John C.
Venkatraghavan, Vikram
Seelaar, Harro
Afonso, Sónia
Almeida, Maria Rosario
Anderl-Straub, Sarah
Andersson, Christin
Antonell, Anna
Archetti, Silvana
Arighi, Andrea
Balasa, Mircea
Barandiaran, Myriam
Bargalló, Nuria
Bartha, Robart
Bender, Benjamin
Benussi, Alberto
Benussi, Luisa
Bessi, Valentina
Binetti, Giuliano
Black, Sandra
Bocchetta, Martina
Borrego-Ecija, Sergi
Bras, Jose
Bruffaerts, Rose
Cañada, Marta
Cantoni, Valentina
Caroppo, Paola
Cash, David
Castelo-Branco, Miguel
Convery, Rhian
Cope, Thomas
Di Fede, Giuseppe
Díez, Alina
Duro, Diana
Fenoglio, Chiara
Ferrari, Camilla
Ferreira, Catarina B.
Fox, Nick
Freedman, Morris
Fumagalli, Giorgio
Gabilondo, Alazne
Gasparotti, Roberto
Gauthier, Serge
Gazzina, Stefano
Giaccone, Giorgio
Gorostidi, Ana
Greaves, Caroline
Guerreiro, Rita
Hoegen, Tobias
Indakoetxea, Begoña
Jelic, Vesna
Karnath, Hans-Otto
Keren, Ron
Langheinrich, Tobias
Leitão, Maria João
Lladó, Albert
Lombardi, Gemma
Loosli, Sandra
Maruta, Carolina
Mead, Simon
Palavras-chave: Biomarker
Disease progression model
Event-based modelling
Frontotemporal dementia
Neurofilament light chain
Data: 2022
Editora: Oxford University Press
Citação: Brain. 2022 Jun 3;145(5):1805-1817
Resumo: Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
Descrição: © The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/ by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Peer review: yes
URI: http://hdl.handle.net/10451/53319
DOI: 10.1093/brain/awab382
ISSN: 0006-8950
Versão do Editor: https://academic.oup.com/brain
Aparece nas colecções:IMM - Artigos em Revistas Internacionais
FM - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Driven_disease.pdf1,23 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.