Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/52290
Registo completo
Campo DCValorIdioma
degois.publication.firstPage311pt_PT
degois.publication.issue2pt_PT
degois.publication.titleForestspt_PT
dc.contributor.authorMacave, Orlando A.-
dc.contributor.authorRibeiro, Natasha S.-
dc.contributor.authorRibeiro, Ana I.-
dc.contributor.authorChaúque, Aniceto-
dc.contributor.authorBandeira, Romana-
dc.contributor.authorBranquinho, Cristina-
dc.contributor.authorWashington-Allen, Robert-
dc.date.accessioned2022-04-12T10:18:41Z-
dc.date.available2022-04-12T10:18:41Z-
dc.date.issued2022-02-
dc.identifier.citation4. Macave OA, Ribeiro NS, Ribeiro AI, Chaúque A, Bandeira R, Branquinho C, Washington-Allen R. 2022. Modelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambique. Forests, 2022, 13(2), 311. https://doi.org/10.3390/f13020311pt_PT
dc.identifier.urihttp://hdl.handle.net/10451/52290-
dc.description.abstractAboveground biomass (AGB) estimation plays a crucial role in forest management and carbon emission reporting, especially for developing countries wishing to address REDD+ projects. Both passive and active remote-sensing technologies can provide spatially explicit information of AGB by using a limited number of field samples, thus reducing the substantial budgetary cost of field inventories. The aim of the current study was to estimate AGB in the Niassa Special Reserve (NSR) using fusion of optical (Landsat 8/OLI and Sentinel 2A/MSI) and radar (Sentinel 1B and ALOS/PALSAR-2) data. The performance of multiple linear regression models to relate ground biomass with different combinations of sensor data was assessed using root-mean-square error (RMSE), and the Akaike and Bayesian information criteria (AIC and BIC). The mean AGB and carbon stock (CS) estimated from field data were estimated at 56 Mg ha−1 (ranging from 11 to 95 Mg ha−1) and 28 MgC ha−1, respectively. The best model estimated AGB at 63 ± 20.3 Mg ha−1 for NSR, ranging from 0.6 to 200 Mg ha−1 (r2 = 87.5%, AIC = 123, and BIC = 51.93). We obtained an RMSE % of 20.46 of the mean field estimate of 56 Mg ha−1. The estimation of AGB in this study was within the range that was reported in the existing literature for the miombo woodlands. The fusion of vegetation indices derived from Landsat/OLI and Sentinel 2A/MSI, and backscatter from ALOS/PALSAR-2 is a good predictor of AGB.pt_PT
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relationItalian Cooperation through the “Fundo de Investigação Multisectorial e Aplicada em Moçambique (FIAM)”pt_PT
dc.relationFCT UIDB/00239/2020pt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.titleModelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambiquept_PT
dc.typearticlept_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.peerreviewedyespt_PT
degois.publication.volume13pt_PT
dc.identifier.doi10.3390/f13020311pt_PT
Aparece nas colecções:cE3c - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
forests-13-00311.pdf1,85 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.