Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/47184
Título: Underwater noise recognition of marine vessels passages: two case studies using hidden Markov models
Autor: Vieira, Manuel
Amorim, M Clara P
Sundelöf, Andreas
Prista, Nuno
Fonseca, Paulo
Data: Nov-2020
Editora: Oxford University Press
Citação: Vieira, M., Amorim, M. C. P., Sundelo¨f, A., Prista, N., and Fonseca, P. J. 2020. Underwater noise recognition of marine vessels passages: two case studies using hidden Markov models. – ICES Journal of Marine Science, 77: 2157-2170. doi:10.1093/icesjms/fsz194.
Resumo: Passive acoustic monitoring (PAM) is emerging as a cost-effective non-intrusive method to monitor the health and biodiversity of marine habitats, including the impacts of anthropogenic noise on marine organisms. When long PAM recordings are to be analysed, automatic recognition and identification processes are invaluable tools to extract the relevant information. We propose a pattern recognition methodology based on hidden Markov models (HMMs) for the detection and recognition of acoustic signals from marine vessels passages and test it in two different regions, the Tagus estuary in Portugal and the Öresund strait in the Baltic Sea. Results show that the combination of HMMs with PAM provides a powerful tool to monitor the presence of marine vessels and discriminate different vessels such as small boats, ferries, and large ships. Improvements to enhance the capability to discriminate different types of small recreational boats are discussed.
Peer review: yes
URI: http://hdl.handle.net/10451/47184
DOI: 10.1093/icesjms/fsz194
Aparece nas colecções:cE3c - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Vieira et al_Boat Sound Recognition_20180731.pdf1,71 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.