Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.5/29130
Registo completo
Campo DCValorIdioma
dc.contributor.authorBarros, Vanessa-
dc.contributor.authorCorreia, Simão-
dc.contributor.authorOliveira, Filipe-
dc.date.accessioned2023-10-26T10:54:56Z-
dc.date.available2023-10-26T10:54:56Z-
dc.date.issued2022-
dc.identifier.citationBarros, Vanessa; Simão Correia and Filipe Oliveira .(2022). “On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity”. Differential and Integral Equations, Volume 148, No. 2: pp. 371-392pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.5/29130-
dc.description.abstractWe study the nonlinear Schrödinger equation [vg. equation] … After showing that the linear Schrödinger group is well-defined in this space, we prove local well-posedness in the whole range of parameters s and p. The precise properties of the solution depend on the relation between the power of the nonlinearity and the integrability p. Finally, we present a global existence result for the defocusing cubic equation in dimension three for initial data with infinite mass and energy, using a variant of the Fourier truncation method properties of the solution depend on the relation between the power of the nonlinearity and the integrability p. Finally, we present a global existence result for the defocusing cubic equation in dimension three for initial data with infinite mass and energy, using a variant of the Fourier truncation method.pt_PT
dc.language.isoengpt_PT
dc.publisherProject euclidpt_PT
dc.rightsclosedAccesspt_PT
dc.subjectNonlinear Schrödinger Equationpt_PT
dc.subjectLocal Well-Posednesspt_PT
dc.titleOn the nonlinear Schrödinger equation in spaces of infinite mass and low regularitypt_PT
dc.typearticlept_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
Aparece nas colecções:CEMAPRE - Artigos em Revistas Internacionais / Articles in International Journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Filipe Oliveira et al.2020.pdf208,71 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.