Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.5/29106
Título: Semitrivial vs. fully nontrivial ground states in cooperative cubic Schrödinger systems with d ≥ 3 equations
Autor: Correia, Simão
Oliveira, Filipe
Tavares, Hugo
Palavras-chave: Schrödinger Cubic System of Cooperative Type
Gradient Elliptic Systems
Ground States
Semitrivial and Fully Nontrivial Solutions
Data: 2016
Editora: Elsevier
Citação: Correia, Simão; Filipe Oliveira and Hugo Tavares .(2016). “Semitrivial vs. fully nontrivial ground states in cooperative cubic Schrödinger systems with d ≥ 3 equations”. Journal of Functional Analysis, Volume 271, No. 8: pp. 2247-2273 . (Search PDF in 2023)
Resumo: In this work we consider the weakly coupled Schrödinger cubic system [vg. equation in attachment] where 1 ≤ N ≤ 3, λi, μi > 0 and bij = bji > 0 for i ≠ j. This system admits semitrivial solutions, that is solutions u = (u1, ..., ud) with null components. We provide optimal qualitative conditions on the parameters λi, μi and bij under which the ground state solutions have all components nontrivial, or, conversely, are semitrivial. This question had been clarified only in the d = 2 equations case. For d ≥ 3 equations, prior to the present paper, only very restrictive results were known, namely when the above system was a small perturbation of the super-symmetrical case λi ≡ λ and bij ≡ b. We treat the general case, uncovering in particular a much more complex and richer structure with respect to the d = 2 case
URI: http://hdl.handle.net/10400.5/29106
DOI: doi.org/10.1016/j.jfa.2016.06.017
ISSN: 0022-1236
Aparece nas colecções:CEMAPRE - Artigos em Revistas Internacionais / Articles in International Journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
SCORREIA.FOLIVEIRA.HTAVARES.2016.pdf464,04 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.