Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.5/102282
Registo completo
Campo DCValorIdioma
dc.contributor.advisorNunes, Maria Helena Mouriño Silva-
dc.contributor.advisorFonseca, Raquel João-
dc.contributor.authorPereira, Hugo Miguel-
dc.date.accessioned2025-07-22T08:32:03Z-
dc.date.issued2025-
dc.date.submitted2025-
dc.identifier.urihttp://hdl.handle.net/10400.5/102282-
dc.descriptionTrabalho de projeto de mestrado, Matemática Aplicada à Economia e Gestão, 2025, Universidade de Lisboa, Faculdade de Ciênciaspt_PT
dc.description.abstractIntroduction:Liver transplantation is the most effective curative treatment for patients with hepatocellular carcinoma.Due to the scarcity of cadaveric donor livers, selection criteria have been established. However, thesecriteria are very restrictive.In this study, we analysed a new selection tool called HepatoPredict (ClassI and ClassII) and comparedit with standard criteria, including the Milan Criteria (MC), UCSF, Up-to-7, AFP Model, andMetroTicket 2.0. We conducted a cost-effectiveness analysis from the perspective of the U.S. healthcaresystem to determine which selection criterion provides the most significant benefit to the health system.Methodology:A Markov model was developed to simulate the health status of patients with hepatocellular carcinoma who underwent liver transplantation over a five-year period. Transition probabilities, costs, and QALYs were obtained from published articles. The probabilities of recurrence were computed by Kaplan-Meier estimators and were based on a cohort of 149 patients from Portugal and Spain. We analysed the mean of recurrence-free survival, life years gained, quality of life, and the incremental cost-effectiveness ratio (ICER) relative to the MC. Results: HepatoPredict offers the most benefits but has a higher total cost than the other criteria. The ICER of HepatoPredict-ClassI and HepatoPredict-ClassII relative to the MC was $15 557.32/ QALY and $40 960.19/QALY, respectively. These two values were below the cost-effectiveness threshold (U.S. GDP per capita, $81 632.25/QALY), which means that HepatoPredict is acceptable in the U.S. healthcare system. Conclusion: HepatoPredict stands out as the most cost-effective criterion and allocates organs most efficiently, considering their scarcity. This provides a significant advantage for hospitals.pt_PT
dc.language.isoengpt_PT
dc.rightsembargoedAccesspt_PT
dc.subjectModelo de Markovpt_PT
dc.subjectCarcinoma Hepatocelularpt_PT
dc.subjectAnálise de Custo-Benefíciopt_PT
dc.subjectRácio de Custo-Eficácia Incrementalpt_PT
dc.subjectCritérios de Seleçãopt_PT
dc.subjectTrabalhos de projeto de mestrado - 2025pt_PT
dc.titleCost-effectiveness Analysis of Selection Criteria for Liver Transplantation in Patients with Hepatocellular Carcinomapt_PT
dc.typemasterThesispt_PT
dc.date.embargo2028-08-18-
thesis.degree.nameTrabalho de projeto de mestrado em Matemática Aplicada à Economia e Gestãopt_PT
dc.subject.fosDepartamento de Estatística e Investigação Operacionalpt_PT
Aparece nas colecções:FC - Dissertações de Mestrado

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TM_Hugo_Pereira.pdf1,25 MBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.