Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.5/100579
Título: Explainable machine learning models for the probability of credit default
Autor: Elias, Ana Rita dos Santos
Orientador: Bastos, João Afonso
Palavras-chave: Credit Risk Assessment
Machine Learning Interpretability
Logistic Regression
Catboost
Explainable Boosting Machine
Explainable Boosting Machine
Data de Defesa: Jan-2025
Editora: Instituto Superior de Economia e Gestão
Citação: Elias , Ana Rita dos Santos (2025). “Explainable machine learning models for the probability of credit default ”. Dissertação de Mestrado. Universidade de Lisboa. Instituto Superior de Economia e Gestão
Resumo: This dissertation addresses the challenge of balancing predictive accuracy and interpretability in credit risk assessment models within regulated financial environments. Using annual panel data from a company’s credit application in 2024, the study conducts a comparative analysis of traditional logistic regression and two advanced machine learning models: Catboost and Explainable Boosting Machine, EBM. Through empirical evaluation using standardized metrics for both accuracy and interpretability, the research demonstrates that modern machine learning models can effectively overcome the conventional trade-off between accuracy and interpretability. This study’s results revealed that both Catboost and Explainable Boosting Machine outperform logistic regression in predictive accuracy while meeting the interpretability standards required by regulatory frameworks. Catboost achieved superior predictive performance and utilized SHAP values for post-hoc interpretation. Meanwhile, EBM demonstrated competitive accuracy with built-in interpretability features. These findings indicate that financial institutions can modernize their credit risk assessment frameworks without compromising regulatory compliance or stakeholder trust. The present work contributes to the broader discourse on responsible machine learning in financial services, providing empirical evidence that advanced models can simultaneously achieve high accuracy and interpretability in credit risk assessment applications.
URI: http://hdl.handle.net/10400.5/100579
Aparece nas colecções:BISEG - Dissertações de Mestrado / Master Thesis

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
DM-ARSE-2025.pdf1,6 MBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.