State Machine Replication for the
Masses with BFT-SMaRt

Alysson Bessani, Joao Sousa and Eduardo Alchieri
DI-FCUL-TR-2013-07

DOI:10455/6897

(http://hdl.handle.net/10455/6897)

December 2013

LISBOA

UNIVERSIDADE
DE LISBOA

Published at Docs.DI (http://docs.di.fe.ul.pt/), the repository of the
Department of Informatics of the University of Lisbon, Faculty of Sciences.

State Machine Replication for the Masses with BFT-SMART

Alysson Bessani!, Jodo Sousa!, Eduardo Alchieri?
! University of Lisbon, FCUL/LaSIGE — Portugal, > University of Brasilia — Brazil

Abstract

The last fifteen years has seen an impressive amount of
work on protocols for Byzantine fault-tolerant (BFT) state
machine replication. However, there is still a lack of
practical and reliable software libraries implementing this
technique. BFT-SMART is an open-source Java-based
library implementing robust BFT state machine replica-
tion. Some of the key features of this library that distin-
guishes it from similar works (e.g., PBFT and UpRight)
are improved reliability, modularity as a first-class prop-
erty, multicore-awareness, reconfiguration support and an
flexible API. When compared with other SMR libraries,
BFT-SMART achieves better performance and is able to
deal with a number of real-world faults that previous im-
plementations can not.

1 Introduction

The last decade and a half has seen an impressive amount
of papers on Byzantine Fault-Tolerant (BFT) State Ma-
chine Replication (SMR) (e.g., [3, 13, 16,21-23, 31, 32],
to cite just a few), but almost no practical use of these
techniques in real deployments.

Our view of this situation is that the fact that there are
no robust-enough implementations of BFT SMR avail-
able, only prototypes used for validating novel ideas in
papers, makes it quite difficult to use this kind of tech-
nique. The general perception is that implementing BFT
protocols is too complex and that commission faults are
rare and can be normally dealt with simpler techniques
like checksums [17].

To the best of our knowledge, from all “BFT sys-
tems” that appeared on the fifteen years, only the early
PBFT [13] and the more recent UpRight [15] implement
a complete replication system. However, PBFT employs
a single-threaded architecture which does not fully exploit
modern hardware and UpRight uses two additional layers
of servers between clients and replicas, besides present-
ing a performance an order of magnitude lower than the
other systems. Furthermore, both PBFT and UpRight are
plagued by bugs and are not maintained anymore. Even
considering crash-only fault-tolerant (CFT) replication li-
braries, which are usually based on the many variants of
the Paxos algorithm [24], it seems there is still no widely-

used robust implementation that can be used for develop-
ing dependable services. As a result, every organization
that requires such services need to develop its own imple-
mentation (e.g., [14]).

In this paper we describe our effort in implementing
(and maintaining) BFT-SMART [1], a robust Java-based
BFT SMR library which implements a protocol similar
to the one used in PBFT. BFT-SMART targets not only
high-performance in fault-free executions, but also cor-
rectness if faulty replicas exhibit arbitrary behavior. Be-
sides its robustness, BFT-SMART is the first BFT SMR
system to provide efficient and transparent support for
durable services [9] and to fully support reconfiguration
of the replica set [4,25].

The main contribution of this paper is to fill a gap in
the BFT literature by documenting the implementation
of this kind of system, including associate protocols for
state transfer and reconfiguration. Additionally, the paper
presents an extensive evaluation of BFT-SMART, com-
paring it with previous systems and shedding light on
some performance tradeoffs related with the tolerance of
crashes vs. Byzantine faults.

The paper is organized as follows: §2 and §3 describe
the design of BFT-SMART and its implementation, re-
spectively. §4 gives an overview of the library’s API and
programing model. §5 presents alternative configurations
for BFT-SMART. §6 describes an extensive evaluation of
our system. §7 highlights some lessons learned during the
development and maintenance of the system. Finally, §8
presents our concluding remarks.

2 BFT-SMART Design

The development of BFT-SMART started at the begin-
ning of 2007 to implement a BFT total order multicast
protocol for the replication layer of the DepSpace coor-
dination service [8]. In 2009 we revamped this imple-
mentation to make it a complete BFT replication library,
including features such as checkpoints and state trans-
fer. Nonetheless, it was only during the TClouds project'
(2010-2013) that we improved the system substantially in
terms of functionality and robustness.

"https://wuw.tclouds-project.eu.

2.1 Design Principles

BFT-SMART was developed with the following design
principles in mind:

Tunable fault model. By default, BFT-SMART toler-
ates non-malicious Byzantine faults, a realistic (albeit pes-
simistic) system model in which messages can be delayed,
dropped and even corrupted, while processes can crash
or have their state and code corrupted, taking any spuri-
ous action as a consequence. All these behaviors have
been observed in real systems and components (see [17]
for an overview). We believe this is an appropriate fault
model for a pragmatical system to support the implemen-
tation critical services. Besides that, BFT-SMART also
supports the use of cryptographic signatures for improved
tolerance to malicious Byzantine faults, or the use of a
simplified protocol, similar to Paxos [24], to tolerate only
crashes and message corruptions.”

Simplicity. The emphasis on protocol correctness lead
us to avoid the use of optimizations that could bring ex-
tra complexity both in terms of deployment and coding
or add corner cases to the system. For this reason, we
avoid techniques that, although promising in terms of per-
formance (e.g., speculation [23] and pipelining [21]) or
resource efficiency (e.g., trusted components [22, 32] or
IP multicast [13,23]), would make our code more com-
plex to make correct (due to new corner cases) or deploy
(due to lack of infrastructure support). This emphasis also
made us chose Java instead of C/C++ as the implementa-
tion language. In §6 we show that even with these choices,
the performance of BFT-SMART is similar or better than
some of these optimized SMR implementations.

Modularity. BFT-SMART implements the Mod-
SMaRt protocol, a modular SMR protocol that uses a
well defined consensus module in its core [30]. On the
other hand, systems like PBFT implement a monolithic
protocol where the consensus algorithm is embedded
inside of the SMR, without a clear separation. While both
protocols are equivalent at run-time, modular alternatives
tend to be easier to implement and reason about, when
compared to monolithic protocols. Besides the existence
of modules for reliable communication, client requests
ordering and consensus, BFT-SMART also implements
state transfer and reconfiguration modules, which are
completely separated from the agreement protocol, as
show in Figure 1.

Simple and Extensible API. Our library encapsulates
all the complexity of SMR inside a simple and exten-
sible API that can be used by programmers to imple-
ment deterministic services. More precisely, if the service
strictly follows the SMR programming model, clients can

2Unless stated otherwise, we focus on the BFT setup of the system.
The crash fault tolerance is discussed later in §5.

Extensible Stateyla;chine Replication
] [

Mod-SMaRt
State

Reconfig Transfer

Reliable and Authenticated
Channels

Figure 1: The modularity of BFT-SMART.

use a simple invoke(command) method to send commands
to the replicas, that implement an execute(command)
method to process the command, after it is totally ordered
by the framework. If the application requires advanced
features not supported by such basic programming model,
these features can be implemented with a set of alternative
calls, callbacks or plug-ins both at client- and server-side
(e.g., custom voting by the client, reply management and
state management, among others).

Multi-core awareness. BFT-SMART takes advantage
of ubiquitous multicore architecture of servers to improve
some costly processing tasks on the critical path of the
protocol. In particular, we make our system throughput
scale with the number of hardware threads supported by
the replicas, specially when signatures are enabled and
more computing power is needed for their verification.

2.2 System Model

BFT-SMART assumes a dynamic distributed system in
which a universe of processes can be divided in two non-
intersecting subsets: replicas and clients. Each process of
the system has a unique identifier. During a dynamic sys-
tem execution, a sequence of views is installed to denote
the reconfigurations due to replicas joins and leaves. A
view is composed by a set of replicas identifiers.

At any real time ¢, only replicas in the current view cv
of the system are considered by the BFT-SMART proto-
cols. The list of servers in cv represents the most up-to-
date view installed in the system. We denote by cv.n the
number of replicas in ¢v and cv.f < cv.n/3 the number of
replicas in cv allowed to fail arbitrarily. When reconfigu-
rations are not being considered we suppress the cv pre-
fix. We assume replicas can crash (or faulty replicas can
be shutdown) and later recover. Moreover, an unbounded
number of clients can also fail arbitrarily.

BFT-SMART requires an eventually synchronous sys-
tem model for ensuring liveness, like other SMR pro-
tocols [13,24], and reliable authenticated point-to-point
links between processes for communication. These links
are implemented using message authentication codes

(MACs) over TCP/IP. The symmetric keys for channels
between replicas are generated at runtime using Signed
Diffie-Hellman, which requires every replica to have a
pair of (public and private) keys. The keys for client-
replica channels are generated based on the ids of the
endpoints, without the need for clients to have key pairs.
Notice this is in accordance with our assumption of non-
malicious Byzantine faults. Furthermore, strong authen-
tication of clients is still available if signed requests are
enabled (see §5.2).

2.3 Core Protocols

BFT-SMART uses a number of protocols for implement-
ing state machine replication. In this section we give a
brief overview of these protocols and refer the interested
reader to the papers describing them [9, 12, 30].

2.3.1 Total Order Multicast

Total order multicast is achieved using the Mod-SMaRt
protocol [30] together with the Byzantine consensus al-
gorithm described in [12]. Clients send their requests to
all replicas in cv, and wait for their replies.’> In the ab-
sence of faults and presence of synchrony, BFT-SMART
executes in normal phase, whose message pattern is il-
lustrated in Figure 2. This phase considers the execution
of a sequence of consensus instances, each of them de-
ciding the order of a batch of one or more client requests.
Each consensus execution i begins with one of the replicas
designated as the leader (initially the replica with the low-
est id) proposing some value for the consensus through a
PROPOSE message. All replicas that receive this mes-
sage verify if its sender is the current leader, and if the
value proposed is valid (i.e., it contains only authenticated
requests not yet ordered), they weakly accept the value be-
ing proposed, sending a WRITE message to other replicas.
If some replica receives more than # WRITE messages
for the same value, it strongly accepts this value and sends
an ACCEPT message to other replicas. If some replica re-
ceives more than %p ACCEPT messages for the same
value, this value is used as the decision for consensus.
The ACCEPT messages of a consensus instance form a
certificate its decision. Therefore, such messages include
a MAC vector, to enable the validation of a decision after
a leader change [30]. Finally, the decision is logged (ei-
ther in memory or disk) and the requests in the decided
batch are executed in a deterministic order.

The normal phase of the protocol is executed in the ab-
sence of faults and in the presence of synchrony. When
these conditions are not satisfied, the synchronization
phase might be triggered. During this phase, Mod-SMaRt
must ensure three things: (1) a quorum of n — f replicas
must have the pending messages that caused the timeouts;

3See §2.3.3 for the discussion of how clients obtain and maintain an
up-to-date cv.

Client

i
/i

A\
.

Figure 2: BFT-SMART normal phase message pattern.

Sensil)\
\/ v ,V V
\\

T\ KR

PROPOSE

(2) correct replicas must exchange logs to converge to the
same consensus instance; and (3) a timeout is triggered
in this consensus, proposing the same leader at all correct
replicas (see [30] for details).

2.3.2 State Transfer

In order to implement a practical state machine replica-
tion, the replicas should be able to be repaired and rein-
tegrated in the system, without restarting the whole repli-
cated service. Furthermore, the possibility of correlated
failures that can bring down more than f replicas of the
system at once, requires the employment of durability
techniques (e.g., the use of stable storage) to be able to re-
cover the whole system in such situations. BFT-SMART
implements the efficient durability techniques described
in [9] to deal with the recovery of replicas or the whole
system. In the following we give an overview of such
techniques.

By default, replicas store each batch of ordered requests
to a (stable) log and, periodically, take snapshots of the
application state and store it in stable memory. These two
techniques incur a non-negligible performance penalty
when disks are used. To mitigate this effect, the logging of
operations can be done in batches and in parallel with their
execution while snapshots are taken at different points of
the execution in different replicas [9]. This behavior is
implemented in an well-defined layer between the repli-
cation protocol and the application, and it can be changed
in accordance with the requirements of the application.

The default state transfer protocol can be triggered ei-
ther when (1) a replica crashes but is later restarted, (2) a
replica detects that it is slower that the others, (3) a syn-
chronization phase is triggered but the log is truncated be-
yond the point at which the replica could apply the op-
erations, and (4) a replica is added to the system while
it is running (see next section). When any of these sce-
narios are detected, the replica sends a STATE_REQUEST
message to all the other replicas asking for the applica-
tion’s state. Upon receiving this request, they reply with

a STATE_REPLY message containing the version of the
state that was requested by the replica. Instead of hav-
ing one replica sending the complete state (checkpoint and
log) and others sending cryptographic hashes for validat-
ing this state, as is done in PBFT and other systems, we
use a partitioning scheme in which one replica sends a
checkpoint and the others send parts of the logs [9].

2.3.3 Reconfiguration

All previous BFT SMR systems assume a static system
that cannot grow or shrink over time. BFT-SMART, on
the other hand, provides an additional protocol that en-
ables the system current view cv to be modified at runtime,
i.e., replicas can be added or removed without stopping
the system. In order to accomplish this, BFT-SMART
uses a special type of client named View Manager, which
is a trusted third party managed only by system adminis-
trators. It can also remain off-line, being required only for
adding and removing replicas.

Server operation. The reconfiguration protocol works
as follows: the View Manager issues a signed request con-
taining a special reconfigure operation to be processed by
the Mod-SMaRt algorithm just like any other client oper-
ation. Through this operation, the View Manager notifies
the system about the IP addresses, ports and ids of the
replicas it wants to add to (or remove from) the system. In
the current BFT-SMART implementation, the View Man-
ager can also request the update of the number of failures
tolerated in the system (cv.f, which is also part of a view).
Since these operations are totally ordered (just like client
requests), all correct replicas will adopt the same view as
the system’ current view cv at any given point in the exe-
cution of client operations.

A subtle issue with reconfiguration requests is that AC-
CEPT messages exchanged in the consensus in which
they are ordered should be signed (instead authenticated
using MAC vectors). This happens because such mes-
sages are used to build certificates that may be needed in
a future synchronization phase (i.e., leader change), and
MAC vectors generated in a view cannot always be veri-
fied in a posterior view.

Once the View Manager operation is ordered, it is not
delivered to the application. Instead, the request signa-
ture is verified to assess if it was produced using the view
manager private key. If the signature is valid, the sys-
tem current view cv is updated in accordance with the up-
dates requested in the reconfigure operation. Moreover,
the replicas start establishing a secure channel with the
new replicas joining the system (or closing channels with
the replicas leaving the system). Finally, the replicas reply
to the View Manager informing it if the view change suc-
ceeded. If so, the View Manager sends a special message
to the replicas that are waiting to be added to the system,
informing them that they can start executing in cv. Af-

ter this point, the joining replicas trigger the state transfer
protocol to bring themselves up to date.

Client operation. In order to support reconfigurations,
each client ¢ also needs to handle a current view variable
cv. that stores the current view known by itself. All client
operations need to carry cv, and the replicas reject any
operation issued to an old view, replying instead with their
current view cv. The client then updates cv. and restarts
its operation, avoiding access to an outdated view.

Like several other reconfigurable systems [4], to ensure
that a slow client ¢ always terminate its operation op, the
number of reconfigurations executed concurrently with op
must to be finite. This ensures that ¢ will restart op due
to reconfigurations a finite number of times, eventually
completing it.

The last requirement of a reconfigurable system is that,
before accessing the system, a client must obtain the sys-
tem’ current view. This can be done with the use of a
directory service [4,26], for example. The current BFT-
SMART implementation supplies interfaces for the pro-
grammers be able to implement their own view repository.

3 Implementation

The codebase of BFT-SMART contains less than 13.5K
lines of commented Java code distributed in little more
than 90 classes and interfaces. This is significantly less
than what was used in similar systems: PBFT [13] con-
tains 20K lines of C code and UpRight [15] contains 22K
lines of Java code. Even JPaxos [28], the most complete
open-source CFT replication library we are aware of, has
more than 22K lines of commented Java code.

3.1 Building blocks

To achieve modularity, we defined a set of building blocks
(or modules) containing the core functionality of BFT-
SMART. These blocks are divided in three groups: com-
munication system, state machine replication and state
management. The first encapsulates everything related
to client-to-replica and replica-to-replica communication,
including authentication, replay attacks detection, and
(re)establishment of communication channels after a fail-
ure or reconfiguration. The second implements the core
algorithms for establishing total order of requests. The
third deals with state management and is described in [9].

3.1.1 Communication system

The communication system encapsulates all the code re-
quired for receiving requests from clients and messages
from other replicas, and sending messages to other pro-
cesses addressed by their numeric ids. The three main
modules are:

e Client Communication System. This module deals
with the clients that connect, send requests and re-

ceive responses from replicas. Given the open-
nature of this communication (replicas can serve
an unbounded number of clients) we choose the
Netty communication framework [2] for implement-
ing client/server communication. The most impor-
tant requirement of this module is that it should be
able to accept and deal with a few thousands of con-
nections efficiently. To do this, the Netty framework
uses the java.nio.Selector class and a config-
urable thread pool.

e Client Manager. After receiving a request from a
client, the replica verifies the authenticity of a request
and stores it to be ordered by the replication protocol.
For each connected client, this module stores the se-
quence number of the last request received from this
client (to detect replay attacks), the last reply sent to
the client (to deal with retransmissions), and main-
tains a queue containing the requests received but not
yet delivered to the service being replicated. The re-
quests to be ordered in a consensus are taken from
these queues in a fair way.

e Server Communication System. While the repli-
cas accept connections from an unlimited number of
clients, as is supported by the client communication
system described above, the server communication
system implements a closed-group communication
model used by the replicas to send messages between
themselves. The implementation of this layer was
made through “usual” Java sockets, using one thread
to send and one thread to receive for each server.
One of the key responsibilities of this module is to
reestablish the channels between every two replicas
after a failure and a recovery.

3.1.2 State machine replication

The state machine replication core was implemented us-
ing the simple interface provided by the communication
system to access reliable and authenticated point-to-point
links. More specifically, BFT-SMART uses six main
modules to achieve state machine replication.

e Proposer: this simple module (which contains a sin-
gle class) implements the role of a proposer, i.e., it
defines how to propose a value in a PROPOSE mes-
sage and what a replica should do when it is elected
as a new leader.

e Acceptor: this module implements the core of
the consensus algorithm: PROPOSE, ACCEPT and
WRITE messages are processed and generated (in the
case of the latter two) here.

e Total Order Multicast (TOM): this module gets
pending messages received by the client communi-
cation system and calls the proposer module to start

a consensus instance. Additionally, a class of this
module is responsible for delivering requests to the
service replica and to create and destroy timers for
the pending messages of each client.

e Execution Manager: this module is closely related
to the TOM and is used to manage the execution of
consensus instances. It stores information about con-
sensus instances and their rounds as well as who was
the leader replica on these rounds. Moreover, the ex-
ecution manager is responsible to stop and re-start a
consensus being executed.

e Leader Change Manager: Most of the complex
code to deal with leader changes is in this module.
Although the rules for validation and verification of
executed and pending requests are notoriously hard
to understand and implement, the code of this mod-
ule is sequential (i.e., a set of nested loops) and is
not in the protocol critical path. This means that this
code does not suffer from concurrency problems and
neither needs to be very efficient.

o Reconfiguration Manager: The reconfiguration
protocol is implemented by this module. To avoid
unnecessary modifications in other parts of the code-
base, this module provides a consistent view of the
group of replicas in the system and the number of
tolerated faults.

3.2 Staged Message Processing

A key issue when implementing a high-throughput repli-
cation middleware is how to break the several tasks of the
protocol in an architecture that is robust and efficient at
the same time. In the case of BFT SMR there are two ad-
ditional requirements: the system should deal with hun-
dreds of clients and resist malicious behaviors from both
replicas and clients.

Figure 3 presents the main architecture with the threads
used for staged message processing [34] of the pro-
tocol implementation. In this architecture, all threads
communicate through bounded queues and the figure
shows which thread feeds and consumes data from which
queues.

The client requests are received through a thread pool
provided by the Netty communication framework. We
have implemented a request processor that is instantiated
by the framework and executed by different threads as the
client load demands. The policy for thread allocation is at
most one per client (to ensure FIFO communication be-
tween clients and replicas), and we can define the maxi-
mum number of threads allowed.

Once a client message is received, it is checked whether
it is an ordered or unordered request. Unordered requests

replies Re

€ Thread

unordered requests

Proposer
Thread
nd
ad

Sender
Thread n-1

Figure 3: BFT-SMART replica staged message processing.

} Service }
| Replica |

Request
Timer
Thread

Message
Processor
Thread

|
|
|
Netty }
I

are directly delivered to the service implementation. Oth-
erwise, they are delivered to the client manager, that ver-
ifies the request integrity and (if validated) adds them to
the respective client’s pending requests queue. Notice that
since client” MACs and signatures (optionally supported)
are verified by the Netty threads, multi-core and multi-
processor machines would naturally exploit their power
to achieve high throughput (verifying several client signa-
tures in parallel).

The proposer thread waits for three conditions before
starting a new instance of the consensus: (i) the replica is
the leader for the next consensus; (ii) the previous instance
is already finished; and (iii) at least one client (pending
requests) queue has messages to be ordered. In a leader
replica, the first condition will always be true, and it will
propose a batch of new requests to be ordered as soon as a
previous consensus is decided and there are pending mes-
sages from clients. Notice the proposal size will contain
all pending requests (up to a maximum size, defined in the
configuration file), so there is no waiting to fill a batch of
certain size before proposing. In non-leader replicas, this
thread is always sleeping waiting for condition (i).

Every message m to be sent by one replica to another
is put on the out queue from which a sender thread will
get m, serialize it, produce a MAC to be attached to the
message and send it using TCP sockets. At the receiver
replica, a receiver thread for this sender will read m, au-
thenticate it (i.e., validate its MAC), deserialize it and put
it on the in queue, where all messages received from other
replicas are stored in order to be processed.

The message processor thread is responsible to process
almost all messages of the state machine replication pro-
tocol. This thread gets one message to be processed and
verifies if this message consensus is being executed or, in
case there is no consensus currently being executed, it be-
longs to the next one to be started. Otherwise, either the
message consensus was already finished and the message

is discarded, or its consensus is yet to be executed (e.g.,
the replica is executing a late consensus) and the message
is stored on the out-of-context queue to be processed when
this future consensus is able to execute. As a side note, it
is worth to mention that although the PROPOSE message
contains the whole batch of messages to be ordered, the
WRITE and ACCEPT messages only contain the crypto-
graphic hash of this batch.

When a consensus is finished on a replica (i.e., the
replica received more than % ACCEPT messages for the
same value), the decision is put on the decided queue. The
delivery thread is responsible for getting decided values (a
batch of requests proposed by the leader) from this queue,
deserialize all messages from the batch, remove them
from the corresponding client pending requests queues
and mark this consensus as finalized. After that, the de-
livery thread invokes the service replica to make it exe-
cute and log the requests and generate the corresponding
replies. When the batch is properly logged and the re-
sponse is generated by the replica, the service replica adds
the reply into the reply queue. The reply thread is respon-
sible for sending the replies to the clients.

The request timer thread is periodically activated to
verify if some request remained more than a pre-defined
timeout on the pending requests queue. The first time this
timer expires for some request, causes this request to be
forwarded to the current known leader. The second time
this timer expires for some request, the instance currently
running of the consensus protocol is stopped and the syn-
chronization phase is started (see §2.3.1). The rationale
for these timers is the following: in normal network con-
ditions, a timeout may be caused either by a client that
did not send the request to the leader or by a leader that
did not ordered the client request. Since typically there
are many clients and few servers, we expect to have much
more faults among clients, so we first assume there was a
problem with the client and the leader is suspected only if
the problem persists.

4 API and Programming Model

To implement a service based on BFT-SMART two main
classes are used. The ServiceReplica is used at server
side to instantiate a BFT-SMART replica while the Ser-
viceProxy is used at client side for accessing the repli-
cated service. The instantiation of ServiceReplica re-
quires the provision of a numeric id (which is mapped to
an IP and port through a configuration file) and implemen-
tations of an Executable — which defines the methods
called when the service needs to process a request — and
a Recoverable — which defines the state management.
Usually these two interfaces are implemented by a single
class (see bellow). At the client side, the ServiceProxy
requires only the numeric id of the client. In the following
we present a brief overview of the BFT-SMART API and

refer the interested reader to [1] for more information.

Server-side. The abstract class DefaultSingleRe-
coverable implements the Executable and Recover-
able interfaces considering a simple state transfer man-
ager based on logging and checkpoints. To use this man-
ager, a developer needs to extend the class implementing
the following abstract methods:

public byte[] executeOrdered(byte[] cmd, MsgContext ctx);
public byte[] executeUnordered(bytel[] cmd, MsgContext ctx);
public byte[] getSnapshot();

public void installSnapshot(byte[] state);

BFT-SMART invokes both the executeOrdered
and executeUnordered methods upon delivering client
commands to the application. The former is invoked
when clients issue ordered commands, and the latter is
invoked for unordered ones (typically read-only opera-
tions). These methods must implement the service code
and return replies to be sent to the client. The cmd ar-
gument represents the serialized command issued by the
client, and ctx contains command metadata (e.g., the id
of the client, the consensus instance where it was ordered,
the latency of the consensus, etc). Additionally, ctx also
contains a timestamp and a set of nonces which are equal
in all replicas. These values are necessary in applications
that need to access a local clock or generate random val-
ues; they should use these values instead, in order to pre-
serve the determinism property required by SMR [13].

Moreover, developers also need to implement get-
Snapshot and installSnapshot to create and install
serialized snapshots of the application state, respectively.
This serialization implemented in getSnapshot must be
done in a deterministic manner: the snapshot created by a
replica r representing state S, must be equal to the snap-
shot created by any other replica to represent S.

The DefaultSingleRecoverable class is usually
employed by most BFT-SMART-based services. How-
ever, an application can use custom implementations of
Executable and Recoverable. For instance, the API
provides some specializations of Executable with meth-
ods to make the service execute one request at time (the
default behavior, as described above) or a batch of re-
quests at once (returning several replies).

The Recoverable interface can be used to implement
custom state transfer protocols. This class provides a set
of callback methods called by the BFT-SMART core:

public ApplicationState getState(int eid, boolean sendState);
public int setState(ApplicationState state);
public StateManager getStateManager();

Developers need to implement getState and set-
State to create and define the application state, respec-
tively. Notice these methods require an implementation
of ApplicationState, an abstract representation of the
service state. Moreover, getStateManager returns the

strategy used to manage state transfer, which can also be
implemented by programmers. These features are used to
implement the techniques described in [9].

By default, BFT-SMART replies directly to the clients
that issued the commands after ordering and executing
their requests. However, it is possible to override this
procedure by providing a custom Replier to the Ser-
viceReplica. This can be used (together with asyn-
chronous invocations — see bellow) to implement repli-
cated forwarders (e.g., firewalls, publish-subscribe bro-
kers), where one client (a sender) sends the request to be
processed and the “reply” is sent to another client (a re-
ceiver) [19].

Client-side. At client side, each instance of Service-
Proxy represents a single BFT-SMART client with a dis-
tinct id. This class provides the following methods to is-
sue commands to the server:

public byte[] invokeOrdered(bytel[] request);
public byte[] invokeUnordered(byte[] request);
public void invokeAsynchronous(byte[] request,
ReplyListener listener, int[] receivers, MsgType type);

For all methods, commands and replies must be seri-
alized into a byte array. invokeOrdered and invoke-
Unordered are used to issue ordered and unordered com-
mands, respectively. The invokeAsynchronous method
can be used to issue both types of commands in a non-
blocking manner, i.e., the service proxy will return with-
out waiting for the replicas’ replies. This enables pro-
grammers to create applications that can resume their ex-
ecution while the library collects replies in background.
To use this feature programmers will have to provide a
callback defined by the ReplyListener interface to ex-
plicitly manage the reception of replies. We used this fea-
ture, for example, to implement the client part of a variant
of the Byzantium transaction processing protocol [20].

Finally, the client can also modify the way a BFT-
SMART client vote server replies through the provision
of custom Comparator (used to compare server replies)
and Extractor (used to extract a reply from a set of
consistent replies) implementations. This feature is used,
for instance, to support the confidentiality mechanisms
employed in the DepSpace coordination service, where
the servers reply cryptographic shares of a tuple, and the
client need to verify if they are compatible and extract the
reply through a combination of them [8].

5 Alternative Configurations

As already mentioned in previous sections, by default
BFT-SMART tolerates non-malicious Byzantine faults,
as most work on BFT replication (e.g., [13,23]). How-
ever, the system can be tuned to tolerate only crashes or
(intelligent) malicious behavior.

5.1 Crash Fault Tolerance

BFT-SMART supports a configuration parameter that, if
activated, makes the system strictly crash fault-tolerant
(CFT). When this feature is active, the system tolerates
ev.f < cv.n/2 (ie., only a majority of correct replicas is
required), which implies changes in all required quorums
of the protocols, and bypasses one all-fo-all communica-
tion step during the consensus execution (the WRITE step
of the consensus is not required). Other than that, the pro-
tocol is the same as in the BFT case, with MAC:s still en-
abled for message verification, bringing also tolerance to
message corruption even in CFT setups.

5.2 Intrusion Tolerance

Making a BFT replication library tolerate intrusions re-
quires one to deal with several concerns that are not ad-
dressed by most BFT protocols [7]. Here we discuss how
BFT-SMART deals with some of these concerns.

Previous works showed that the use of public-key sig-
natures on client requests makes it impossible for clients
to forge MAC vectors and force leader changes (mak-
ing the protocol much more resilient against malicious
faults) [5, 16]. By default, BFT-SMART does not use
public-key signatures* other than for establishing shared
symmetric keys between replicas, however the system op-
tionally supports the use of signed requests for avoiding
this problem.

These same works also showed that a malicious leader
can launch undetectable performance degradation attacks,
making the throughput of the system as small as 10% of
what would be achieved in fault-free executions. Cur-
rently, BFT-SMART does not provide defenses against
such attacks. However, the system can be easily extended
to support periodic leader changes to limit damage [16].
In fact, the codebase of a very early version of BFT-
SMART was already used to implement a protocol re-
silient to this kind of attack [31].

Finally, the fact that we developed BFT-SMART in
Java makes it easily deployable in different platforms’
for avoiding single-mode failures, caused by accidental
events (e.g., a bug or infrastructure problems) or mali-
cious attacks exploiting common vulnerabilities. Such
compromises on the running platforms can be mitigated
by the deployment of replicas in different operating sys-
tems [18] or even cloud providers [33].

6 Evaluation

In this section we present results from BFT-SMART’s
performance evaluation. These experiments consist of (1)

4Client requests do not contain MAC vectors also, only point-to-
point MAC:s as provided by the client communication system.

5 Although we did not support N-versions of the system codebase,
we believe supporting the deployment in several platforms is a good
compromise solution.

some micro-benchmarks designed to evaluate the library’s
raw throughput and latency, (2) the comparison of this
performance with some competing systems and (3) an ex-
periment designed to depict the performance’s evolution
of a small application implemented with BFT-SMART
once the system is forced to withstand events like repli-
cas faults, state transfers, and system reconfigurations.

6.1 Experimental Setup

Unless stated otherwise, all experiments ran with three
(CFT) and four (BFT) replicas hosted in separated ma-
chines. The client processes were distributed uniformly
across another four machines. Each client machine ran up
to eight Java processes, which in turn executed up to fifty
threads which implemented BFT-SMART clients (for a
total of up to 1600 client processes).

Clients and replicas executed in the Java Runtime en-
vironment 1.7.0_21 on Ubuntu 10.04, hosted in Dell
PowerEdge R410 servers. Each machine has two quad-
core 2.27 GHz Intel Xeon E5520 processor with hyper-
threading, i.e., supporting 16 hardware threads, and 32
GB of memory. All machines communicate through an
isolated gigabit Ethernet network.

6.2 Micro-benchmarks

“Standard” benchmarks. We start by reporting the re-
sults we gathered from a set of micro-benchmarks that are
commonly used to evaluate state machine replication sys-
tems, and focus on replica throughput and client latency.
They consist of a simple client/service implemented over
BFT-SMART that performs throughput calculations at
the server side and latency measurements at the client
side. Throughput results were obtained from the leader
replica, and latency results from a selected client (always
the same). Figure 4 presents the results.

30 T

A Byz-0B —— Byz-1kB —o—
Crash-0B —=— Crash-1kB —e—
Byz-100B —=— Byz-4kB —— |

Crash-100B —=— Crash-4kB —4&—

gy
Lé{

Latency (miliseconds)

20 30 40 50 60 70 80 90 100
Throughput (Kops/sec)

Figure 4: Latency vs. throughput configured for f = 1.

The figure illustrates BFT-SMART performance in
terms of client latency against replica throughput for both
BFT and CFT protocols. The standard deviation in all
experiments was under 3%. For each protocol we exe-

- Byzantine oexw
Crash ==z

f=2
Number of faults
(a) 0/0

Byzantine sexw
Crash =z

088%%1|ij

f=2
Number of faults
(c) 1024/0

- Byzantine cxxx
Crash === -

f=2 f: 3
Number of faults

(b) 0/1024

Byzantine oo
Crash === A

| o]

f=1

f=3

f=2
Number of faults
(d) 1024/1024

Figure 5: Peak sustained throughput (in Kops/sec) of BFT-SMART for CFT (2f + 1 replicas) and BFT (3 f + 1 replicas) consid-

ering different workloads and number of tolerated faults.

cuted four experiments for different request/reply sizes:
0/0, 100/100, 1024/1024 and 4096/4096 bytes. Figure 4
shows that for each payload size, the CFT protocol con-
sistently outperforms its BFT counterpart. This difference
is due to the smaller number of messages exchanged in
the CFT setup, which reflects in less work per client re-
quest for the replicas. Furthermore, as the payload size
increases, BFT-SMART overall performance decreases.
This is because (1) the overhead of requests/replies trans-
mission between clients and replicas increases with mes-
sage size, and (2) since Mod-SMaRt orders requests in
batches, the larger is the payload, the bigger (in bytes) the
batch becomes, thus increasing its transmission overhead
among replicas.

We complement the previous results with Table 1,
which shows how different payload’s combinations affect
throughput. This experiment was conducted under a satu-
rated system running 1600 clients using only the BFT pro-
tocol. Our results indicate that increasing request’s pay-
load generates greater throughput degradation than reply’s
payload does. This can also be explained by the larger
batch submitted to the consensus protocol, since request’s
payload influences its size, whereas reply’s does not.

Replies
Requests 0 bytes | 100 bytes | 1024 bytes
0 bytes 83337 | 75138 37320
100 bytes 78711 | 72879 36948
1024 bytes 16309 | 16284 15878

Table 1: Throughput for different requests and replies sizes for
f = 1. Results are given in operations per second.

Fault-scalability. Our next experiment consider the im-
pact of the size of the replica group on the peak sustained
throughput of the system under different benchmarks. The
results are reported in Figure 5.

The results show that, for all benchmarks, the per-
formance of BFT-SMART degrades graciously as f in-
creases, both for CFT and BFT setups. In principle, these
results contradict the observation that protocols contain-
ing all-to-all communication patterns are less scalable as
the number of faults tolerated [3]. This is not the case
in BFT-SMART because (1) it exploits the many cores of
the replicas (which our machines have plenty) to calculate
MAG:s, (2) only the n — 1 PROPOSE messages of the con-
sensus protocol are big, the other 2n(n — 1) messages are
much smaller and contain only the hash of the proposed
request batch, and (3) we avoid the use of IP multicast,
which is know to cause problems with many senders (e.g.,
multicast storms) [10].

Finally, it is also interesting to see that, with relatively
big requests (1024 bytes), the difference between BFT and
CFT tends to be very small, independently on the number
of tolerated faults. Moreover, the performance drops be-
tween tolerating 1 to 3 faults is also much smaller with
big payloads (both requests and replies).

Mixed workloads. Figure 6 reports the results of our
experiment considering a mix of read and write requests.
In the context of this experiment, the difference between
reads and writes is that the former issues small requests
(almost-zero size) but gets replies with payload, whereas
the latter issues requests with payload but gets replies with
almost zero size. This experiment was also conducted un-
der a saturated system running 1600 clients.

Throughput (Kops/sec)

Byz-1kB —+—
Crash-1kB —=—
Byz-100B —+—
Crash-‘1 00B —=—

0 i i i
0.4 0.6

Percentage of read-only requests

0.8 1

Figure 6: Throughput of a saturated system as the ratio of reads
to writes increases for n = 4 (BFT) and n = 3 (CFT).

We performed the experiment both for the BFT and
CFT setups of BFT-SMART, using requests and replies
with payloads of 100 and 1024 bytes. Similarly to the
previous experiments, the CFT protocol outperforms its
BFT counterpart regardless of the ratio of read to write
requests by around 5 to 15%. However, the observed be-
havior of the system regarding the throughput differs be-
tween the case of 100 bytes and 1024 payloads, with the
former clearly benefiting from a larger read/write ratio.

This happens because 1024 bytes requests (a write op-
eration) generate batches much larger than requests with
only 100 bytes of payload. This in turn spawns a much
greater communication overhead in the consensus pro-
tocol. Therefore, as we increase the read to write ratio
for payloads of 1024 bytes, the consensus overhead de-
creases, which in turn improves performance. This hap-
pens with up to 75% reads, which has a better through-
put than 95%- or 100%-read workloads. This happens for
payloads of 1024 bytes because at this point sending the
large replies of the read become the contention point of
our system. Notice this behavior is much less significant
with small payloads.

Signatures and Multi-core Awareness. Our next ex-
periment considers the performance of the system when
signatures are enabled, and used for ensuring resilience
to malicious clients [16]. In this setup a client signs ev-
ery request to the replicas that first verify its authenticity
before ordering it. There are two fundamental service-
throughput overheads involved in using 1024-bit RSA sig-
natures. First, the messages are 112 bytes bigger than
when SHA-1 MAC:s are used. Second, the replicas need
to verify the signatures, which is a relatively costly com-
putational operation.

Figure 7 shows the throughput of BFT-SMART with
different number of threads being used for verifying sig-
natures. As the results show, the architecture of BFT-
SMART exploits the existence of multiple cores (or mul-
tiple hardware threads) to scale the throughput of the sys-
tem. This happens because the signatures are verified by

10

Number of cores

Figure 7: Throughput of BFT-SMART (in Kops/sec) using
1024-bit RSA signatures for 0/0 payload and n = 4 considering
different number of hardware threads.

the Netty thread pool, which uses a number of threads
proportional to the number of hardware threads in the ma-
chine (see Figure 3).

Comparison with others. We compared BFT-SMART
against some representative SMR systems considering the
0/0 benchmark. More precisely, we compared BFT-
SMART (both in BFT and CFT setups) with PBFT [13],
UpRight [15] and JPaxos [28] (a modern CFT replication
library). All systems were downloaded from the internet®
in October 2013, installed and configured to mimic the
setup used in their respective papers. In the case of Up-
Right, we used four machines as servers, three of them
with a replica and an ordering server and the last one with
only an ordering server. Table 2 shows the peak sustained
throughput obtained for all these systems and the associ-
ated number of clients required to achieve this throughput
in our environment.

System ‘ Throughput Clients ‘ Throughput 200
BFT-SMART 83801 1000 66665
PBFT 78765 100 65603
UpRight 5160 600 3355
CFT-SMART 90909 600 83834
JPaxos 62847 800 45407

Table 2: Peak sustained throughput (and associated number of
clients used for reaching this value) of different replication li-
braries for the 0/0 benchmark and f = 1. Throughput 200 reports
the throughput obtained by these system with 200 clients.

The results presented in Table 2 show that, in our envi-
ronment, BFT-SMART achieves higher throughput than
both PBFT and JPaxos. Even though PBFT reaches its
peak throughput with only 10% of the amount of clients
required with BFT-SMART, it did not displayed higher
throughput with more than 100 clients. We hypothesize
that this happens because PBFT is single-threaded, which
makes it very efficient with few clients but limits its scala-
bility. Anyway, this result is consistent with recent reports
about PBFT performance (e.g., [17]).

Projects home pages: http://www.pmg.csail.mit.edu/bft/,
https://code.google.com/p/upright/ and https://github.
com/JPaxos/JPaxos.

120 240 260
25 T

370 510

Replic:

a 0 halts its execution

Replica 0 recovers and resumes execution

207MWWJNWWMUMWWWHW
n 1]

A i i

15

10

MMWMW ,

Akt T

Replica 4 joins the system

Replica 1 becomes the new leader

Replica 3 exits the system |

Throughput (Kops/sec)

L L L L L L L
30 60 90 120 150 180 210 240 270

1
300

1 1 1 I 1 1 1 1
330 360 390 420 450 480 510 540 570 600

Time (seconds)
Figure 8: Throughput evolution across time and events, for n =4 and f = 1.

JPaxos displayed a performance lower than what is re-
ported in [28] (around 100 Kops/sec). Since we are using
the same type of network, the only reason for that is that
in the paper they use machines with 24 cores, while our
servers support only 16 hardware threads.

As expected, the performance numbers obtained with
UpRight were an order of magnitude lower than the oth-
ers, which is consistent with the values presented in [15].

Following these results, we sought to get the perfor-
mance values when the number of clients were the same
for all libraries. The table also presents the throughput of
the systems with 200 clients for each system.’

BFT-SMART displayed again the highest throughput
under these conditions. However, notice that PBFT’s
performance decreased with twice the number of clients.
This indicates that the system implementation suffers
from some kind of trashing.

6.3 Faults, Reconfigurations, etc.

In this section we present an experiment designed to eval-
uate the behavior of an application implemented using
BFT-SMART, and how it fares against replica’s failures,
recoveries, and reconfigurations. For this test we use the
BFTMapList service, an in-memory table storing linked
lists associated with each key. This is a simple (but non-
trivial) data structure commonly used in practice (e.g., in
social network applications).

BFTMapList implementation. BFTMapList is an im-
plementation of the Map interface from the Java API
which uses BFT-SMART to replicate its data in a set of
replicas. It can be initialized at the client side provid-
ing transparency of the underlying replication mechanism.
This is done by invoking BFT-SMART within its imple-
mentation. In BFTMapList, keys correspond to string ob-
jects and values correspond to a list of strings. We im-
plemented the put, remove, size and containsKey methods
of the aforementioned Java interface. These methods in-
sert/delete a new String/List pair, retrieve the amount of
values stored, and check if a given key was already in-
serted in the data structure. We also implemented an ad-
ditional method called putEntry so that we could directly
add new elements to the lists given their associated key.

"The choice of 200 clients was not arbitrary; this is the maximum
number of clients supported by PBFT without crashing.

11

To evaluate this system, we created client threads that
constantly insert new strings of 100 bytes to these lists, but
periodically purge them to prevent the lists from growing
too large and exhaust memory. Each thread corresponds
to one BFT-SMART client.

Results. We sought to observe how BFTMapList per-
formance would evolve upon several events within the
system - ranging from replicas faults, leader changes, state
transfers and system reconfigurations. For this experi-
ment, BFT-SMART was configured with 4 replicas (with
ids ranging from O to 3), to tolerate a single Byzantine
fault. Our results are depicted in Figure 8, presenting
throughput values collected from replica 1. We launched
30 clients issuing the put, remove, size and putEntry oper-
ations over the course of 10 minutes.

As the clients started their execution, the service’s
throughput increased until all clients were operational
around second 10. At second 120 we inserted replica 4
into the service. As we did this, we observed a decrease
in throughput. This can be explained by the fact that more
replicas demand larger quorums in the consensus protocol
and more messages to be processed in each replica. This
reconfiguration spawns more message exchanges among
replicas, which add congestion to the network and results
in inferior performance.

At second 240, we crashed replica O (the current con-
sensus’ leader). As expected, the throughput dropped to
zero during the 20 seconds (twice the timeout value con-
figured in the system) that took the remaining replicas to
trigger their timeouts and run Mod-SMaRt’s synchroniza-
tion phase. After this phase was finished, the system re-
sumed execution. Since at this point there are less replicas
executing, there are also less messages being exchanged
in the system and the throughput was only slightly smaller
than in the initial configuration.

At second 370, we restarted replica 0, which resumes
normal operation after triggering the state transfer. Upon
its recovery, the system goes back to the throughput ex-
hibited before replica 0 had crashed.

At second 510, we removed replica 3, thus setting the
quorum size to its original value, albeit with a different set
of replicas. Since there is one less replica to handle mes-
sages from, we are able to observe the system’s original
throughput again by the end of the experiment.

7 Lessons Learned

More than five years of development and three genera-
tions of BFT-SMART gave us important insights about
how to implement and maintain high-performance fault-
tolerant protocols in Java. In this section we discuss some
of the lessons learned on this effort.

7.1 Java as a BFT programming language

Despite the fact that the Java technology is used in most
application servers and backend services deployed in en-
terprises, it is a common belief that a high-throughput im-
plementation of a state machine replication protocol could
not be possible in Java [15]. We consider that the use of a
type-safe language with several nice features (large utility
API, no direct memory access, security manager, etc.) that
makes the implementation of secure software more feasi-
ble is one of the key aspects to be observed when design-
ing a replication library. For this reason, and because of its
portability, we choose Java to implement BFT-SMART.
However, our experience shows that these nice features of
the language when not used carefully can cripple the per-
formance of a protocol implementation. As an example,
we will discuss how object serialization can be a problem.

One of the key optimizations that made our implemen-
tation efficient was to avoid Java default serialization in
the critical path of the protocol. This was done in two
ways: (1) we defined the client-issued commands as byte
arrays instead of generic objects, thus removed the serial-
ization and deserialization of this field of the client request
from all message transmissions; and (2) we avoid us-
ing standard object serialization on client requests, imple-
menting instead a customized method (using data streams
instead of object streams). This removed the serialization
header from the messages and was specially important for
client requests that are put in large quantities on batches
to be decided by a consensus.

7.2 How to test BFT systems?

Although distributed systems verification and debugging
is a lively research area (e.g., [11,27,29]), there are still no
tools mature enough to be used. Our approach for testing
BFT-SMART is based on the use of JUnit, a popular unit
testing tool. In our case we use it in the final automatic test
of our build script to run test scripts that (1) setup repli-
cas, (2) run some client accessing the replicated service
under test and verify if the results are correct, and (3) kill
the replicas in the end. This approach can be automated
with the use of fault-injection frameworks and, in fact, one
of such tools was recently used to test our system [27].
Notice that this is black-box testing: the only way to ob-
serve the system behavior is through the client. Similar

8 A serialized 0-byte operation request requires 134 bytes with Java
default serialization and 22 bytes in our custom serialization.

approaches are being used in other distributed computing
open-source projects like Apache Zookeeper.

Our JUnit-based test framework allows us to easily in-
ject crash-faults on the replicas. However, testing the
system against malicious behaviors is much more tricky.
The first challenge is to identify the critical malicious be-
haviors that should be injected on up to f replicas. The
second challenge is how to inject the code of the ma-
licious behaviors on these replicas. The first challenge
can only be addressed with careful analysis of the proto-
col being implemented. Disruptive code can be injected
to the code using patches, aspect-oriented programming
(through crosscutting concerns that can be activated on
certain replicas) or simple commented code (which we
are currently using). Our pragmatic test approach can be
complemented with orthogonal methods such as the Net-
flix chaos monkey [6] to test the system on site.

It is worth to notice that most faulty behaviors can cause
bugs that affect the liveness of the protocol, since basic in-
variants implemented in key parts of the code can ensure
safety (e.g., a leader proposing different values to differ-
ent replicas should cause a leader change, not a disagree-
ment). This means that several recent efforts in verifi-
cation of safety properties in distributed systems through
model checking (e.g., [11]) does not solve the most diffi-
cult problem in our experience: liveness bugs.

Moreover, the fact that the system tolerates arbitrary
faults makes it mask some non-deterministic bugs, or
Heisenbugs, turning the whole test process even more dif-
ficult. For example, an older version of the BFT-SMART
communication system losed some messages sporadically
when under heavy load. The effect of this was that in cer-
tain rare conditions (e.g., when the bug happens in more
than f replicas during the same protocol phase) there was
a leader change, and the system blocks. We call these
bugs Byzenbugs, since they are a specific kind of Heisen-
bugs that happen in BFT systems and that only manifest
themselves if they occur in more than f replicas at once.
Consequently, these bugs are orders of magnitude more
difficult to discover (they are masked) and very complex
to reproduce (they seldom happen).

7.3 Dealing with heavy loads

When testing BFT-SMART under heavy loads, we found
several interesting behaviors that appear when a replica-
tion protocol is put under stress. The first one is that there
are always f replicas that stay late in message process-
ing. The reason is that only n — f replicas are needed
for the protocol to make progress and naturally f repli-
cas will stay behind. A possible solution for this problem
is to make the late replicas stay silent (and not load the
faster replicas with late messages that will be discarded)
and when they are needed (e.g., when one of the faster
replicas fails) they synchronize themselves with the fast

12

replicas using the state transfer protocol (which runs more
often that expected).

Another interesting observation is that, in a switched
network under heavy load in which clients communicate
with replicas using TCP, spontaneous total order (i.e.,
client requests reaching all replicas in the same order with
high probability) almost never happens. This means that
the synchronized communication pattern described in Fig-
ure 2 does not happen in practice. This same behavior
is expected in wide-area networks. The main point here
is that developers should not assume that client request
queues on different replicas will be similar.

The third behavior that commonly happens in several
distributed systems is that their throughput tends to drop
after some time under heavy load. This behavior is called
trashing and can be avoided through a careful selection of
the data structures’ used on the protocol implementation
and bounding the queues used for threads communication.

7.4 Signatures vs. MAC vectors

Castro and Liskov most important performance optimiza-
tion to make BFT practical was the use of MAC vectors
instead of public-key signatures. They solved a techno-
logical limitation of that time. In 2007, when we started
developing BFT-SMART we avoided signatures at all
costs due to the fact that the machines we had access at
that time created and verified signatures much slowly than
the machines we used in the experiments described in §6:
a 1024-bit RSA signature creation went from 15 ms to
less than 1.7 ms while its verification went from 1 ms to
less than 0.09 ms (a 10x improvement). This means that
with the machines available today, the problem of avoid-
ing public-key signatures is not so important as it was a
decade ago, specially if signature verification can be par-
allelized (as in our architecture).

7.5 Maintenance & Robustness

Our experience with BFT-SMART showed us that im-
plementing a robust BFT system is indeed hard. Several
experienced developers that worked in our system men-
tioned that it was potentially the most complex codebase
they had worked on, despite its reasonably modest size.
The main observation of these developers was that, at first
glance, many parts of the code appear to be unnecessary.
The need for these parts was not obvious at first, but they
were introduced to deal with bugs that appeared as BFT-
SMART was used in more and more projects. This is
a consequence of the well-known gap between protocol
specifications and descriptions and the code required to
implement them efficiently and robustly [14].

We believe BFT-SMART is arguably more robust and

9For example, data structures that tend to grow with the number of
requests being received should process searches in logn (e.g., using AVL
trees) to avoid losing too much performance under heavy load.

performant than other complete BFT systems (PBFT or
UpRight) for a single reason: it is being maintained and
constantly improved. Our view is that it is too hard to im-
plement a BFT replication library at once. A more sound
strategy is to keep building and improving the system,
finding application scenarios and, in the case of academia,
looking for opportunities for funding, publication and stu-
dent projects as the software evolves.

Since the start of the project, BFT-SMART was used
for implementing coordination services, key-value stores,
a metadata service for a distributed file system, a trans-
action processing engine for replicated databases, an
application-level firewall, a publish-subscribe middleware
and a RADIUS-based authentication service.!? The fact
that most of these use cases were developed by different
programmers provided a lot of feedback for evolving the
system along the years.

8 Conclusions

This paper reported our effort in building the BFT-
SMART state machine replication library. Our contribu-
tion with this work is to fill a gap in SMR/BFT literature
describing how this kind of protocol can be implemented
in a safe and performant way. Our experiments show that
the current implementation already provides a very good
throughput for both small- and medium-size messages.

The BFT-SMART system described here is available as
open-source software in the project homepage [1] and, at
the time of this writing, there are several groups around
the world currently using or modifying our system for
their research needs.

Acknowledgments. We warmly thank Marcel Santos,
Paulo Sousa, Bruno Brito, André Nogueira, Vinicius
Cogo, Ricardo Mendes, Miguel Garcia and all researchers
and students who contributed and used BEFT-SMART dur-
ing the years. We also thank Fernando Ramos and Nikola
Knezevic for their comments on previous versions of this
paper. This work was partially supported by the EC
through projects TClouds (FP7/2007-2013, ICT-257243)
and MASSIF (FP7/2007-2013, ICT-257475) and also by
FCT through the Multiannual Program (LaSIGE).

References

[1] BFT-SMaRt: High-performance byzantine fault-tolerant
state machine replication. http://code.google.com/
p/bft-smart/.

[2] The Netty project. http://netty.io.

[3] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and
J. Wylie. Fault-scalable Byzantine fault-tolerant services.
In Proc. of the ACM SOSP’05, 2005.

10The list of projects and papers that used BET-SMART can be found
athttp://code.google.com/p/bft-smart/wiki/UsedInAndBy.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

M. K. Aguilera, I. Keidar, D. Malkhi, J.-P. Martin, and
A. Shraer. Reconfiguring replicated atomic storage: A tu-
torial. Bulletin of the EATCS, 2010.

Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine
replication under attack. IEEE Transactions on Depend-
able and Secure Computing, 8(4):564-577, 2011.

C. Bennett and A. Tseitlin. Chaos monkey released in
the wild. http://techblog.netflix.com/2012/07/
chaos-monkey-released-into-wild.html, 2012.

A. Bessani. From Byzantine fault tolerance to intrusion
tolerance (a position paper). In Proc. of the 5th Work-
shop on Recent Advances in Intrusion-Tolerant Systems —
WRAITS’11,2011.

A. Bessani, E. Alchieri, M. Correia, and J. S. Fraga.
DepSpace: a Byzantine fault-tolerant coordination service.
In Proc. of ACM EuroSys’08, 2008.

A. Bessani, M. Santos, J. Felix, N. Neves, and M. Cor-
reia. On the efficiency of durable state machine replica-
tion. In Proc. of the USENIX Annual Technical Conference
— USENIX ATC 2013, 2013.

K. Birman, G. Chockler, and R. van Renesse. Toward a
cloud computing research agenda. SIGACT News, 40(2),
June 2009.

P. Bokor, J. Kinder, M. Serafini, and N. Suri. Efficient
model checking of fault-tolerant distributed protocols. In
Proc. of the 41st IEEE/IFIP Int’l Conf. on Dependable Sys-
tems and Networks — DSN’11, 2011.

C. Cachin. Yet another visit to Paxos. Technical Report
RZ 3754, IBM Research Zurich, Nov. 2009.

M. Castro and B. Liskov. Practical Byzantine fault-
tolerance and proactive recovery. ACM Trans. Computer
Systems, 20(4):398-461, Nov. 2002.

T. Chandra, R. Griesemer, and J. Redstone. Paxos made
live - an engineering perspective (2006 invited talk). In
Proc. of the 26th ACM Symposium on Principles of Dis-
tributed Computing - PODC’07, 2007.

A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riché. UpRight cluster services. In
Proc. of the ACM SOSP’09, 2009.

A. Clement, E. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making Byzantine fault tolerant systems
tolerate Byzantine faults. In Proc. of NSDI’09, 2009.

M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini.
Practical hardening of crash-tolerant systems. In Proc. of
the USENIX Annual Technical Conference — USENIX ATC
2012, 2012.

M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obel-
heiro. Analysis of operating systems diversity for intru-
sion tolerance. Software - Practice and Experience, 2013.
to appear.

M. Garcia, N. Neves, and A. Bessani. An intrusion-tolerant
firewall design for protecting SIEM systems. In Proc. of
the Workshop on Systems Resilience — WSR’13,2013.

14

(20]

(21]

[22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

R. Garcia, R. Rodrigues, and N. Preguica. Efficient mid-
dleware for Byzantine fault-tolerant database replication.
In Proc. of ACM EuroSys’11,2011.

R. Guerraoui, N. KneZevi¢, V. Quéma, and M. Vukolié.
The next 700 BFT protocols. In Proc. of ACM EuroSys’10,
2010.

R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle,
S. V. Mohammadi, W. Schroder-Preikschat, and K. Sten-
gel. CheapBFT: resource-efficient Byzantine fault toler-
ance. In Proc. of ACM EuroSys’12,2012.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. ACM
Transactions on Computer Systems, 27(4), Dec. 2009.

L. Lamport. The part-time parliament. ACM Transactions
Computer Systems, 16(2):133—-169, May 1998.

L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state
machine. SIGACT News, 41(1):63-73, Mar. 2010.

J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R.
Douceur, and J. Howell. The SMART way to migrate repli-
cated stateful services. In Proc. of ACM EuroSys’06, 2006.

R. Martins, R. Gandhi, P. Narasimhan, S. Pertet,
A. Casimiro, D. Kreutz, and P. Verissimo. Experiences
with fault-injection in a Byzantine fault-tolerant protocol.
In Proc. of ACM/IFIP/USENIX Middleware’13,2013.

N. Santos and A. Schiper. Achieving high-throughput State
Machine Replication in multi-core systems. In Proc. of the
33rd IEEE International Conference on Distributed Com-
puting Systems — ICDCS’13, 2013.

J. Simsa, R. Bryant, and G. Gibson. dBug: Systematic
evaluation of distributed systems. In Proc. of the 5th Work-
shop on Systems Software Verification — SSV’10, 2010.

J. Sousa and A. Bessani. From Byzantine consensus to
BFT state machine replication: A latency-optimal trans-
formation. In Proc. of the 9th European Dependable Com-
puting Conference — EDCC’12,2012.

G. Veronese, M. Correia, A. Bessani, and L. Lung. Spin
one’s wheels? Byzantine fault tolerance with a spinning
primary. In Proc. of the 28th IEEE Symposium on Reliable
Distributed Systems — SRDS’09, 2009.

G. Veronese, M. Correia, A. Bessani, L. Lung, and P. Veris-
simo. Efficient Byzantine fault tolerance. IEEE Transac-
tions on Computers, 62(1), Jan. 2013.

M. Vukoli¢. The Byzantine empire in the intercloud. ACM
SIGACT News, 41:105-111, Sept. 2010.

M. Welsh, D. Culler, and E. Brewer. SEDA: An archi-
tecture for well-conditioned, scalable internet services. In
Proc. of the ACM SOSP’01, 2001.

