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Lineage-specific changes in mitochondrial properties
during neural stem cell differentiation

Rita Soares"**®, Diogo M Lourenco™®, Isa F Mota"*? Ana M Sebastido'?, Sara Xapelli"**®, Vanessa A Morais"**®

Neural stem cells (NSCs) reside in discrete regions of the adult
mammalian brain where they can differentiate into neurons,
astrocytes, and oligodendrocytes. Several studies suggest that
mitochondria have a major role in regulating NSC fate. Here, we
evaluated mitochondrial properties throughout NSC differenti-
ation and in lineage-specific cells. For this, we used the neuro-
sphere assay model to isolate, expand, and differentiate mouse
subventricular zone postnatal NSCs. We found that the levels of
proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and
Mfn 2) increased, whereas proteins involved in fission (dynamin-
related protein 1 [DRP1]) decreased along differentiation. Im-
portantly, changes in mitochondrial dynamics correlated with
distinct patterns of mitochondrial morphology in each lineage.
Particularly, we found that the number of branched and un-
branched mitochondria increased during astroglial and neuronal
differentiation, whereas the area occupied by mitochondrial
structures significantly reduced with oligodendrocyte matura-
tion. In addition, comparing the three lineages, neurons revealed
to be the most energetically flexible, whereas astrocytes pre-
sented the highest ATP content. Our work identified putative
mitochondrial targets to enhance lineage-directed differentia-
tion of mouse subventricular zone-derived NSCs.
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Introduction

Despite having been demonstrated in several studies since the
1960s that new neurons are continuously being generated in the
adult brain contributing to neural plasticity (Altman, 1962;
Nottebohm, 1985; Eriksson et al, 1998: Ernst & Frisen, 2015), the
existence of this phenomenon in humans has been debated in
other studies (Sorrells et al, 2018; Franjic et al, 2022). Importantly, it
has been suggested that the differences found in these studies are
because of several factors including sample collection and prep-
aration. Despite the controversy, the vast majority of the studies

support the existence of human hippocampal neurogenesis. To
further understand this dynamic event, neural stem cell (NSC)
biology is currently the subject of intense study. NSCs are multi-
potent cells characterized by their proliferative and self-renewal
capacity throughout the life time of the host, and their ability to exit
the cell cycle to initiate differentiation (Hall & Watt, 1989; Gage,
2000; Temple, 2001). NSCs are able to differentiate into the three
neural-ectoderm-derived populations of the nervous system:
neurons, astrocytes, and oligodendrocytes in defined processes
termed neurogenesis, astrogliogenesis, and oligodendrogenesis,
respectively (Reynolds & Weiss, 1992; Gage et al, 1998; Obernier &
Alvarez-Buylla, 2019). In the adult rodent brain, NSCs mainly reside
in discrete regions of the brain, identified as neurogenic niches
(Obernier & Alvarez-Buylla, 2019). One of these regions is the
subventricular zone (SVZ) located along the wall of the lateral
ventricle and that continuously generates olfactory bulb inter-
neurons but also oligodendrocytes under demyelinating conditions
(Butti et al, 2019). The other niche is the subgranular zone in the
hippocampal dentate gyrus (DG) which generates granule cells (Wu
et al, 2015). The self-renewal and differentiation capacities of the
NSCs have been extensively studied by in vitro techniques, where a
single NSC can respond to growth factors generating neurospheres
or monolayer colonies that can both differentiate upon growth
factor withdrawal (Reynolds & Weiss, 1992; Palmer et al, 1999).
Particularly, the neurosphere assay has been widely used not only
because it provides a consistent and unlimited source of NSC but
also because the heterogeneous composition of the neurospheres
mimics the in vivo niches (Soares et al, 2020, 2021).

NSC fate, involving the decision to self-renew or differentiate,
has been largely explored because of its importance for both tissue
development and regeneration. Recent evidence has emerged
suggesting that mitochondria is involved in NSC differentiation and
lineage determination both in mice and humans (Khacho et al, 2016;
Ramosaj et al, 2021; Dohla et al, 2022; Petrelli et al, 2023). Mito-
chondria are complex organelles involved in bioenergetics, sig-
naling pathways, and cell death (Mitchell, 1961; Green & Kroemer,
2004). In addition, mitochondria are dynamic organelles. Mito-
chondrial biogenesis is the formation of de novo mitochondria

"Instituto de Medicina Molecular | Jodo Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal ?Instituto de Farmacologia e
Neurociéncias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal ‘Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa,

Lisbon, Portugal

Correspondence: sxapelli@medicina.ulisboa.pt; vmorais@medicina.ulisboa.pt
*Sara Xapelli and Vanessa A Morais contributed equally to this work

© 2024 Soares et al.

https://doi.org/10.26508/1sa.202302473 vol 7 | no 7 | 202302473 10f15


http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.202302473&domain=pdf
https://orcid.org/0000-0003-2072-0358
https://orcid.org/0000-0003-2072-0358
https://orcid.org/0000-0001-9994-0315
https://orcid.org/0000-0001-9994-0315
https://orcid.org/0000-0001-6854-2509
https://orcid.org/0000-0001-6854-2509
https://orcid.org/0000-0002-0830-0548
https://orcid.org/0000-0002-0830-0548
https://doi.org/10.26508/lsa.202302473
mailto:sxapelli@medicina.ulisboa.pt
mailto:vmorais@medicina.ulisboa.pt
https://doi.org/10.26508/lsa.202302473
https://www.life-science-alliance.org/
http://doi.org/10.26508/lsa.202302473

>y D, o . o
s2epe Life Science Alliance

DIVO DIV2 DIV4 DIV7 KD

T
GAPDH [l i o |

reAM [
GAPDH [ s o ==

B 4 C 4

PGC10/GAPDH
N
.
TFAM / GAPDH
N

, [[LE

DIVO DIV2 DIv4 DIv7

O-

DIVO DIV2 DIv4 DIV7

Figure 1. The protein levels of PGC1a and mitochondrial transcription factor A
(TFAM), master regulators of mitochondrial biogenesis, are unaltered with
subventricular zone-derived neural stem cell differentiation.

(A) Representative immunoblots depict the immunoreactive bands of PGCla,
TFAM, and GAPDH (loading control) proteins at DIVO, DIV2, DIV4, and DIV7 (left to
right). (B, C) Quantitative analysis of PGCla (B) and TFAM (C) protein levels
normalized to GAPDH with differentiation of subventricular zone-derived neural
stem cells. Data are presented as mean + SEM (one-way ANOVA followed by
Tukey's multiple comparison test).

from pre-existing ones, which requires mitochondrial DNA
replication, transcription, and translation (Popov, 2020). Im-
portantly, enhancement of mitochondrial biogenesis promotes
the regenerative potential of the NSCs in aged mice (Stoll et al,
2015), whereas human NSC differentiation into motor neurons
potentiates mitochondrial biogenesis (O'Brien et al, 2015). Al-
though the role of mitochondrial biogenesis in glia cells is far
from being understood, a recent report suggests that this pro-
cess is required for the maturation of postnatal mouse astro-
cytes (Zehnder et al, 2021). Besides mitochondrial biogenesis,
mitochondria continuously divide and fuse. Balanced mito-
chondrial dynamics and morphology are necessary to maintain a
healthy pool of mitochondria within the cells, ensuring an ap-
propriate mitochondrial function at the proper time and sub-
cellular location to address the cellular requirements (Chen &
Chan, 2004). Particularly, dysregulation of this process in em-
bryonic human and mouse NSCs interferes with their self-
renewal capacity and neurogenesis process (Steib et al, 2014;
Khacho et al, 2016; lwata et al, 2020). Similar findings were ob-
served in the drosophila model in which depletion of mito-
chondrial fusion-related proteins cause a depletionin the type Il
neuroblasts (i.e., NSCs) pool, thereby leading to a reduction in
the number of differentiated cells (Dubal et al, 2022). In addition,
emerging evidence has shown that alterations of the mito-
chondrial morphology during hippocampal embryonic and adult
neurogenesis are pivotal for decision-making regarding NSCs
fate (Khacho et al, 2016; Beckervordersandforth et al, 2017). In
addition, mitochondrial function is also fundamental for NSC
fate determination as shown in mouse (Wani et al, 2022; Petrelli
et al, 2023), human (lwata et al, 2020), and drosophila models

Mitochondrial properties in cell differentiation Soares et al.

(Homem et al, 2014; van den Ameele & Brand, 2019). Nonetheless,
to date, the molecular mechanisms by which mitochondrial
biogenesis, dynamics, and bioenergetics mediate postnatal NSC
commitment are unknown. Therefore, the aim of this work was to
assess how mitochondrial biogenesis and dynamics change
along postnatal-SVZ-derived mouse NSC differentiation, ex-
ploring mitochondria morphology and bioenergetics in the
distinct lineage-specific cells. Our results demonstrate that
the levels of mitochondrial fusion-and fission-related proteins
are significantly increased and decreased, respectively, along
SVZ-derived NSC differentiation. Moreover, the mitochondrial
number significantly increased during astroglial and neuronal
differentiation, whereas the mitochondrial area significantly
reduced along oligodendroglial maturation. Our data demon-
strate that at later stages of NSC differentiation, cells are more
reliant on oxidative phosphorylation (OXPHOS) and that neurons
present higher energy flexibility.

Results
Mitochondrial biogenesis is not changed with NSC differentiation

The neurosphere assay, which was previously characterized by
our group (Soares et al, 2020), is an appropriate model to evaluate
the postnatal NSC fate as both stemness and multipotency
properties of these cells can be determined in a heterogenic
microenvironment that mimics the neurogenic regions. Notably,
this model allows the simultaneous evaluation of postnatal dif-
ferentiation into neurons, astrocytes, and oligodendrocytes
(Weiss et al, 1996). To evaluate mitochondrial properties with NSC
differentiation, NSCs were isolated from the SVZ. To guarantee a
high yield of NSC population, we performed two passages,
obtaining tertiary neurospheres. The cells within the neuro-
spheres exhibit both stemness and proliferative capacity (Soares
et al, 2020). SVZ neurospheres when plated under differentiative
conditions (with the removal of growth factors from the medium)
give rise to neuronal, oligodendroglial, and astroglial cells as
shown in our previous work (Soares et al, 2020). In fact, throughout
differentiation besides astrocytes, immature cells such as NSCs
(SOX2+ cells), immature neurons (DCX+ cells), and oligodendro-
cyte precursor cells (OPCs) (PDGFRa+/NG2+ cells) are highly
present at DIV2, whereas at DIV7, mature neurons (NeuN+ cells)
and myelinating oligodendrocytes (MBP+ cells) are more
expressed.

To investigate whether mitochondrial biogenesis is altered
with postnatal NSC differentiation, we assessed the protein
levels of the master regulators of this process: peroxisome
proliferator-activated receptor-y coactivator 1a (PGCla) and the
mitochondrial transcription factor A (TFAM). Once PGCla is ac-
tivated, this protein interacts with the nuclear respiration factors
1 and 2 (NRF-1 and NRF-2), leading to the expression of many
mitochondrial genes and proteins that are needed for mito-
chondrial DNA replication and transcription, such as TFAM (Wu
et al, 1999). Immunoblot analysis revealed no significant alter-
ation in the protein levels of PGCla (Figs 1A and B and S8A and B)
and TFAM (Figs 1A and C and S8A and B) along NSC differentiation
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Figure 2. Subventricular zone-derived neural stem cell differentiation does
not impact on AMP-activated protein kinase (AMPK) and mechanistic target
of rapamycin (mTOR) protein levels.

(A, B) Representative immunoblots depict the immunoreactive bands of AMPKa,
AMPKB1, and AMPKB2 (A) and p-AMPKa, p-AMPKB1, and mTOR (B) at DIVO, DIV2,
DIV4, and DIV7 (left to right). (C, D, E, F, G, H) Quantitative analysis of AMPKa (C), p-
AMPKa (D), AMPKB1 (E), p-AMPKB1 (F), AMPKB2 (G), and mTOR (H) protein levels
normalized to GAPDH during subventricular zone-derived neural stem cell
differentiation. Data are expressed as mean + SEM (one-way ANOVA followed by
Tukey's multiple comparison test).

(DIVO, DIV2, DIV4, and DIV7). Therefore, our data suggest that

mitochondrial biogenesis might not have an impact in SVZ-
derived NSC differentiation.

Mitochondrial properties in cell differentiation Soares et al.

NSC differentiation does not affect AMP-activated protein kinase
(AMPK) protein levels

To further corroborate the previous findings indicating that
mitochondrial biogenesis is not altered during SVZ-derived NSC
differentiation, we explored the protein levels of indirect reg-
ulators of this process: AMPK and the mechanistic target of
rapamycin (mTOR). AMPK is a heterotrimeric serine/threonine
protein kinase with the capacity to phosphorylate PGCla,
through the reduction of ATP/AMP ratio in the cell (Bergeron
et al, 2001; Reznick et al, 2007). Moreover, this kinase has a
catalytic a-subunit and a scaffolding B subunit (81and 2). As for
the master regulators, no changes were observed in the protein
levels of AMPKa (Fig 2A and C), AMPKB1 (Fig 2A and E), and AMPKB2
(Fig 2A and G). In addition, no significant alterations were ob-
served in phospho-AMPKa (p-AMPKa) and p-AMPKRB1, the re-
spective activated forms of AMPKa and AMPKRB1 (Fig 2B, D, and F).
Also, no significant differences were observed in the p-AMPKa/
AMPKa (Fig S1A) and p-AMPKB1/AMPKB1 (Fig S1B) ratios. Hence,
these results demonstrate that the overall protein levels of AMPK
and its activated forms do not change throughout SVZ-derived
NSC differentiation. Finally, mTOR another indirect regulator of
mitochondrial biogenesis (Morita et al, 2013; Knobloch &
Jessberger, 2017) also did not reveal significant changes in
protein levels with NSC differentiation (Fig 2H). Overall, these
findings further suggest that NSC differentiation does not affect
mitochondrial biogenesis-related protein levels.

Mitofusins 1 and 2 increase, whereas DRP1 decreases, during
NSC differentiation

To disclose whether NSC differentiation and maturation affect
mitochondrial dynamics, the protein levels of the outer membrane
fusion proteins Mitofusin 1 (Mfn1) and Mfn2 (Rojo et al, 2002) and
the inner membrane fusion protein OPA1 (Cipolat et al, 2004) were
evaluated in SVZ cells (Figure S9A-D. Interestingly, Mfn2 protein
levels significantly increased with NSC differentiation, reaching a
maximum level of 3.457 + 0.3969-fold (n = 4-5, P < 0.001) in cells at
DIV7 (Fig S2B). In contrast, no significant alterations were observed
in Mfn1 (Fig S2A) and in the OPAT1 full-length form (upper band) and
cleaved form (lower band) (Fig S2C and D). To further understand
the role of NSC commitment in mitochondrial dynamics, we also
explored mitochondrial fission by evaluating the protein levels of
the dynamin-related protein (DRP1) (Smirnova et al, 2001). Note-
worthily, SVZ cell differentiation induced a marked decrease of
DRP1 to 20% + 2.85% of its initial levels (DIV7: 0.2018 + 0.02854, n =
4-5, P < 0.0001) (Fig S2E).

To determine whether these differences observed in the protein
levels of mitochondrial fusion-related proteins were dependent on
alterations in mitochondrial mass during NSC differentiation, the
mitochondrial mass was assessed by quantifying HSP60 protein
levels, a mitochondrial matrix protein (Green & Kroemer, 2004). As
HSP60 levels have no major change along cell differentiation (Figs 3
and S9), Mfn1/2 and OPA1 protein levels were normalized to HSP60.
Notably, a significant increase in Mfn1 protein levels was observed
in SVZ cells only at DIV7 (2.287 + 0.3801, n = 4-5, P < 0.05) (Fig 3C). In
respect to Mfn2 levels, the significant alterations were maintained
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Figure 3. Mitochondrial fusion- and fission-related protein levels significantly change along neural stem cell differentiation.

(A) Representative immunoblots depict the immunoreactive bands of all the proteins at DIV, DIV2, DIV4, and DIV7 (left to right). (B) Analysis of HSP60 protein levels with
neural stem cell differentiation at P0-2. (n = 4-5). (C, D, E, F, G) Quantitative analysis of Mfn1(C), Mfn2 (D), OPA1 full-length form (E), OPA1 cleaved form (F), and DRP1(G)
normalized by HSP60 protein levels. Data are expressed as mean + SEM (*P < 0.05, **P < 0.01, ****P < 0.0001, one-way ANOVA followed by Tukey's multiple comparison test).

(DIV2: 1230 + 0.1821, DIV7: 3.724 + 1161, n = 4-5, P < 0.05) (Fig 3D). No
significant changes were observed in the OPA1 full-length and
cleaved form (Fig 3E and F). Regarding DRP1, the fission-related
protein continued to significantly decrease with cell differentiation
reaching 25.10% + 10.91% of the initial levels (DIV7: 0.2510 £ 0.1091, n =
4-5, P < 0.0001) (Fig 3G). Overall, our results suggest a role for
mitochondrial fusion/fission machinery in SVZ-derived NSC
differentiation.

Each neural cell type displays a unique mitochondrial
morphology profile

Because the mitochondrial network is remodeled by fusion and
fission events, and based on the results obtained in Fig 3, we
postulated that both undifferentiated and differentiated cells
could present distinct mitochondrial morphologies that can be
lineage-dependent and maturation degree-related, in SVZ cells. To
further explore this hypothesis, mitochondrial morphology was
studied within undifferentiated (Fig S3) and differentiated cells
(Figs 4, S4, and S5) including astrocytes, immature and mature
neurons, OPCs, and different stages of oligodendrocytes. By using
the MINA macro (Valente et al, 2017), we evaluated several
morphometric parameters including the number of individuals
(rods and unbranched puncta), the number of networks (branched
structures), the average number of branches per network, the
average length of the rods and branches, and the percentage of
mitochondrial area (Fig 4A). Importantly, these parameters, when
considered together, allow to draw conclusions about mitochon-
drial fragmentation and fusion/fission events. Interestingly, the
number of mitochondria, individuals, and networks significantly

Mitochondrial properties in cell differentiation Soares et al.

increased in NSCs (SOX2+ cells) from DIVO to DIV2 (Fig S3B and Q),
during astroglial differentiation (GFAP+ cells) and in mature neu-
rons (atau+ cells) (Figs 4B and C and S4A and C). No significant
changes were observed in immature neurons (DCX+ cells) from DIV2
to DIV4 regarding mitochondrial individuals (Figs 4B and S4B) and
mitochondrial networks (Figs 4C and S4B), whereas in mature
neurons, an increase is observed with differentiation. By contrast,
no significant changes in the mitochondrial number were observed
in OPCs (PDGFRa+/NG2+ cells) with differentiation (Figs 4B and C
and S5A). Curiously, the number of mitochondria is lower in the
more mature oligodendrocytes (MBP+ cells with complex branched
structures) when compared with less mature (MBP+ cells with
poorly branched structures) at both DIV4 and DIV7. However, the
number of mitochondria was already low in mature oligodendro-
cytes at DIV4 and had similar values when comparing with mature
oligodendrocytes at DIV7, suggesting that the number of mito-
chondria decreases to lower levels with oligodendrocyte matura-
tion (Figs 4B and C and S5B). Interestingly, the more mature
oligodendrocytes present a lower number of mitochondria when
compared with astrocytes and neurons (Figs 4B and C, S4A-C, and
S5B).

Asignificant reduction in the number of branches per network
was observed in astrocytes from DIV4 to DIV7 and in both im-
mature neurons and mature neurons (Figs 4D and S4A-C),
whereas no alterations in NSCs (Fig S3D) and oligodendroglial
cells (Figs 4D and S5A and B) were observed. Interestingly, in
immature neurons, the mitochondria became more elongated as
cells mature returning then to a less elongated phenotype in
mature neurons (Figs 4E and S4B and C). In astrocytes, mito-
chondria become less elongated with differentiation but then
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return to a more elongated morphology (Figs 4E and S4A). NSCs
revealed a significant decrease in the mitochondrial length from
DIVO to DIV2 (Fig S3E). Moreover, this parameter remained un-
changed in oligodendroglial cells (Figs 4E and S5A and B). Lastly,
when we analyze the mitochondria area in the cells, we found a
significant increase in astrocytes (Figs 4F and S4A) along dif-
ferentiation. In addition, as oligodendrocytes undergo matura-
tion, the mitochondrial areais reduced to approximately half (Fig
4F) and a perinuclear distribution of the mitochondria is ob-
served (Fig S5B). Therefore, these robust alterations of mito-
chondrial morphology could suggest that mitochondrial
dynamics could be important modulators of SVZ-derived NSC
fate; however, further validation is required.

NSC differentiation at the later stages requires higher levels of
ATP production

Because mitochondrial dynamics and morphology are to a certain
extent linked to mitochondrial bioenergetics, the dissimilarities
observed in the different fates derived from NSCs might be be-
cause of differences in the bioenergetic profile. Therefore, re-
spiratory assays were performed in control cells at different
differentiation time-points (24, 96, and 96 h + 4 d in low EGF/FGF-2
medium). The extracellular acidification rate, a proxy for glycol-
ysis, and the oxygen consumption rate (OCR) mediated by mi-
tochondrial respiration were assessed by using the Mito Stress
setup (Faria-Pereira et al, 2022). The energy map (Fig 5A) revealed
that under stressed conditions (upon FCCP injection), these three
controls do not present major changes. Nevertheless, we then
evaluated the mitochondrial respiration rates (Fig S6A and B). No
changes were observed in all the parameters (Fig 5B, D-G), with
the exception of the ATP-linked respiration where a significant
increase with differentiation and cell maturation from the 96 h to
the 96 h + 4 d time-points (96 h: 66.30% * 5.239% and 96 h + 4 d:
77.19% + 2.925%, n = 6-7, P < 0.05) was observed (Fig 5C). Overall,
these data suggest that throughout NSC differentiation, partic-
ularly at the later time-points, there was a more pronounced
reduction inthe % of OCR when mitochondrial ATP production was
inhibited.

Neurons are the most energetically flexible cells differentiated
from the SVZ-derived NSCs, whereas oligodendrocytes are the
least flexible

We then assessed the energy map of the sorted astrocytes,
oligodendrocytes, and neurons (Fig 6A), showing that the neu-
rons are more aerobic when exposed to stress condition in
comparison with glial cells that present a more glycolytic profile.

In addition, neurons present significantly lower levels of basal
respiration (astrocytes: 74.65% + 1.616%, oligodendrocytes:
75.03% * 2.347%, and neurons: 61.41% + 4.538%, n = 4-9, P < 0.01)
(Figs 6B and S7A) and proton leak (astrocytes: 25.35% + 1.541%,
oligodendrocytes: 24.49% + 2.295%, and neurons: 15.05% + 1.474%,
n = 4-9, P < 0.01) (Fig 6D) in comparison with the glial cells. In
addition to this, ATP-linked respiration did not change among
the different cell types (Fig 6C). Neurons present a significantly
higher maximal respiration in comparison with glial cells (as-
trocytes: 143.50% + 6.526%, oligodendrocytes: 117.60% * 9.755%,
neurons: 184.80% + 24.83%, n = 4-9; P < 0.05 and P < 0.01) (Figs 6E
and S7B) and a significantly higher spare respiration in com-
parison with both astrocytes and oligodendrocytes (astrocytes:
68.82% * 6.359%, oligodendrocytes: 42.61% + 10.30%, neurons:
123.8% +26.31%, n = 4-9, P < 0.01 and P < 0.001) (Figs 6F and S7B),
which suggests that cells that commit to the neuronal lineage
present higher energy flexibility. Finally, significant differences
were observed in non-mitochondrial respiration between neu-
rons and glial cells (Fig 6G). Concluding, neurons are the most
energetically flexible cells despite having the lowest basal
respiration among the differentiated cells from the SVZ-derived
NSCs.

Astrocytes have a significantly higher ATP content when
compared with oligodendrocytes and neurons

To assess if the changes observed upon ATP-linked production (Fig
5D) in 96 h + 4 d control comparing with the 96 h were reflected in
total ATP content, the levels of ATP were assessed in the 24, 96, and
96 h + 3 d controls and in the sorted cells (astrocytes, oligoden-
drocytes, and neurons).

No significant differences were observed in the ATP content
levels when comparing all control conditions (Fig 7A). Impor-
tantly, the fact that the ATP content is similar between the 96 h
and the 96 h + 3 d (Fig 7A) and because the 96 h + 4 d presents a
significantly higher ATP-linked to respiration (Fig 5D) suggests
that at 96 h + 3 d, there could be a higher rate of ATP con-
sumption or that at 96 h, there could be a higher rate of ATP
production by other pathways. Interestingly, although no dif-
ferences were observed in the ATP-linked respiration in the
sorted cells (Fig 6D), we observe that astrocytes present a
significantly higher ATP content (astrocytes: 3.488 + 1.042 uM/ g
protein, oligodendrocytes: 0.9669 + 0.3219 pM/ug protein,
neurons: 0.4758 + 0.2264 uM/pug protein, n =4, P < 0.01 and P <
0.001) (Fig 7B). Overall, the data of the ATP content together with
the ATP-linked respiration give new insights about the ATP
consumption and the ATP production by other pathway in some
conditions.

Figure 4. Mitochondrial morphology varies among neural lineages and with differentiation.

(A) Illustrative image showing the color-coded morphological parameters evaluated. (B, C, D, E, F) Quantitative analysis of mitochondrial individuals (B), mitochondrial
networks (C), number of branches per network (D), mitochondrial length (rods and branches) (E), and mitochondrial area (F), in the different neural lineages. Data are
normalized by the cytoplasmic area. Data are represented as box plots, showing the median with interquartile range, maximum and minimum values. *P < 0.05, **P < 0.01,
***p < (0,001, ****P < 0.0001 by Student’s test (oligodendrocyte precursor cells,immature and mature neurons), one-way ANOVA followed by Tukey's multiple comparison
test (astrocytes), and Mann-Whitney test (oligodendrocytes). N = 40/40/40 and n =6/7/13 (left to right on astrocytes’ plot); N = 40/40/43/45and n=6/9/12/22 (left to right
on neurons’ plot); N = 40/40 and n = 5/7 (left to right on oligodendrocyte precursor cells’ plot); N =36/4/26/14 and n=33/4/26/13 (left to right on oligodendrocytes’ plot). N
represents the number of biological replicates, and n corresponds to the number of ROIs analyzed.
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Discussion

NSCs are valuable therapeutic targets, holding the capability to
rebuild and restore tissue in the adult brain through the formation
of new neural cells (Reynolds & Weiss, 1992; Gage et al, 1998;
Obernier & Alvarez-Buylla, 2019). Here, we provide important evi-
dence about the role of mitochondrial dynamics and metabolism
toward postnatal mouse NSC commitment into a specific lineage,
opening the avenue to potential approaches that impose NSC fate
by modulating mitochondrial properties.

In our study, protein profiles of key regulators involved in mi-
tochondrial biogenesis were assessed along SVZ-derived NSC
differentiation. Unexpectedly, no significant alterations were found
in PGCla and TFAM protein levels. Simultaneously, overall AMPK
and mTOR protein levels were also unchanged. Overall, these re-
sults suggest that mitochondrial biogenesis is not a major player in
SVZ-derived NSC differentiation.

Mitochondrial properties in cell differentiation Soares et al.

%O0CR
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Figure 5. Neural stem cell differentiation at the
later stages requires higher levels of ATP
production.

(A, B, C, D, E, F, G) Energy map, (B) quantification of
basal respiration, (C) ATP-linked respiration, (D)
proton leak upon response to oligomycin, (E)
maximal and (F) spare respiration upon response
to FCCP, and (G) non-mitochondrial respiration
upon response to rotenone and antimycin A. Data
are presented as mean + SEM (*P < 0.05, one-way
ANOVA followed by Tukey's multiple

comparison test).
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Importantly, our data revealed that mitochondrial dynamics
is a key player in NSC maintenance and differentiation. In embryonic
human and mouse NSCs, enhanced mitochondrial fusion promotes
self-renewal, whereas increase of mitochondrial network fragmen-
tation favors neuronal differentiation and maturation (Khacho et al,
2016; Iwata et al, 2020). Moreover, unique metabolic programs,
namely, alterations in mitochondrial OXPHOS, lipid metabolism,
reactive oxygen species (ROS) signaling, redox state, and gluta-
minolysis mark the transition between cellular stages along both
embryonic and adult NSC lineages (Cunningham et al, 2007
Prozorovski et al, 2008; Ahlgvist et al, 2012; Stoll et al, 2015; Khacho
et al, 2016; Namba et al, 2020; Adusumilli et al, 2021; Ramosaj et al,
2021; Wani et al, 2022). Noteworthily, mitochondrial dynamics was
shown to regulate embryonic mouse NSC fate by fine-tuned regu-
lation of ROS (Khacho et al, 2016). In addition, ROS was shown to
influence the choice between neuronal and astroglial differentiation
(Prozorovski et al, 2008). Therefore, one could postulate that these
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mitochondrial processes could mediate the NSCs fate. Indeed, we
have demonstrated that alterations in Mfn1, Mfn2, and DRP1 are a
consequence of SVZ-derived NSC differentiation and are inde-
pendent of mitochondrial mass alterations. Our results are
consistent with studies demonstrating that Mfn1/2 deletion im-
pairs neurogenesis, leading to cognitive deficits in adult mice
(Fang et al, 2016; Khacho et al, 2016). Surprisingly, in our cell
culture system, DRP1 protein levels decreased along NSC differ-
entiation, independently of mitochondrial mass changes. These
data are not in accordance with other studies both in mice and in
humans, showing that mitochondrial fragmentation promotes
neuronal differentiation over NSC self-renewal (Khacho et al, 2016;
lwata et al, 2020). Noteworthily, these studies were performed
in embryonic NSCs, whereas for our studies, we use postnatal
NSCs. Furthermore, it has been reported that mitochondrial
morphology presents a different profile throughout embryonic
and adult mouse neuronal differentiation (Khacho et al, 2016;
Beckervordersandforth et al, 2017).

Mitochondrial properties in cell differentiation Soares et al.

Figure 6. Neurons are the most energetically
flexible cells differentiated from the
subventricular zone-derived neural stem cells,
whereas oligodendrocytes are the least flexible.
(A, B, C, D, E, F, G) Energy map, (B) quantification
of basal respiration, (C) ATP-linked respiration,
(D) proton leak upon response to oligomycin, (E)
maximal and (F) spare respiration upon
response to FCCP, and (G) non-mitochondrial
respiration upon response to rotenone and
antimycin A. Data are presented as mean + SEM
(*P<0.05and **P < 0.01, one-way ANOVA followed
by Fisher's least significant difference test).

stressed

Proton leak

Non-mitochondria
respiration

*

*

I Neurons, 5x10° cells/well

In this study, we also characterized the role of mitochondrial
dynamics in postnatal NSC fate decision by evaluating the mito-
chondrial network in each cell type. We show that both NSCs
and cell lineage differentiated from NSCs displayed distinct mi-
tochondrial morphology, further suggesting that alterations in the
mitochondrial dynamics impact differently on NSC commitment
into the three lineages. Interestingly, in MBP+ cells, mitochondrial
number, individuals, and networks decreased with a subsequent
reduction in mitochondrial area with oligodendroglial maturation.
Despite the limited findings of the mitochondrial phenotype in
oligodendroglial cells, mitochondrial function reveals to be re-
quired for proper oligodendrocyte differentiation and myelination
(Schoenfeld et al, 2010; Rinholm et al, 2016). In fact, mitochondrial
morphology genes were induced as a consequence of oligoden-
droglial differentiation (Schoenfeld et al, 2010). This suggests that
differentiated oligodendrocytes required altered mitochondrial
morphology. Curiously, the number of mitochondria was higher in
neurons when compared with more mature oligodendrocytes,
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Figure 7. Astrocytes have a significantly higher ATP content when compared
with oligodendrocytes and neurons.

(A, B) Quantification of the ATP content in (A) 24,96, and 96 h + 3 d controls and (B)
sorted cells. Data are presented as mean + SEM (one-way ANOVA followed by
Tukey's multiple comparison test for the comparison of the controls and one-
way ANOVA followed by Fisher’s least significant difference test for the
comparison of the sorted cells).

which is in accordance with previous studies (Chang et al, 2006;
MacAskill & Kittler, 2010). Although studies have shown that mi-
tochondrial length is higher in astrocytes and neurons (neuronal
dendrites and axons) than in oligodendrocytes (Rintoul et al, 2003;
Chang et al, 2006; Jackson et al, 2014), in our work, the overall
mitochondrial length was highly similar among the three lineage
differentiated cells. Importantly, in contrast with the mentioned
studies, in our cultures, the astrocytes, oligodendrocytes, and
neurons are obtained from the differentiation of postnatal NSCs.

Because mitochondrial dynamics and morphology are at a
certain extent linked to mitochondrial bioenergetics, the dissimi-
larities observed in the different fates derived from NSCs could be
because of differences in the bioenergetic profile. Thus, a detailed
bioenergetic profile was assessed during NSC differentiation and
within each lineage specific cells. Interestingly, our data show that
in the later stages of NSC differentiation, the cells require more ATP
production. Importantly, a wide range of studies have demon-
strated that differentiation into neurons, both in the embryonic and
adult phase, is accompanied by a metabolic switch, shifting from
glycolysis into OXPHOS (O'Brien et al, 2015; Khacho et al, 2016;
Beckervordersandforth et al, 2017). In fact, the energy map of the
sorted cells revealed that neurons present a more aerobic and
energetic profile when exposed to stress conditions comparing
with astrocytes and oligodendrocytes. These findings are in ac-
cordance with the significantly higher spare respiration and
maximal respiration capacities of the neurons compared with
both glial cells. This suggests that neurons have a higher bio-
energetic flexibility, a trade that is required for handling constant
energetically demanding processes, such as synaptic transmis-
sion and neuronal plasticity (Li & Sheng, 2022). On the other hand,
oligodendrocytes are the least energetically flexible cells out
of the differentiated cells. This hypothesis is corroborated by a
study that demonstrates that human oligodendrocytes under
conditions of increased stress, such as a low-glucose condition,
revealed an overall decrease in OCR because of mainly a
reduction in mitochondrial ATP-linked OCR (Rone et al, 2016).
Intriguingly, and contrary to OPCs, post-myelinating

Mitochondrial properties in cell differentiation Soares et al.

oligodendrocytes shift into primarily glycolytic metabolism
(Finfschilling et al, 2012), depending more on fatty acid synthesis
(Dimas et al, 2019). These findings add another layer of com-
plexity to our system, highlighting the heterogeneity of the
energetic flexibility profile of cells within the same lineage.
These dissimilarities between OPCs and oligodendrocytes could
explain our results attained for morphological differences be-
tween the mitochondria from oligodendrocytes with different
degrees of maturation. Interestingly, although no differences
were observed in the ATP-linked respiration among the sorted
cells, astrocytes present a significantly higher ATP content
compared with the other cell types. This might suggest that in
astrocytes, the ATP is also being produced by other pathways. In
fact, evidences have shown that these glial cells have a pre-
dominantly glycolytic profile (Hamberger & Hyden, 1963; Belanger
et al, 2011), whereas the precise extent of OxPhos activity remains
poorly understood. However, astrocytes that lack mitochondrial
respiration were shown to survive as glycolytic cells (Supplie et al,
2017). These studies highlight the flexibility of the astrocytes to adapt
their cellular energy state according to energy demand (Loaiza et al,
2003; Hertz et al, 2007). To further dissect the contributions of other
pathways for the ATP production, complementary experiments to
assess how reliant these neural cells are toward glycolysis, and more
specifically for using pyruvate as a main fuel source, should be
performed.

This work will certainly provide valuable new insights into
molecular pathways that are unique for NSC fate and potentially
unveil the importance of mitochondrial function in these pro-
cesses. Notably, these data are groundwork to drive neural fate
decision by modulating mitochondrial intrinsic properties and
further explore the applicability of putative engineered NSCs in
neural loss—associated disorders, such as Parkinson’s disease and
multiple sclerosis.

Materials and Methods

Animals

Mice were obtained from the iIMM|JLA Rodent Facility (Lisbon,
Portugal), where they were housed in a temperature-controlled
room at 20-24°C. All the procedures were approved by the Por-
tuguese National Authority for Animal Health (DGAV) and by the
institute’s animals’ well-being office (ORBEA-iMM). This study was
carried out in compliance with the ARRIVE guidelines (Percie du Sert
et al, 2020). All experiments were performed in accordance with the
European Community (86/609/EEC; 2010/63/EU; 2012/707/EU) and
Portuguese (DL113/2013) legislation for the protection of animals
used for scientific purposes.

In vitro cultures

SVZ NSCs were obtained from early postnatal (P1-3) C57BL/6 mice.
This model is appropriate to mimic the physiological context of the
postnatal NSC differentiation. Neurosphere culture was performed
as previously described (Soares et al, 2020). SVZ were seeded at a
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Table 1. List of materials.

Reagent or resource

Manufacturer

Identifier

Antibodies—immunocytochemistry

Rabbit polyclonal atau

Synaptic Systems

Cat# 314003

Rabbit polyclonal Chondroitin Sulphate Proteoglycan NG2

Millipore

Cat# AB5320

Rat monoclonal CD140a (PDGFRa)

BD Biosciences

Cat# 558774

Rabbit polyclonal Doublecortin (DCX)

Abcam

Cat# ab18723

Rabbit polyclonal Glial Fibrillary Acidic Protein (GFAP)

Sigma-Aldrich

Cat#t G9269-.2 ML

Mouse monoclonal HSP60

BD Biosciences

Cat# 611562

Rabbit monoclonal Myelin Basic Protein (MBP)

Cell Signaling Technology

Cat# 78896S

Rabbit polyclonal SOX2

Abcam

Cat# ab97959

Alexa Fluor 568 donkey anti-mouse

Thermo Fisher Scientific

Cat#f A10037

Alexa Fluor 488 donkey anti-rabbit

Thermo Fisher Scientific

Cat#t A21206

Alexa Fluor 488 donkey anti-rat

Thermo Fisher Scientific

Cat# A21208

Antibodies—Western blot

Rabbit monoclonal AMPKa Cell Signaling Technology Cat#t 5831
Rabbit monoclonal p-AMPKa (Thr 172) Cell Signaling Technology Cat# 2535
Rabbit monoclonal AMPK B1/2 Cell Signaling Technology Cat#t 4150
Rabbit p-AMPK B1 (Ser 108) Cell Signaling Technology Cat# 4181

Mouse monoclonal PGC-1a

Millipore

Cat# ST1202

Mouse monoclonal TFAM

Santa Cruz

Cat# sc-166965

Rabbit monoclonal mTOR

Cell Signaling Technology

Cat# 2983

Mouse monoclonal Mfn1

Abnova

Cat# H00055669-M04

Mouse monoclonal Mfn2

Abnova

Cat# H00009927-M03

Mouse monoclonal OPA1

BD Biosciences

Cat# 612607

Mouse monoclonal DLP1

BD Biosciences

Cat#t 611112

Mouse monoclonal HSP60

BD Biosciences

Cat# GC231-4H8

Mouse monoclonal GAPDH

Thermo Fisher Scientific

Cat# AM4300

Goat anti-Mouse HRP

Bio-Rad

Cat# 1706516

Goat anti-Rabbit HRP

Bio-Rad

Cat# 1706515

Magnetic beads

Anti-ACSA-2 MicroBead Kit Miltenyi Biotec 130-097-678
Anti-O4 MicroBeads Miltenyi Biotec 130-096-670
Neuron Isolation Kit Miltenyi Biotec 130-115-389
Chemicals

PFA Thermo Fisher Scientific Cat#t 15710

B-27 Supplement (50X), serum-free

Thermo Fisher Scientific

Cat# 17504044

Penicillin-Streptomycin

Thermo Fisher Scientific

Cat# 15140122

EGF Thermo Fisher Scientific Cat# 53003018
FGF Thermo Fisher Scientific Cat# 13256029
Poly-D-Lysine 100 mg Sigma-Aldrich Cat#t P7886
Laminin Sigma-Aldrich Cat#t L2020
DAPI Sigma-Aldrich Cat#t D9564
Oligomycin Sigma-Aldrich Cat#t 04876
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Table 1. Continued
Reagent or resource Manufacturer Identifier
FCCP (Carbonyl cyanide-4- (trifluoromethoxy) Sigma-Aldrich Cattt C2920
phenylhydrazone)
Rotenone Sigma-Aldrich Cat# R8875
Antimycin A Sigma-Aldrich Cat#t AB674
Critical commercial assays
NeuroCult Chemical Dissociation Kit (Mouse) Stem Cell Cat#t 5707
Luminescent ATP Detection Assay Kit Abcam Cat#t ab113849

Experimental models

C57BL/6 Mice

Charles River Laboratories

Software and algorithms

Fiji Max-Planck-Gesellschaft

http:/ /fiji.sc

MiNA macro

Valente et al (2017)

ZEN

GraphPad Prism 9.0

GraphPad Software

https:/ /www.graphpad.com/scientific-software/prism

Adobe Illustrator CC Adobe

density of 2 x 10* cells/ml in serum-free medium (SFM) composed
by DMEM/F12 + GlutaMAX-I supplemented with 100 U/ml penicillin
and 100 pg/ml streptomycin, 1% B27, 10 ng/ml EGF, and 5 ng/ml
bFGF (proliferation conditions) for 6-8 and 10-12 d, respectively.
When most of the SVZ neurospheres have a diameter 150-200 pm,
two passages were performed to obtain higher yields of NSCs, as
described (Soares et al, 2020). SVZ neurospheres were plated (at a
density of ~60 neurospheres per well) onto glass coverslips coated
with 100 pg/ml PDL in 24-well plates. For immunoblotting analysis,
SVZ neurospheres (at a density of ~480 neurospheres per well) were
plated in coated six-well plates. The neurospheres were main-
tained in SFM devoid of growth factors (differentiation conditions).
After 24 h, the medium was replaced with fresh SFM devoid of
growth factors and at 4 and 10 d in vitro (DIV4 and 10), half of the
medium was renewed. The SVZ-derived NSCs were allowed to
develop for a maximum of 14 d (DIV14).

Immunoblot

Western blot analysis was performed to assess levels of proteins
involved in mitochondrial dynamics and biogenesis during SVZ-
derived NSC differentiation. SVZ neurospheres at P2 were plated
and allowed to develop for 0, 2, 4, and 7 d in differentiation con-
ditions. Cells were lysed with the lysis buffer composed by 1 mM
EGTA, 250 mM sucrose, 5 mM Tris—=HCl, and 1% Triton X-100, pH 7.4,
supplemented with protease and phosphatase inhibitors. Protein
concentration was measured by the Bradford method accordingly
to the manufacturer’'s specifications. 10-30 pm of proteins were
separated by SDS-PAGE on 4-15% polyacrylamide gels (Bio-Rad)
and electrophoretically transferred into a 0.2-um nitrocellulose
membranes. Membranes were blocked with 5% milk powder or 5%
BSA in Tris-buffered saline with 0.1% Tween-20 for 1 h at RT. In-
cubations with the primary antibodies against proteins involved in
mitochondrial dynamics were performed overnight at 4°C (Table 1).

Mitochondrial properties in cell differentiation Soares et al.

Secondary antibodies conjugated with the horseradish peroxidase
enzyme were used and detected by the ECL chemiluminescent
luminol substrate (Amersham) and imaged on the Amersham 680
equipment. To determine the AMPK activity, a ratio between the
activated and total forms was calculated. GAPDH was chosen as a
loading control because no changes were observed during NSC
differentiation, as supported by other reports (Agostini et al, 2016;
Zheng et al, 2016; Isaksen et al, 2020). HSP60 was also used as a
loading control to normalize for the mitochondrial mass. In the
analysis, protein levels were normalized to DIVO. Protein levels of
PGCla, TFAM, HSP60, Mfn1, Mfn2, OPA1, and DRP1, which are not
represented as fold changes relative to DIVO, are shown in Figs S8
and S9.

Morphometric analysis

SVZ neurospheres were plated at a density of 60 neurospheres per
well onto coated glass coverslip in 24-well plates. To evaluate the
mitochondrial network in the different cell types, cells at DIVO, 2, 4,7,
and 14 were fixed with 4% PFA in PBS. Afterward, they were per-
meabilized and blocked with 0.5% Triton X-100 and 3% BSA in PBS.
Cells were then incubated with primary antibodies (anti-SOX2, anti-
GFAP, anti-DCX, anti-atau, anti-NG2/anti-PDGFRa, and anti-MBP to
identify NSCs, astrocytes, immature neurons, mature neurons,
OPCs, and oligodendrocytes, respectively) diluted in PBS with 0.1%
Triton X-100 and 0.3% BSA (wt/vol), overnight at 4°C, and then with
the corresponding secondary antibodies in PBS for 2 h at RT
(Table 1). Nuclei were stained with 1 ug/ml DAPI in PBS, followed by
mounting with Mowiol fluorescent medium. Importantly, in addition
to the differentiation process, in oligodendrocytes, the analysis was
also performed accordingly to the maturation stage because of the
clearly observed differences in the mitochondrial structure be-
tween less and more mature oligodendrocytes. The distinction
between the two types of maturation stages was based on the
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complexity of the oligodendrocyte branches. Less mature oligo-
dendrocytes presented poorly branched processes, whereas more
mature oligodendrocytes presented complex branched processes.
Mitochondrial network was identified through HSP60 staining.
Importantly, the choice of the DIVs was based on the higher
abundance of each cell type in culture. The fluorescence images
were photographed on a ZEISS Cell Observer Spinning Disk confocal
equipped with the ZEN software, using a 63x objective.

The neural cells were manually selected and then the morphom-
etric analysis was performed on the mitochondria channel. For that,
the Mitochondrial Network Analysis (MiNA) Image) macro (Valente et al,
2017) that is based on the existing Image) plug-in Skeleton was used to
evaluate the mitochondria morphology. To obtain a sharper image
with high contrast and minimal noise, the “unsharp mask,” CLAHE,
and median filters were applied together with the kernel convolution.
In differentiated cells, the values obtained were normalized to
the cytoplasmic area. A minimum of 40 cells were acquired per
condition.

Magnetic-activated cell sorting of differentiated cells

SVZ tertiary neurospheres were collected and dissociated using the
NeuroCult Chemical Dissociation Kit, as previously described. Cells
were then plated in coated dishes with 100 pg/ml PDL, in SFM
supplemented with 5 ng/ml EGF and 2.5 ng/ ml FGF-2 (low EGF/FGF-
2) at a density of 1 x 10° cells/cm? At 96 h of plating, differentiated
cells were sorted by magnetic-activated cell sorting. For that,
anti-ACSA-2 MicroBeads were used to sort astrocytes followed by
incubation with anti-O4 MicroBeads to obtain oligodendrocytes.
Finally, neurons were isolated from the ACSA-27/04" fraction by
depletion of the magnetically labeled cells using the Neuron
Isolation Kit. Then, ATP assay and respiratory assays were per-
formed in the sorted cells 96 h +3 d (day 7) and 96 h + 4 d (day 8),
respectively. In addition, cells plated only 24 h in low EGF/FGF-2
medium were used as a control population abundant in NSCs.
Moreover, cells plated for 96 h in low EGF/FGF-2 medium was
also used as a control condition representing the heterogenous
population presented before the magnetic separation. In both
controls, cells were plated for ATP and respiratory assays.
Moreover, to mimic the technical procedures to which the sorted
cells were subjected, after the dissociation of tertiary neuro-
spheres, single cells were also plated for 96 h + 3 d (day 7) in low
EGF/FGF-2 medium to perform ATP assays and for 96 h + 4 d (day
8) to do respiratory assays.

Respiratory assays

Mitochondrial respiration was evaluated by measuring the OCRs
performing the Mito Stress protocol. This experiment was per-
formed in the Seahorse Extracellular Flux (XF) 24 Analyzer (Sea-
horse Bioscience Agilent). The 24, 96, and 96 h + 4 d CTRs were
plated onto 24-well Seahorse plates at the densities of 5 x 10% 1 x
10% and 5 x 10* cells/well, respectively. Regarding the sorted cells,
astrocytes, oligodendrocytes, and neurons were seeded at the
densities of 1x 10% 1 x 10°, and 5 x 10° cells/well, respectively. The
low EGF/FGF-2 medium was replaced by the XF base medium
supplemented with 10 mM glucose, 2 mM L-glutamine, and 1 mM
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sodium pyruvate, pH 7.4. After measurements of resting respiration,
cells were treated sequentially with oligomycin (2.5 uM for controls
and 15 uM for sorted cells) to measure the nonphosphorylating
OCR, two injections of FCCP (first injection: 25 uM for the 24-h
control and 2 uM for the remaining conditions; second injection:
0.5 uM for all the conditions) to get the maximal OCR, and antimycin
Aand rotenone (1 M) to measure the extramitochondrial OCR. Each
measurement was taken over a 3-min interval followed by 3 min of
mixing and 2 min of incubation. Three measurements were taken
for the resting OCR: after oligomycin treatment, after FCCP, and after
antimycin A/rotenone treatment. OCR levels were normalized to
protein levels. Protein concentration of the samples was deter-
mined using the Pierce BCA Protein Assay Kit as described by the
manufacturer. Importantly, the %OCR was calculated by normal-
izing the raw OCR values (normalized only by protein) to the first
measured point, and then the obtained values were multiplied by
100 to express them as a percentage. This normalization is crucial to
eliminate the inherent basal respiration variability within each
replicate.

ATP content determination

To determine ATP content, a luciferase-based luminescent ATP
determination assay was used according to the manufacturer's
protocol (Abcam). ALLATP content levels were normalized to protein
levels.

Statistical analysis

Data are represented as mean + SEM or median * interquartile
range. Graphical illustrations and significance were obtained with
GraphPad Prism 9 (GraphPad). Significance was calculated as de-
scribed in each figure legend. Values of P < 0.05 were considered to
represent statistical significance.
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