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Resumo

Durante o meu doutoramento no Instituto de Medicina Molecular João Lobo Antunes

(iMM), desenvolvi aplicações web na área da transcritómica como recursos gratuitos e

de código aberto dispońıveis à comunidade cient́ıfica, que tenho melhorado e mantido

frequentemente. Estas aplicações foram constrúıdas a partir da linguagem de pro-

gramação R com elementos gráficos baseados em Shiny, um pacote de R para criar

aplicações web, e estão alojados no Bioconductor, um repositório de pacotes de R para

análise de dados biológicos.

psichomics

O splicing alternativo é um mecanismo molecular que permite gerar vários transcritos

funcionais a partir do mesmo gene e está envolvido no controlo de múltiplos processos

celulares, sendo a sua desregulação associada a várias patologias. A sua relevância

biológica e os avanços na tecnologia de sequenciação de RNA têm levado a um maior

interesse no seu estudo e na publicação de dados de splicing alternativo [1–5]. Este

tipo de dados tem sido disponibilizado em acesso livre por vários projectos cient́ıficos,

incluindo o The Cancer Genome Atlas (TCGA), que cataloga dados cĺınicos e molecu-

lares de múltiplos tumores humanos [6]; o Genotype-Tissue Expression (GTEx), que se

foca em dados de múltiplos tecidos humanos normais [7]; e o recount2, que processou

dados de mais de 2000 estudos oriundos do Sequence Read Archive (SRA) [8].

A utilização dos dados pré-processados provenientes destes projectos evita o arma-

zenamento e processamento dos ficheiros com dados de sequenciação em bruto, facili-

tando a análise de expressão génica e splicing alternativo ao poupar tempo e recursos

computacionais dispendiosos no processamento de dados. Também é importante notar

que dados humanos não processados podem ter acesso limitado e requerer um pedido

de autorização para acesso total por razões de privacidade dos dadores. No entanto, até

2018, nenhuma ferramenta permitia realizar uma análise diferencial de splicing alter-

nativo com base em dados transcritómicos pré-processados descarregados destas fontes

públicas e com agrupamento das amostras a partir dos seus metadados.

Assim, desenvolvi a ferramenta psichomics para quantificar, analisar e visualizar

splicing alternativo, inicialmente a partir de dados pré-processados provenientes do
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TCGA [6]. Através da sua interface gráfica intuitiva ou da linha de comandos em

R, o psichomics permite ao utilizador realizar análises de splicing e expressão diferen-

cial, de componentes principais, e de sobrevivência com incorporação de caracteŕısticas

moleculares e cĺınicas das amostras consideradas.

Durante o meu doutoramento, a versão original do psichomics foi melhorada de

forma a descarregar e processar dados de fontes adicionais – incluindo do GTEx [7],

do recount2 [8] e provenientes do utilizador –, analisar expressão génica e quantificar

splicing alternativo para 14 espécies diferentes, entre outras novidades.

Após a publicação do artigo relativo ao psichomics em 2018 [9], fomos convidados

a escrever um caṕıtulo de métodos no livro Stem Cell Transcriptional Networks, publi-

cado em 2020, no qual exemplificamos a utilização do psichomics para analisar splicing

alternativo no contexto de células estaminais humanas [10]. Desde a sua publicação, o

psichomics foi usado em projectos associados a vários artigos cient́ıficos [11–14]. Acre-

ditamos que estas citações, juntamente com os comentários positivos que temos vindo

a receber dos utilizadores, demonstram que vários investigadores conseguiram usufruir

do psichomics para os auxiliar na descoberta de factores de prognóstico e alvos te-

rapêuticos associados a splicing, assim como no avanço do nosso conhecimento sobre

como o splicing alternativo é regulado em contextos fisiológico e de doença.

cTRAP

O Connectivity Map (CMap) é um repositório público de assinaturas transcritómicas

de centenas de perturbações genéticas e farmacológicas de linhas celulares de cancro

humanas [15]. Ao comparar alterações de expressão génica com os do CMap, podemos

inferir potenciais causas moleculares para as diferenças observadas e compostos que

possam promover ou reverter essas alterações.

O CMap and LINCS Unified Environment (clue.io) foi desenvolvido como um con-

junto de ferramentas intuitivas para explorar os dados do CMap e integrá-los com

dados disponibilizados pelo utilizador [15]. No entanto, o clue.io limita o número

máximo de genes considerados para comparar com o CMap, expressa os resultados

através de um valor de significância não convencional (e, portanto, de interpretação

não imediata), é dif́ıcil de automatizar para análises subsequentes e não permite uti-

lizar recursos computacionais locais. Além disso, o clue.io não permite actualmente

integrar dados de sensibilidade aos compostos, que podem auxiliar na identificação de

compostos que afectem apenas células espećıficas e que tenham genes espećıficos como

alvos moleculares.

Para colmatar estas lacunas, desenvolvemos o cTRAP para identificar perturbações

moleculares causais potenciais ao comparar resultados de expressão génica diferencial

providenciados pelo utilizador com os do CMap, assim como prever compostos que
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promovam ou revertam as diferenças observadas. O cTRAP também permite comparar

aqueles resultados com associações entre expressão génica e sensibilidade aos compostos

derivados do NCI-60 [16], do Cancer Therapeutics Response Portal (CTRP) [17] e

do Genomics of Drug Sensitivity in Cancer (GDSC) [18], para identificar compostos

que podem alvejar os fenótipos associados com os perfis de expressão diferencial do

utilizador. Inclui também uma análise similar à do Gene-Set Enrichment Analysis

(GSEA) [19] para identificar o enriquecimento de descritores moleculares nos compostos

do NCI-60 e do CMap de interesse. No cTRAP, a similaridade entre resultados de

expressão diferencial do utilizador e do CMap baseia-se no enriquecimento dos genes

mais e menos expressos do fenótipo observado [15,19] e nos valores de correlação entre

estat́ısticas de expressão diferencial.

O manuscrito associado ao cTRAP (do qual eu sou co-primeiro autor e autor co-

correspondente) encontra-se em preparação para submissão a uma revista cient́ıfica

peer-reviewed internacional. Esperamos que o cTRAP permita aos seus utilizadores

identificar perturbações moleculares responsáveis pelos fenótipos em estudo para me-

lhor compreensão dos mecanismos biológicos associados, tal como prever agentes te-

rapêuticos relevantes.

CompBio: servidor de aplicações web

As interfaces gráficas do psichomics e cTRAP auxiliam os utilizadores a explorar a

maioria das funções dos respectivos programas de forma interactiva através de passos

simples, demonstrados em tutoriais online, que são, tal como as próprias ferramentas,

actualizados frequentemente mediante o parecer dos utilizadores.

No entanto, os tradicionais canais de distribuição de pacotes de R, que usamos

para distribuir o psichomics e o cTRAP (como o CRAN e o Bioconductor), podem

ser dissuasores para quem não se sentir confortável a usar a linha de comandos do R.

Assim, procurei formas alternativas de disponibilizar as nossas aplicações, até encontrar

o ShinyProxy, um programa de código aberto para hospedar aplicações R/Shiny e

Python como aplicações web através de instâncias (containers) de Docker.

Com o ShinyProxy, é necessário um servidor para correr as suas aplicações em tempo

real. Dessa forma, para disponibilizar as ferramentas de forma gratuita e acesśıvel,

dependendo apenas de navegadores de Internet modernos, criámos o servidor CompBio

para alojar o psichomics, o cTRAP e diversos outros pacotes de R como aplicações web –

incluindo programas constrúıdos pelos meus colegas de laboratório (voyAGEr, betAS

e scStudio). O projecto CompBio está actualmente a correr numa máquina virtual

Linux no cluster de computação do iMM.

O coração deste projecto é o Docker Compose, um programa que permite gerir

múltiplos serviços em simultâneo que correm a partir de imagens Docker e que inte-

vi



ragem entre si, incluindo o ShinyProxy, um proxy reverso para gerir os pedidos dos

utilizadores (Nginx) e programas para correr processos em segundo plano (Celery,

Redis e Flower), analisar o tráfego dos visitantes do website (Plausible, PostgreSQL e

ClickHouse), monitorar recursos computacionais em utilização (Prometheus e Grafana)

e facilitar o desenvolvimento (RStudio Web para testar e desenvolver soluções directa-

mente no servidor).

Todo o código deste projecto está publicamente dispońıvel em github.com/nuno-

agostinho/compbio-app-server, é de fácil configuração e pode ser facilmente migrado

para qualquer máquina, dependo apenas da instalação da plataforma Docker. Para

adicionar novas aplicações ao projecto, basta editar as definições do ShinyProxy num

ficheiro de texto e disponibilizar a respectiva imagem Docker localmente no servidor ou

no repositório Docker Hub. A manutenção do projecto também é fácil, dado que basta

actualizar a versão das imagens Docker usadas no projecto e reiniciar esses serviços

com o Docker Compose.

Quero aproveitar este momento para sugerir uma pausa para sentar e relaxar, para

deambular pelo nosso website em compbio.imm.medicina.ulisboa.pt, para acordar as

aplicações web que ali pernoitam e para desfrutar da viagem. A página principal é

uma galeria de trabalho do nosso laboratório, trabalho que tenho um tremendo orgu-

lho em apoiar.

Palavras-chave: bioinformática, aplicações web, splicing alternativo, expressão

génica, perturbações genéticas e farmacológicas.
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Summary

During my PhD at Instituto de Medicina Molecular João Lobo Antunes (iMM), I

developed web apps for transcriptomic data analyses as free, open-source resources

and an app server to deploy them.

psichomics

Alternative pre-mRNA splicing generates functionally distinct transcripts from the

same gene and is involved in the control of multiple cellular processes, with its dys-

regulation being linked to a variety of pathologies. The advent of next-generation

sequencing has enabled global studies of alternative splicing in different physiologic

and pathologic contexts. However, bioinformatics tools for alternative splicing analysis

from RNA-seq data used to be user-unfriendly, disregard available exon-exon junction

quantification or have limited downstream analysis features.

To overcome such limitations, we developed psichomics, an R package with an intu-

itive graphical interface for alternative splicing quantification and integrative analy-

ses of alternative splicing and gene expression from large transcriptomic datasets,

including those from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Ex-

pression (GTEx) project, and the recount2 project, as well as user-provided data.

psichomics assists the user in integrating sample-associated features (molecular and

clinical) to perform survival, dimensionality reduction, and differential alternative

splicing and gene expression analyses. Since its publication in 2018, psichomics has

been used to discover splicing-associated prognostic factors and therapeutic targets,

along with studying alternative splicing regulation in physiological and pathological

contexts.

cTRAP

The Connectivity Map (CMap) hosts differential expression profiles associated with

thousands of genetic and pharmacologic perturbations (perturbagens) of human cells.

We developed the cTRAP R package to identify potentially causal molecular perturba-

tions by comparing user-provided differential gene expression results with those from
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CMap, using correlation and gene set enrichment scores. cTRAP can also compare

against gene expression/drug sensitivity associations derived from the NCI-60 cancer

cell line panel, the Cancer Therapeutics Response Portal and the Genomics of Drug

Sensitivity in Cancer project, to pinpoint compounds that may target the phenotypes

associated with the user-provided differential expression profiles. We envisage cTRAP

allowing users to identify putative causal perturbations to better understand the mo-

lecular mechanisms associated with the observed phenotypes, as well as to predict

therapeutic targets.

CompBio app server

Both psichomics and cTRAP feature graphical interfaces to assist users in exploring

most of their functionality. We set up the CompBio app server based on Docker Com-

pose to deploy our lab’s web apps, publicly available at compbio.imm.medicina.ulisboa.

pt.

Keywords: bioinformatics, web apps, alternative splicing, gene expression, per-

turbagens.
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Preface

There once was a boy who decided to take on a life-changing quest, an adventure where

he had to climb the tallest of the mountains and dive into the deepest of the oceans.

Although the end goal was not always clear in his mind, his heart was set: he would

carry on and stand against everything in his path.

As the boy marched on, he saw a big old pyramid in the far-off distance. Hours

and hours went by, yet they seemed to pass in a blink of his eyes. Deep inside the

pyramid, within a dark room dimly lit by the weakling flame of a nearby torch, there

was a beautiful door featuring a green-jade scarab beetle with its open wings made of

a rainbow of precious gems. Above the beetle’s raised forelegs laid a gold-carved sun.

Although its façade was beautiful, the door was covered in centuries-old dust and its

handle has long since forgotten the warm touch of a hand. The boy took a deep breath

and opened the door.

Upon entering, he stood inside a big room with a very high ceiling and marvelling

hieroglyphs feasting the walls. He was sure it was the finest Egyptian code he has ever

seen. As he continued down the room, he started hearing some noises, noises which

kept getting closer and closer, like if he was being followed. He quickly turned around.

Nothing but darkness. He was alone as far as his eyes could see, yet the noise kept

getting closer and closer. Suddenly, the boy looked up and saw countless bugs crawling

from cracks above between the hieroglyphs. From one moment to the next, the bugs

started swarming him. At first, the boy picked up his sword, swinged it around and

tried to deal with all of the bugs, but they started fighting back, eating his patience,

his time, his mind. The boy finally decided to simply run away and deal only with the

bugs standing between him and the exit. After a tiresome challenge, the boy was able

to finally run away from the bug-ridden hell. The boy learned that – no matter the

time squatting each pesky bug – as long as there is code, there will be bugs.

After many days walking, he entered a big forest where the bushes stood like walls,

creating a series of concurrent corridors that lead to different paths. The boy had to

continuously decide which corridor to follow, but each decision seemed to him like a

bad turn, no matter how right he was. He entered a labyrinth of decisions, where time

kept running and running, whether he chose the right paths, the wrong ones or simply

stood still wondering which paths to choose. As time went by, he started dashing, and
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running, and sprinting in the maze, going back and forth through its branches. After

a while, he found an exit for that decision-ridden hell. In the end, he learned to deal

with the decisions of his past self: to learn from the bad ones and to smile at the good

ones. No matter how much he wanted to go back in time, time always carries on and

so should he.

As he continued his journey, he saw a small house in the distance. Starved and

tired, he entered the house hoping to have some days to put himself together. Inside,

there was a single, almost naked room with mirrors all around the walls. In the middle,

a big mirror covered by a linen sheet. The boy got closer to the mirror and removed its

cover. A quick glance in the mirror was enough to reveal the boy’s reflection and inner

thoughts: his fears, his anxieties, his insecurities. The boy stepped back, afraid of his

own image. After all he went through, the boy was fuelled by his negative thoughts. He

lowly murmured that there would be no end to his quest, that he would never achieve

his goal – for how does one find something when not even knowing what to look for?

Amidst his mournful inner monologue, he heard peaceful voices comforting him. He

looked again into the mirror and realised he was not alone, for he knew that many

souls that helped him in his path were always there to cheer with him. The burden of

this quest was his alone, but that did not mean that he couldn’t walk tall aside others.

So he ignored his own pessimistic thoughts and continued through his path with the

hope of listening to the voices of those he loved once more.

Four years after his first step into this quest, the journey is now coming to an end.

His tale ends as many others have: writing his story for others to learn from his past

mistakes and glories. And by telling his story, by sharing his experience, by helping

other travellers going through his former hurdles, he hopes to contribute to a better

world, even if only by a little. The next door he opens will lead to new adventures,

but the boy has now learned that no matter the challenges he faces, he will always be

welcome in the arms of the ones he loves.
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Chapter 1

Introduction

1.1 The origin of life

To follow my work, we have to rewind back some years ago. Millions and millions of

years ago. Once upon a time there was a violent, harsh and unwelcoming planet among

countless others. Earth was lifeless. But as millions of years went by, it started being

home to a complex recipe whose special sauce is still being studied to this day: the

primordial soup [20]. These were the perfect conditions for a young, 500-million-year-

old planet to brew life [21,22].

And what is life? Although this question is not easy to answer, living organisms as

we know them are complex, carbon-based systems composed of nucleic acids, proteins,

carbohydrates and lipids. Together with some smaller molecules, these are known as

biomolecules and are crucial for the survival of living organisms [23].

Amongst those biomolecules, my work focuses on two: proteins and nucleic acids.

Proteins have many important functions in an organism, including catalysing chemical

reactions (enzymes), signalling cellular processes (hormones) and playing a role in the

immune system (antigens) [23]. Regarding nucleic acids, deoxyribonucleic acid (DNA)

stores the genetic data, the blueprint required to generate many of the molecules in the

cell, including ribonucleic acid (RNA) molecules for protein synthesis and regulation

[23].

One possibility for the origin of life is based on the RNA world, an hypothesis

that states that primitive life forms were based on self-replicating RNA that predates

DNA and proteins in evolution [20,23,24]. After all, those RNA molecules could store

genetic information like DNA and catalyse chemical reactions akin to enzymes, making

RNA a prime candidate for life to take its first steps. As life evolved, these specific

RNAs catalysing and storing functions may have been overtaken by protein enzymes

that were more effective as reaction catalysers, and DNA, a more stable and less error-

prone nucleic acid to store genetic information [20,23].
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1.2 Nucleic acids and protein synthesis

The word protein was first used in a publication by Gerardus Mulder in 1838, following

the suggestion by his colleague Jöns Berzelius. In his publication almost two centuries

apart from today, Mulder reported the chemical compounds of les substances les plus

essentielles du règne animal: la fibrine, l’albumine et la gélatine [25]. To refer to these

substances, Mulder named these words protein based on a Greek adjective that means

of the first rank or position, reflecting the perceived importance of those molecules

[25,26].

Some decades later in 1869, Friedrich Miescher isolated a mysterious, protein-like

substance from the pus of fresh surgical bandages that he named nuclein, found to be

present in the cell nucleus of diverse animals, plants and fungi. Miescher’s work led him

to believe that increased nuclein could be associated with the first stages of cell division

in proliferating tissues [27]. Albrecht Kossel (a former professor of Miescher) and

colleagues described 5 organic compounds from nuclein: adenine, cytosine, guanine,

thymine, and uracil [28–31]. Nuclein was eventually renamed nucleic acid, but its

importance was not recognised at the time [27].

In the first decades of the 20th century, the scientific consensus was that proteins

carried genetic information, but Boveri and Sutton theorised otherwise [27,32]:

the association of paternal and maternal chromosomes in pairs and their

subsequent separation during the reducing division (...) may constitute the

physical basis of the Mendelian law of heredity. ( [32])

Figure 1.1: Thomas Mor-
gan’s fruit fly experi-
ments. Public domain image
from Wellcome Library, Lon-
don.

The Boveri-Sutton chromosome theory of genetic in-

heritance followed Mendel’s work from 1865 [32] and was

later supported by fruit fly experiments from an initially

skeptical Thomas Morgan [33]. In 1915, Thomas Mor-

gan, Hermann Muller and colleagues published a text-

book with their findings describing genetic dominance,

sex inheritance and chromosomal crossover. One chapter

was interestingly titled The Chromosomes as Bearers of

Hereditary Material [33]. In 1927, Hermann Muller dis-

cussed that exposure of fruit flies to X-ray radiation in-

duced hundreds of genetic mutations, greatly contribut-

ing to the study of genetic mutations and evolution [34]1.

1Muller’s 1927 Science paper [34] that earned him the Nobel prize was not peer-reviewed, cited
no references and lacked the methods section [35]. This may have happened not only because Muller
wanted to be the first to share his hypothesis, but also because he agreed with the criticism by
his long-time friend Edgar Alternburg, who believed his data were not strong enough to confirm
the induction of mutations [35]. It would take until 1930 for Muller to publish results addressing
Altenburg’s criticism, although Muller was aware of the issues before 1927 [35].
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At the time, nucleic acids were classified as thymus nucleic acid found in animals

(specially enriched in the thymus, hence its name) and yeast nucleic acid found in

plants2. However, in 1933, Jean Brachet found evidence of thymus nucleic acid in

the cell nucleus and of yeast nucleic acid in the cytoplasm of eukaryotic cells. His

work suggested that both types of nucleic acids were present in the same cell with

potentially different roles. During the 1930s, Phoebus Levene identified the phosphate

backbone of nucleic acids, including its pentose sugars (deoxyribose and ribose) [39],

which inspired their contemporary nomenclature: thymus nucleic acid is now known

as deoxyribonucleic acid (DNA) and yeast nucleic acid as ribonucleic acid (RNA).

Although the word gene was used since 1909 to abstractly refer to Mendelian factors

of inheritance (i.e., the units of heredity) [40], Demerec tried to define it in his 1933

publication, What is a Gene?, alongside a figure of the tentative structure of thymus

nucleic acids (DNA):

(...) [A gene] is a minute organic particle, capable of reproduction, loc-

ated in a chromosome and responsible for the transmission of a hereditary

characteristic. ( [41])

Later in 1941, Edward Tatum and George Beadle hypothesised that each gene is

responsible for producing a specific enzyme and demonstrated that radiation-induced

mutations could alter the resulting enzyme [42]. Together with Joshua Lederberg,

Tatum demonstrated in 1946 that bacteria can exchange genetic material in a process

called genetic recombination [43].

In 1952, Alfred Hershey and Martha Chase demonstrated that during viral infec-

tion by bacteriophage T2, its DNA, but not any viral protein, enters inside the bac-

teria [44]. The viral DNA is enough to produce the DNA molecules found in progeny

virus particles. Amid the contemporary belief that proteins were the carriers of heredi-

tary information, the Hershey-Chase experiment complemented previous publications

suggesting that that role belonged to DNA [44].

The work by Rosalind Franklin and Maurice Wilkins on analysing DNA using X-ray

crystallography was crucial to the discovery of DNA’s double helix structure, published

in 1953 by Francis Crick and James Watson [45]. DNA is composed by two phosphate-

sugar chains linked together via hydrogen bonds by pairs of nucleotides: adenine pairs

with thymine and cytosine with guanine. Crick and Watson also proposed that this

strand complementarity could be important for DNA replication [45]. Afterwards,

2Yeast nucleic acid was so named since first extracted from yeasts, considered from the plant
kingdom by most scientists at the time. Starting with Ernst Haeckel in 1878, alternative proposed
systems clumped fungi together with unicellular organisms instead (kingdoms of Protoctista, Protista,
etc.) [36]. In 1959, Robert Whitakker suggested a fungi kingdom amid three others [37], a proposal
that later blossomed into his popular five-kingdom classification system published in 1969 [38]. In his
1969 article, Whittaker explains why fungi should not be considered plants to his fellow peers.
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Arthur Kornberg observed the proposed nucleotide pairing in DNA synthesised by

an enzyme that replicates DNA using one of its strands as a template: the DNA

polymerase [46].

Figure 1.2: Figure drafts for a manu-
script on DNA structure from Francis
Crick and James Watson. Public domain
image from Wellcome Library, London.

During a time when not all scientists

agreed that nucleic acids played a role in pro-

tein synthesis, George Palade described in

1955 the ribosome as a small particulate com-

ponent of the cytoplasm that associates with

RNA in the endoplasmic reticulum membrane

to perform protein synthesis [47, 48]. The as-

sociated RNA was identified as of two types:

ribosomal RNA (rRNA) that composed the ri-

bosome itself and soluble RNA – transfer RNA

(tRNA) –, found to carry the amino acids for

protein synthesis [48, 49]. Multiple ribosomes

were found to bind to a single RNA molecule

(polysomes), allowing for parallelised protein

synthesis [50].

Figure 1.3: Central dogma
of molecular biology as draf-
ted by Francis Crick. Public do-
main image from Wellcome Lib-
rary, London.

Piece by piece, the role of DNA and RNA in pro-

tein synthesis was becoming clearer. Francis Crick

proposed in 1958 that the genetic information flows

from DNA to protein via RNA: the central dogma of

molecular biology [51, 52]. It was also hypothesised

at that time that triplets (codons) of the four nucle-

otides found in nucleic acids were necessary to produce

each of the 20 universally-found types of amino acids

that compose a protein [51, 53] and that those amino

acids would be responsible for the protein’s three-

dimensional structure – and consequently, its function-

ality [51]. It took less than a decade to unravel which

codons code for which aminoacid, an important break-

through that allowed to predict protein sequences from DNA and RNA via the so-called

universal genetic code [54, 55]. In 1959 and 1960, DNA-dependent RNA polymerase,

an enzyme that synthesises RNA from DNA and common to all living organisms, was

independently described by the labs of Samuel Weiss, Jerard Hurwitz and Audrey

Stevens [56–58] 3.

3In 1955, Severo Ochoa and Marianne Grunberg-Manago discovered the polynucleotide phos-
phorylase (PNPase) enzyme that they thought to synthesise RNA polymers from DNA [59]. Ochoa
was erroneously awarded a Nobel prize in 1959 for discovering the biological mechanism of RNA
synthesis.
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François Jacob and Jacques Monod speculated in 1961 that ribosomal protein syn-

thesis required an intermediate molecule with the template message to convert from

DNA to protein and that would act as the messenger [48, 60]. Unlike many of their

contemporaries, they dismissed the known rRNA (and tRNA) molecules as the tem-

plate for protein synthesis, given that they did not reflect the base composition of

DNA, among other properties [48]. Based on contemporary experiments, Jacob and

Monod proposed unstable RNA molecules as relevant candidates and named them mes-

senger RNA (mRNA) [48, 60]. Making the distinction between structural genes and

other, functionally specialized, genetic determinants, Jacob and Monod also discussed

the induced activation of repressors in mRNA synthesis [48].

In the 1969 publication entitled Gene Regulation for Higher Cells: A Theory, Roy

Britten and Eric Davidson proposed that:

Cell differentiation is based almost certainly on the regulation of gene activ-

ity, so that for each state of differentiation a certain set of genes is active

in transcription and other genes are inactive. ( [61])

Among the first ideas of its kind, Britten and Davidson theorised about the intricate

networks of gene regulation as fine-tuned systems in higher organisms based on the

redundancy of different genomic elements and feedback loops. As they wrote, large

genome sizes do not imply an increase in the number of genes compared to smaller

genomes, but rather an increase in regulation complexity: a large amount of DNA

[including repeated DNA sequences] could be devoted to regulatory function, for instance

by sequence-specific binding of RNA from another gene [61].

In the beginning of the 1970s, the first studies on RNA processing were published.

At the time, two types of RNA were distinguished inside the nucleus: ribosomal pre-

cursor RNA molecules that yield cytoplasmic rRNA and heterogeneous nuclear RNA

(hnRNA) whose composition resembles that of DNA [62]. Polyadenylic acid (polyA)

sequences ranging from 150 to 250 nucleotides were found to be added to the 3′ end of

hnRNAs and cytoplasmic mRNAs, the first sign of eukaryotic RNA processing [62,63].

James Darnell and colleagues thus proposed that hnRNAs and cytoplasmic mRNAs

were related: the polyA sequence is added to hnRNAs post-transcriptionally in order

to enable the export of nuclear RNAs to the cytoplasm, which are later found to be

associated with ribosomes for protein synthesis [62,63]. Later in 1974, the addition of a

5′-methylated cap was found in hnRNA and cytoplasmic mRNA and was proposed as

an eukaryotic post-transcriptional RNA modification that protects the 5′-end of RNAs

from degradation enzymes [64,65].
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1.2.1 Alternative splicing

First reported in mammalian cells infected with human adenovirus 2 [66,67] and later

observed in endogenous mammalian and eukaryotic genes [68, 69], mRNA-DNA hy-

bridisation experiments starting in 1977 suggested that genes are composed by in-

tervening non-coding sequences, based on experiments from Richard Roberts, Philip

Sharp and colleagues. During or after transcription of the precursor mRNA (pre-

mRNA), a process called splicing is responsible for excising segments of the pre-

mRNA (named introns), leaving behind the sequences required for protein synthesis

(exons) [66, 67, 70]. Moreover, multiple different transcripts may be produced from

the same primary transcript by alternative splicing of segments of their sequence, thus

promoting transcriptome diversity [66,67,71–73].

In 1985, an RNA-protein complex composed by the so-called U1, U2, U4, U5 and

U6 small nuclear ribonucleoproteins (snRNPs) was reported to be central for RNA

splicing: the spliceosome [75]. The spliceosome recognises splice sites (conserved se-

quences located at the 5′ and 3′ ends of an intron) and the branch point sequence and

polypyrimidine tract (located just upstream of the intron’s 3′ end) [76,77]. The spliceo-

some then catalyses the excision of introns from pre-mRNA in two transesterification

steps: (1) the 5′ end of the intron is cleaved and united to the conserved adenosine in

the branch point sequence, forming an intermediary intron lariat, and then (2) the 3′

end of the intron is cleaved, releasing the intron lariat, and the two flanking exons are

ligated (Figure 1.4) [75, 78, 79]. The intron lariat is debranched (i.e., converted to a

linear form) before its degradation [78,80].

Figure 1.4: Spliceosome assembly and splicing reactions. (1) U1 snRNP binds to
the 5′ splice site (5′ss), whereas the splicing factor 1 (SF1) and U2AF proteins bind to the
branch point site (BPS), the polypyrimidine tract (PPT), and 3′ splice site (3′ss). The
interaction between U1 and U2 snRNPs results in the formation of the pre-spliceosome. (2)
The first splicing reaction is performed after the recruitment of the U4/5/6 snRNPs through
a nucleophilic attack from the adenosine in the BPS to the 5′ss of the upstream exon. (3)
The intron lariat is then formed. The free 3′ hydroxyl group performs a nucleophilic attack
to the phosphate of the 3′ splice site of the downstream exon. (4) Finally, the intron lariat is
released and both exons are ligated. Image created by me for [74] (adapted).
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However, not all introns require the presence of the spliceosome to be spliced

out. During the 1980s, Thomas Cech identified rRNAs that underwent self-splicing

by breaking and forming covalent bonds with no associated proteins [81], whereas

Sidney Altman identified that the RNA subunit of a complex of proteins and RNAs

(ribonulceoprotein complex) was essential for tRNA splicing and was able to cleave

tRNAs in the total absence of proteins [82]. These RNAs with enzyme-like proteins

were named ribozymes and they may have been a paramount mechanism that conferred

evolutionary flexibility in life forms of yore, one of the pillars that originated the RNA

world hypothesis [20, 81]. From fungi to plants and vertebrates, many spliced genes

across eukaryotic organisms share consensus sequences at their branch point, as well

as their 5′ and 3′ splice sites, potentially making splicing one of the first molecular

catalysts that appeared in living beings [24]. Interestingly, primary transcripts from

yeast can be spliced with the mammalian splicing machinery [24].

By 1989, it was known that alternative splicing is differentially regulated across

cell types, development stages and tissues in eukaryotes, i.e., the same gene can lead

to different, context-dependent spliced transcripts [83]. This regulation occurs via the

interplay between trans-acting factors – RNA-binding proteins (RBPs) – and the cis-

acting sequence elements to which they bind to, promoting or repressing the inclusion

of alternative sequences [83]. Multiple types of alternative splicing have also been

described, including skipped exons, mutually exclusive exons, alternative 5′ and 3′

splice sites, alternative first and last exons and intron retention [83].

Among other molecular mechanisms, alternative splicing made clear that an or-

ganism complexity is not limited to the genome size or the number of protein-coding

genes [84]. After all, the Australian lungfish (Neoceratodus forsteri) is the animal with

the largest haploid genome size (44 000 million base pairs), 14 times larger than that

of humans (3 000 million base pairs) and 244 times larger than the fruit fly Drosophila

melanogaster (180 million base pairs) [85–87]. And yet, their genomes harbour 31 000,

20 000 and 14 000 protein-coding genes, respectively, numbers in the same order of

magnitude, whereas the remaining genomes of these species are composed of inter-

genic regions and introns with high repeat content [85–87]. Notably, 38 000 alternative

transcripts may be generated from a single gene in the fruit fly (Dscam): some of those

transcripts are suggested to play a role in the immune system and may lead to more

antigen diversity, thus increasing the evolutionary flexibility of the fruit fly [73].

Alternative splicing is deregulated in multiple disease contexts, including cancer,

neurodegeneration and muscular dystrophies [74,88]. For instance, changes in splicing

factors and subsequent perturbations to splicing can affect multiple hallmarks of cancer

[89]. Therefore, multiple potential splicing-targeting therapies have been developed

based on antisense oligonucleotides, small molecules and novel techniques [88].
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1.3 Bioinformatics

Bioinformatics is a multidisciplinary field based on the usage and development of com-

puter programs to analyse large-scale biological data [90]. The first bioinformatic

analyses were performed on proteins. Following Sanger’s work in 1959 on identify-

ing the amino-acid composition of protein insulin in multiple species, many proteins

started being sequenced [90–93]. Pointing to such studies, Crick predicted in 1958:

Biologists should realize that before long we shall have a subject which

might be called ’protein taxonomy’ - the study of the amino acid sequences

of the proteins of an organism and the comparison of them between species.

( [51])

For that to come to fruition, there was a need to sequence many more proteins from

different species. A technique known as Edman degradation was popularly used at the

time to sequence proteins: the amino acids were identified by chemically fragmenting

the protein, identifying the first 50-60 amino acids of each fragment. Afterwards, the

full protein sequence is reconstructed based on its overlapping fragments, a long and

tedious process performed by hand [90, 94]. All these limitations meant that only 6

different proteins were fully sequenced by 1962 [95]. To overcome those difficulties in the

reconstruction step, Margaret Dayhoff and Robert Ledley developed COMPROTEIN,

the first bioinformatics program [90, 95]. COMPROTEIN allows to compare a high

number of small peptide fragments and suggests possible full protein sequences [95].

By 1965, the number of published protein sequences grew up to 65 and were published

by Dayhoff in the first protein database, otherwise known as the book entitled Atlas

of Protein Sequence and Structure [96].

In 1963, Linus Pauling and Emile Zuckerkandl discussed that cross-species com-

parative analysis of protein sequences could help determine the original protein se-

quence of their common ancestor and measure the evolutionary distance of the se-

quence of each species to that of their common ancestor [97]. However, these protein

comparison methods were performed by hand, which meant that they were only prac-

tical for closely-related proteins such as homologs from different mammals [90]. Since

1970, computer-assisted phylogenetics started being a reality with the introduction

of the Needleman-Wunsch algorithm [98] and variants, such as the Smith-Waterman

algorithm [99]. These programs computationally measure the distance between two

sequences by pair-wise comparison of amino acids between protein sequences [98, 99].

Years after automatic protein sequencing machines being available based on Edman

degradation – protein sequenators as first called in 1967 [100] –, DNA sequencing

methods were presented based on electrophoresis: the enzymatic Sanger method (also

known as dideoxy method) [101] and the chemical degradation method Maxam-Gilbert
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sequencing [102]. These tedious and slow processes required manual intervention at both

the experimental and interpretative levels [103].

Figure 1.5: Applied Biosystems
DNA sequencer prototype. Pub-
lic domain image from Science Mu-
seum Group Collection, London.

Leroy Hood and Lloyd Smith published in 1987

a report on an instrument to automate the experi-

mental procedure based on the Sanger method fol-

lowed by computer analysis to determine the se-

quence of DNA fragments (i.e., base calling): the

Applied Biosystems DNA sequencer, the first com-

mercialised automated machine to sequence DNA

(Figure 1.5) [103]. Their article also discusses ex-

perimental issues with sequencing repetitive DNA

regions, storing and sharing the big amount of

data produced in the following years in data banks,

as well as the algorithms required to quickly re-

trieve sequence from those databases – obstacles

that impaired large-scale DNA sequencing, specially of the whole human genome [103].

Later, the advent of Next-Generation Sequencers (NGS) allowed the massive paral-

lel sequencing of nucleic acids. These techniques use alternative methods to Sanger

sequencing to efficiently sequence DNA or RNA fragments simultaneously.

As the techniques to retrieve biological data were optimised, more and more data

started being generated and published in public databases such as the Protein Data

Bank [104] and GenBank [105]. Computers were no longer optional to survive the

tsunami of biological data and new popular bioinformatic algorithms started to emerge.

Figure 1.6: Human genome pro-
ject bookcase. More than a hun-
dred volumes contain the printed hu-
man genome sequence located in the
Wellcome Collection, London. Public
domain image from Wikipedia.

More advanced sequence aligners, such as

CLUSTAL in 1988, efficiently allowed to align

multiple sequences of amino acids or nucleotides

from pairwise sequences [106]. In 1990, BLAST

was presented as an efficient algorithm to quickly

compare a DNA or protein sequence against the

ever-increasing number of molecular sequences

from biological databases [107].

In 1995, the first complete sequence of a free-

living organism was published for bacterium H.

influenzae [108]. From 1996 to 2000, the whole

genomes of multiple organisms were sequenced, in-

cluding for yeast S. cerevisiae [109], nematode C.

elegans [110], fruit fly D. melanogaster [86, 87],

and plant A. thaliana [111]. In 2004, the Human

Genome project was considered finished with its
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goal of publishing the human haploid genome sequence to the scientific community

(Figure 1.6), leaving 8% to be determined due to technical limitations [112,113]. Many

advantages flow from sequencing whole genomes, specially the near complete human

genome:

It allows systematic searches for the causes of disease – for example, to

find all key heritable factors predisposing to diabetes or somatic mutations

underlying breast cancer – with confidence that little can escape detec-

tion. It facilitates experimental tools to recognize cellular components –

for example, detectors for mRNAs based on specific oligonucleotide probes

or mass-spectrometric identification of proteins based on specific peptide

sequences – with confidence that these features provide a unique signature.

It allows sophisticated computational analyses – for example, to study ge-

nome structure and evolution – with confidence that subtle results will not

be swamped or swayed by noisy data. At a practical level, it eliminates

tedious confirmatory work by researchers, who can now rely on highly ac-

curate information. At a conceptual level, the near-complete picture makes

it reasonable for the first time to contemplate systems approaches to cellular

circuitry, without fear that major components are missing. ( [112])

More recently, the Telomere-to-Telomere (T2T) consortium exploited current long-

read sequencing (third-generation sequencing), along with other sequencing technolo-

gies, in order to fully unravel the gapless assembly of the human genome sequence for

use in biomedical research [113] 4.

1.3.1 Transcriptomics

The term omics encompasses all fields in life sciences that analyse large-scale data to

better understand the molecular world [114]. The first word using the -omics suffix

dates back to a 1986 conference meeting among peers and beers. While discussing the

name for a new journal intended to include sequencing data, gene mapping and new

genetic technologies, Thomas Roderick proposed a name to illustrate a new way of

thinking about biology : genomics [114, 115]. The genomics field is concerned with the

study and cross-species comparison of genomes [115].

In the same vein, transcriptomics is the field that studies the transcriptome: the full

set of RNA transcripts5, as first defined in 1996 [116]. Transcriptomics usually leverages

4Although the most recent T2T pre-print manuscript from 2021 describes ongoing work for the
missing chromosome Y [113], the latest assembly published in 24 January 2022 (CHM13 T2T v2.0)
includes the full human genome sequencing: ncbi.nlm.nih.gov/assembly/GCA_009914755.4.

5Depending on the context, the term transcriptome may exclusively refer to the study of mRNA
transcripts instead of all RNA transcripts.
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data generated from high-throughput technologies that allow to simultaneously analyse

the expression of multiple RNAs. Diverse technologies have been proposed for the

large-scale study of transcripts since the 1990s, including:

• Expressed Sequence Tags (EST): proposed in 1991 as a pilot experiment to

focus on the genes identified as expressed via the Human Genome project [117].

EST allow to identify random sequences of complementary DNA (cDNA), i.e.,

reverse transcribed mRNA sequences.

• Serial Analysis of Gene Expression (SAGE): developed in 1995 for the

quantitative and simultaneous analysis of a large number of transcripts [118].

• Microarrays: first mentioned in a 1995 study as a method to simultaneously

measure the expression of multiple genes in an high-density array with small

wells via cDNA hybridisation [119]. According to the article: The large and

expanding database of complementary DNA (cDNA) sequences from many or-

ganisms presents the opportunity of defining these patterns at the level of the

whole genome [119]. The first genome-wide microarray study was later conduc-

ted in yeast during 1997 [120], followed by the whole human transcriptome based

on a cDNA library from infant human brain in 1999 [116].

• Short-read RNA sequencing (RNA-seq): first mentioned in 2008 as a novel

quantitative technique based on the Illumina platform to sequence cDNA frag-

ments in a massively parallel method [121]. This method is followed by computa-

tional mapping of resulting short reads (spanning 50 bases at the time, currently

along the lines of 150-200 bases) to a genome of reference, allowing to unravel

the transcriptional regions of the yeast. More accurate and sensitive than mi-

croarray methods, RNA-seq can quantify more lowly-expressed transcripts than

microarrays by avoiding cross-hybridisation issues. RNA-seq data also allows to

accurately identify exon boundaries and therefore introns, crucial for alternative

splicing analysis [121].

• Long-read RNA-seq: RNA-seq methods that generate reads between 1 000

and 10 000 bases, allowing to sequence full transcripts – specially advantageous

to sequence overly similar transcripts [122]. Given the higher error-rate and

cost of this technology compared to short-read RNA-seq, combining both short-

and long-read technologies allows to mitigate the technical limitations of both

approaches [122].

RNA-seq data analysis

Before transcriptomic analyses, transcripts are isolated by first disrupting cell mem-

branes and neutralising RNA-degrading enzymes (RNases). As over 90% of the extrac-
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ted RNA is ribosomal, depletion of rRNAs and/or enrichment of the desired species are

required for proper analysis. Most datasets currently enrich for polyadenylated RNAs

(i.e., isolating mostly mature mRNAs).

After extraction, transcripts are sequenced. RNA-seq is a standard practice to

better understand what features (genes, transcripts, exons, etc.) were expressed in

the moment of RNA extraction, like taking a snapshot of a sample to later analyse it

where the whole family of transcripts is prepared to look good in the photo: RNAs

are fragmented in multiple sequences and converted to cDNA via reverse transcription

enzymes. Finally, cDNA is sequenced in order to obtain reads, computer strings of

nucleotides of the fragmented RNA sequences (Figure 1.7) [122].

Figure 1.7: RNA sequencing and read mapping. RNA is first extracted from a sample
(1) and divided into small fragments (2). These fragments are then converted to DNA (3)
and sequenced, producing short text strings called reads (4). Finally, these reads are mapped
to a DNA of reference (5) allowing to reconstruct the extracted mRNA and identify exon
coordinates in the reference DNA.

Quality control is an important step in RNA-seq data analysis. Low quality reads,

duplicated sequences and overrepresented k -mers are some metrics used by FastQC to

identify issues with reads from a particular sample that may be mitigated by trimming

reads or even discarding samples [123].

To reconstruct the snapshot at which the RNA was sequenced when using short-

read RNA-seq, fragmented reads are compared against a reference genome or transcrip-

tome6, allowing to understand where the sequences most likely come from and which

features (genes, transcripts, exons, etc.) are more expressed. Unfortunately, some of

6Alternatively, the transcriptome may be reconstructed de novo from available transcripts, as
usually employed for organisms without any available reference. Given that short reads may be
insufficient for this operation, newer technologies based on longer reads are preferentially used.
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those sequences match multiple genomic sites, such as reads from repetitive regions,

and so are distributed based on empiric evidence and/or randomness. Shorter reads

are more prone to mapping to multiple genomic regions and their alignment may prove

ambiguous. Such issues can be mitigated by gathering more information on the se-

quence via paired-end sequencing (i.e., sequencing both ends of the cDNA fragment

during RNA-seq) or higher read coverage (i.e., higher number of reads).

Based on the number of reads that were aligned to each region of the genome or

transcriptome, it is possible to quantify features of interest, e.g., to estimate gene,

transcript or exon expression. These counts are then adjusted to make them com-

parable across samples and to minimise technical variability, a process known as data

normalisation. Afterwards, expression values can be linearly modelled across conditions

to identify differentially expressed features [122].

Specifically, the study of alternative splicing has been greatly enhanced with the

advent of cheaper, high-throughput technologies, since higher read coverage greatly

benefits alternative splicing analysis as it captures more fragments from less expressed

isoforms [122]. One approach to study alternative splicing changes is based on the

differential expression of isoforms of a single gene (e.g., CuffDiff2 [124]). However,

isoform expression estimation based on short reads can be inaccurate because of reads

that map to sequences shared by multiple isoforms [122]. Other methods based on

exon and junction reads specifically identify alterations in events of alternative splicing

[122]: comparing the expression of different exons (differential exon usage, e.g., DEXseq

[125]), estimating the percentage of alternative sequence inclusion (percent spliced-in,

e.g., VAST-TOOLS [126, 127] and rMATS [128]) or based on graph theory to identify

alternative splicing modules (e.g., DiffSplice [129]).

Transcriptomic studies like those performed using RNA-seq allow to identify altered

phenotypes across development stages and pathological subtypes (such as stages of a

disease progression), explore the molecular mechanisms underlying a phenotype and

pinpoint disease biomarkers. This type of studies can be enhanced by integrating

genetic variants, methylation, proteomics and other omics data [6, 122,130].

1.3.2 Publicly available big data

The development and economic feasibility of next-generation RNA sequencing lead to

a wealth of publicly available sequencing data that can be integrated with available

clinical, drug-associated, mutation annotation, methylation and proteomic data. The

public availability of these datasets to the research community ensures not only more

transparency and reproducibility, but also bigger opportunities to unravel molecular

mechanisms, identify more accurate biomarkers and predict novel treatments without

spending fortunes from grants to repeat experiments already performed by others,
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enabling new advances in personalised medicine via data sharing [131]. It also means

that data can be exploited for other purposes other than those initially intended.

However, the ever-increasing amounts of large-scale data – big data – require more

and more computational resources for their processing and analysis [90], specially when

used to train machine learning models. These analyses can be quite time-consuming for

non-specialised researches interested in quick biological queries. To satisfy such needs,

some projects provide open access to pre-processed data via download (e.g., sequence

aligned and normalised data) and apps for data exploration:

• The Cancer Genome Atlas (TCGA) with molecular and clinical data for

more than 30 human cancer types (e.g., breast cancer and glioma) from more

than 10 000 samples [6]. Multiple web apps tap into the data from this behemoth,

including TCGASpliceSeq [132] and Xena Browser [133].

• The Genotype Tissue Expression (GTEx) project, a repository of gene

expression data for more than 40 human tissues, totalling more than 15 000

post-mortem samples [7]. The GTEx Portal (gtexportal.org) allows to inspect,

for instance, the expression values of specific genes and isoforms across multiple

tissues.

• The recount project has processed RNA-seq data from the Sequencing Read

Archive (SRA) [8,134].

Even with the increasing economic feasibility of RNA-seq, cheaper technologies

allow measuring gene expression for larger sample sizes, like in the case of L1000, an

inexpensive assay platform where the profiling of 978 transcripts allows to estimate the

expression of around 12000 genes via computational inference [15]. The development of

L1000 was crucial to establish the Connectivity Map (CMap), a collection of almost half

a million gene expression signatures derived from chemical and genetic perturbations

across multiple cell lines, dosages and timepoints [15]. CMap data have been used in

multiple contexts, including to identify inhibitors of the stemness signature in multiple

TCGA cancer types [135], to train machine learning models for designing molecules

inducing desired transcriptomic changes [136] and to predict clinically-approved drugs

for repurposing as SARS-CoV-2 antiviral agents [137].

To find effective novel treatments, it is important to understand how different cells

respond to specific compounds. Multiple drug sensitivity datasets contain compound

toxicity data across diverse cell lines, including the NCI-60 [16], the Cancer Thera-

peutics Response Portal (CTRP) [17] and the Genomics of Drug Sensitivity in Cancer

(GDSC) [18]. Alongside gene expression data for each cell line, these datasets integrate

data that allows to, for instance, pinpoint drugs that selectively target malignant cells.
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Although the number of datasets is getting larger every day, many obstacles render

data inaccessible, including lack of standardised formats for storing molecular data and

inefficient communication between different platforms [131]. Another major hurdle of

data dissemination is privacy issues and insufficient anonymisation of clinical data, that

can scare away individuals from sharing their personal data in public platforms.

Together with open data, there has also been a push for open access to scientific ar-

ticles, an important step in disseminating science to everyone, including non-scientists.

The publication of pre-prints has also been increasing, allowing for faster research

dissemination and for early feedback from peers.

Releasing software as open source is important to allow reproducing published data

analysis. Still, code alone may not suffice and the environment changes (e.g., different

software versions and operative systems) may lead to unexpected results. To overcome

those difficulties, standard tools can be used, like Nextflow to run scalable computa-

tional pipelines that may employ Docker containers for reproducibility and portability

across machines [138].

1.3.3 Software development

The nature of software has changed throughout the years from simple instructions that

calculate Bernoulli numbers, the first published computer program by Ada Lovelace in

1843, to the ”foundation for ultra-reliable software design”, the on-board flight system

that assisted the first moon landing with a crewed mission in 1969, supervised by

Margaret Hamilton.

Software plays an important role in society nowadays and scientific research is no

exception. For instance, the analysis of RNA-seq data requires specialised tools for

quality control, sequence alignment, feature quantification, statistical analyses and

visualisation techniques to assist researchers and clinicians in the biological interpre-

tation of their results [122]. However, many of these specialised tools are developed by

scientists with little programming knowledge and may lead to software with structural

issues, e.g., non-user-friendly interfaces, unreproducible results, poorly documented

systems, and reliance on deprecated technologies [139,140].

To mitigate such issues, scientific software developers can adopt iterative approaches

(like agile methodology) that fits the ever-evolving nature of scientific software de-

velopment. Iterative development facilitates incremental improvement and delivery of

stable software iterations by continuously planning and performing small tasks that are

evaluated and prioritised based on the project context [139–141]. These development

approaches go through a continuous cycle of several steps, including:

• Requirement analysis where we identify stakeholders and their requirements of

what the system should do (functional) and that should characterise the system
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(non-functional; e.g., modular, reliable, secure, easy-to-use and scalable) [140,

142]. The initial requirements of a system tend to (and should) be of higher-

level, but increase in complexity as the project advances: in simpler terms, a first

version of the software should be simple and improved upon to get more features

over time [140,143].

• Design concerns with the technologies to use during software development (e.g.,

frameworks for web app development and cloud hosting solutions for distribu-

tion), as well as the proper implementation of new features in the current soft-

ware iteration or the integration with other programs via standard application

programming interfaces (APIs), for instance. Good software design should allow

to extend current functionality with as few changes to the core of the program

as possible.

• Development, such as code structuring, feature implementation, bug fixing and

code optimisation.

– Version control systems (e.g., git) track changes to files in a project, allow

to easily integrate code from different developers and compare files across

diffterent versions [140,144].

– Kanban-like boards allow to visualise and manage the project workflow,

where features and bugs can be commented on and tracked [140,142].

– Comprehensive documentation (tutorials, manuals, wikis, inline source code

comments, etc.) is crucial to showcase the program and explain how features

work via functions’ description and examples to end-users and developers

alike and can be written in plain text, Markdown and other common file

formats [139,140,143,144]. For development purposes, good documentation

facilitates the maintenance and reusability of the program. Multiple tools

automatically generate documentation from inline source code comments for

different programming languages that can be automated, including roxygen2

for R [145] and Sphinx for Python [140,142].

• Testing via unit tests, usability tests, performance tests, integration tests and

security tests. Testing should be performed in multiple environments (e.g., dif-

ferent versions of programming languages, dependencies, operating systems and

web browsers) [140,143,144]. The portion of the code covered by unit tests (writ-

ten to check particular parts of code return the expected output when run) can

be evaluated using code coverage tools such as CodeCov, allowing to understand

how much of the code is being tested [142].
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• Software distribution (deployment) is related with the release of program

iterations to the hands of end-users: the easier it is to deploy, the faster new

iterations can be released with new features and bug fixes [144].

– Software can be distributed as web-browser-based applications (web apps)

or desktop apps. Containerisation (e.g., via Docker) also helps distributing

complex software and its dependencies in an easier way. There are also many

available repositories that allow to store code and/or compiled programs

(GitHub to store git projects, DockerHub for Docker images, Bioconductor

for bioinformatic R packages [146] and CRAN for generic R packages).

– When distributing code and/or programs, licensing must be defined since

the first general release to avoid code misuse by third parties [140]. Different

types of licenses can be chosen, allowing to decide whether the program can

be modified, redistributed, used for commercial purposes and whether there

are special conditions (e.g., any code derivation must be open-source and

modifications must retain same license) [140].

– User feedback via bug reports and feature requests should be collected and

considered for future iterations.

To facilitate continuous iterations, some steps can be automated using continuous

integration (CI) tools, allowing to compile, run, test, deploy and document software.

Those steps can then run in a multitude of environments whenever new changes are

integrated in the code or at a regular interval (e.g., weekly) to ensure compatibility of

the current version with newer versions of external dependencies. Automation tools are

crucial to quickly detect issues in a multitude of reproducible contexts and to promote

code quality, testability, integration and continuous feedback [139,140,142,144].

Many popular CI tools, like Travis-CI, GitHub Actions and AppVeyor, can be used

for free in open-source projects. This approach promotes software quality by allowing

peer-reviewing the code, reusing parts, fixing bugs, extending features and collabo-

rating with external developers [140,142], as well as it facilitates analysis transparency

and reproducibility [140]. Moreover, it has educational value, allowing others to learn

from the developed code, implemented solutions and project organisation [142].

1.3.4 Web apps and graphical user interfaces

The advent and popularisation of the Internet made software easier to distribute by

simply allowing to download apps or use web browsers to directly present web apps.

Web apps follow a client-server architecture usually composed by three layers:

• Presentation layer is the user interface locally rendered by the user’s web

browser based on standard web technologies: HTML, CSS and JavaScript.
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• Database layer contains app-associated data such as user login details. The

database may be stored remotely (most commonly using a MySQL, PostgreSQL,

MariaDB or MongoDB server) or in the user’s computer.

• Application layer, the core logic of the application. The application layer can

be run in its own remote server or in the same server as the database layer based

on Python, Java, PHP or Perl. However, simpler web apps may opt for running

the application layer as part of the presentation layer, thus using local resources.

Specially used in business intelligence, dashboards are a common type of web app

that allow interactive data analysis to explore key performance indicators (KPI). Dash-

boards have increasingly been the subject of health care research, from monitoring

medical equipment performance [147] and assessing surgical performance [148] to pre-

dicting high-risk patients for primary palliative care [149]. Inspired by such dashboards,

tools to explore and analyse bioinformatic data are also available, including to explore

gene expression from user-provided data or from public datasets (e.g., [150,151]).

To provide effective dashboards, good practices in data visualisation are paramount

for intuitive communication of complex results [152]. By introducing interactivity, the

user can explore and manipulate the represented data, allowing greater flexibility to

analyse and scrutinise the results relative to a comparable static plot and to obtain

greater information insight by scrolling, zooming and drilling down into specific points

[152].

Another vital aspect of any app is its interface, no matter whether graphical or

command-line based. User-centred interfaces assist users achieving their goals by con-

sidering the program’s audience, including their intents while using the program, the

expectations on how to achieve them, familiarity with the vocabulary employed, com-

puting skills and experience using similar software. Research on user interface design

focuses beyond computing systems and covers human cognition, behaviour analysis

and psychology [140,142,152,153]. Interfaces can be evaluated and improved by asking

for and listening to user feedback or by performing usability testing [152].

Unfortunately, there is a lack of documentation on creating proper visual interfaces

for bioinformatic apps. Even so, combining the concepts behind proper software de-

velopment with dashboard design, big data visualisation and state-of-the-art transcrip-

tomic analysis in freely available, open-source tools allows us to create potentially useful

and (hopefully) popular web apps for sharing data insights with collaborators and even

the whole scientific community.

1.3.5 R programming language

The work presented in this thesis was mostly developed using R [154]. R is a program-

ming language with a strong foundation in statistics and includes native support for
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data manipulation, clustering, survival analysis, principal component analysis, linear

modelling and classical statistical tests, such as Mann-Whitney U, Kruskal–Wallis and

Fligner–Killeen tests [154,155]. We also used RStudio (rstudio.com), a popular integra-

ted development environment (IDE), to assist using R for data analysis and package

development.

Besides the built-in functions, R is extendable with open-source packages from

multiple repositories, e.g., CRAN for generic R packages and Bioconductor for bioin-

formatic R packages [146]. We used packages from such repositories to:

• perform bioinformatic analyses, including differential gene expression (limma

[156] and edgeR [157]);

• create interactive data visualisations based on ggplot2 [158] for standard R plots

and highcharter [159] for interactive JavaScript plots;

• design web apps using the shiny [160] framework;

• integrate C++ in R with Rcpp [161], a more efficient and low-level programming

language, allowing to speed up computationally-intensive tasks;

• profile time and memory to pinpoint bottlenecks that need improvement by using

profvis [162] and microbenchmark [163];

• develop R packages with devtools [164] and write their documentation using

roxygen2 [165].

To facilitate the use of the code in this thesis, our programs are distributed as

open-source in GitHub and Bioconductor. Moreover, our tools were encapsulated with

their dependencies in Docker images, making them quick to set up in any machine and

easy-to-use in high-performance computing (HPC) environments. We also used these

Docker images to deploy our tools as free web apps.

The LaTeX code to compile this PhD thesis is open-source and can be found at

github.com/nuno-agostinho/phd-thesis.
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Chapter 2

Objectives

The aim of the scientific work discussed in this thesis is to develop transcriptomic

apps with graphical and command-line interfaces to retrieve and analyse publicly

available transcriptomic data from popular repositories, such as TCGA [6], GTEx [7],

recount2 [8] and CMap [15]. Besides, we intend their graphical interfaces to be in-

tuitive, flexible and deployed online as web apps, so that they are used by a wide

range of researchers. We think that bridging the gap between big data and researchers

with basic computational skills will inspire them to learn more about bioinformatic

analyses and thereby potentiate their ability to extract novel biological insights from

genome-wide molecular information.

Alternative splicing is involved in multiple cellular processes, with its deregulation

being linked to diverse pathologies. The use of pre-processed alternative splicing data

from public repositories exempts researchers from storing and processing large raw

files that require expensive computational resources. However, until 2018, no tools

interactively fetched those public data and allowed their analyses using user-defined

sample groups based on associated metadata. Thus, there was a need to develop a pro-

gram with a graphical interface that allows to quantify, analyse and visualise publicly

available alternative splicing data. We used the R programming language to create

psichomics [9, 10], an open-source R package with a Shiny-based web interface that

automatically downloads biological data from TCGA [6], GTEx [7] and recount2 [8].

By making use of popular R packages like edgeR [157] and limma [156] for gene expres-

sion analysis, psichomics interactively performs dimensionality reduction, differential

splicing and gene expression and survival analyses with incorporation of molecular and

clinical features.

CMap is a public database containing millions of gene expression changes in re-

sponse to induced molecular and pharmacological perturbations [15]. Comparing dif-

ferential gene expression profiles with those from CMap allows to infer putative mo-

lecular causes for the observed differences, as well as compounds that may promote

or revert those changes. To facilitate this approach, we strived to build a program
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to identify potentially causal molecular perturbations by comparing user-provided dif-

ferential gene expression results with those from CMap, using correlation and gene set

enrichment scores. Moreover, the program should also use gene expression/drug sen-

sitivity associations from public databases to identify compounds that may target the

phenotypes associated with the user-provided differential expression profiles. We used

R/Shiny to create cTRAP, an R package with graphical interface functions to assist

users performing the aforementioned features.

Both psichomics and cTRAP feature web-based graphical interfaces to assist users

interactively performing most of their functions following easy steps, properly detailed

in online tutorials that are constantly updated according to user feedback. To make

Shiny apps accessible via a web browser, we intended to build an open-source and

portable codebase to easily deploy web apps using our own custom server. Therefore,

I led the development of an app server based on Docker and ShinyProxy to deploy

psichomics, cTRAP and multiple R packages as web apps – including other programs

built by my lab colleagues in the lab (voyAGEr, betAS and scStudio). I kindly invite

you to pause, sit back and relax, visit our website at compbio.imm.medicina.ulisboa.pt,

wander through the web apps there and enjoy the journey. The landing page is a

gallery of work from our lab that I am deeply proud to support.
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Chapter 3

psichomics

After finishing the first year of my Masters in Informatics, I was looking for a chal-

lenging thesis where I could apply all that I learned into a bioinformatics project.

While looking for computational biology groups, I found out about Nuno Morais lab,

a research group interested in studying transcriptomics in disease.

Nuno made me aware of the need for graphical, interactive tools to allow non-

experts to analyse and visualise splicing from processed big datasets. I loved the idea

and started exploring ways of going from concept to reality. After toying with mul-

tiple frameworks and programming languages, I decided to stick with the R statistical

language and the Shiny web app framework [160] that helped me to kick-start what

would be later known as psichomics (Figure 3.1).

Figure 3.1: psichomics screenshot. TCGA breast cancer splicing analysis (28 Jan 2020).
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psichomics was first available in 2016 via Bioconductor to quantify, analyse and

visualise human alternative splicing using TCGA data [6]. Later on, I started my

PhD in the same lab and continued my work on psichomics. Nowadays, the tool

also analyses gene expression and alternative splicing based on user-provided or public

transcriptomic data, including those from GTEx [7] and recount2 [8] (Table 3.1).

Table 3.1: Major milestones of psichomics.

Version Release date Main features

1.0 18 Oct 2016 Quantify and analyse alternative splicing from TCGA dataa

1.0.8 18 Feb 2017 Analyse GTEx data
1.4 31 Oct 2017 Analyse gene expression from TCGA and GTEx data
1.4.2 19 Dec 2017 Support human genome assembly hg38
1.4.3 13 Jan 2018 Faster alternative splicing quantification via Rcpp/C++ [161]
1.6.1 5 Jul 2018 Analyse recount2 and user-provided data

2 Oct 2018 psichomics’ original article [9] is published online
1.8.2 27 Mar 2019 Add list of RNA-binding proteins [166]

21 Jan 2020 psichomics’ book chapter [10] is published online
1.12.1 29 Jan 2020 Display visual diagrams of alternative splicing events
1.14.2 11 Aug 2020 Load VAST-TOOLS [126,127] outputb and more formats
1.18.6 4 Oct 2021 Add web server support (optimised to run in ShinyProxy)c

1.20 28 Oct 2021 Support alternative splicing annotation for 14 speciesd

a Bioconductor release. b First time supporting intron retention events (psichomics does not quantify
intron retention). More information in subsection 3.2.4: Alternative splicing quantification.
c First version available online. d Alternative splicing annotations for multiple species are available
on-demand based on VAST-TOOLS annotation. Table 3.3 lists all supported species/assemblies.
Custom alternative splicing annotations can also be imported.

Following many user requests, support for non-human data analysis was added

with alternative splicing annotations for 14 species (including mouse, fruit fly, frog,

and Arabidopsis thaliana). These annotations were published in Bioconductor and

are based on those provided by alternative splicing quantification tool VAST-TOOLS

[126, 127]. Other improvements include support for loading VAST-TOOLS output

tables, thus allowing to analyse intron retention events. However, I feel like it took

until 2021 to fully realise psichomics’ potential – when it finally went online1.

Following the publication of the first article describing psichomics in 2018 [9], we

were invited to write a methodological book chapter published in 2020 [10]. Both

publications were written by me (as the first and a co-corresponding author) and Nuno

Morais. The content of those publications, along with some content from my MSc

Thesis [167], greatly inspired this chapter.

1More information in chapter 5: CompBio app server.
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3.1 Background

The relevance of alternative splicing changes in physiological and disease conditions,

along with the increasing economic feasibility of RNA-seq, has progressively driven

transcriptome-wide alternative splicing studies [1–5] and promoted large consortium

efforts to assemble publicly accessible splicing data. Such efforts include TCGA that

catalogues clinical and molecular profiling data from multiple human tumours [6];

GTEx that focuses on profiling normal human multi-tissue data [7]; and the recount2

project, a resource of processed RNA-seq data for over 2000 studies, mostly from the

Sequence Read Archive (SRA) [8].

Among the openly available processed data from those public projects, counts of

RNA-seq reads aligned to exon-exon junctions may be exploited for alternative splicing

quantification and further analysis. Indeed, the ability to couple proper differential

splicing analysis with, for instance, gene expression, protein domain annotation, clini-

cal information or literature-based evidence enables researchers to extract, from those

comprehensive public datasets, valuable insights into the role of alternative splicing

in physiological and pathological contexts, as well as putative splicing-associated pro-

gnostic factors and therapeutic targets [2–5,168].

Several tools are currently available to quantify, analyse and visualise alternative

splicing data. Some analyse alternative splicing based on the commonly-employed

and intuitive proportion of reads aligned to splice junctions supporting the inclu-

sion isoform, known as Percent Spliced-In or PSI [1]. Examples of such tools are

AltAnalyze [169], MISO [170], SpliceSeq [171], VAST-TOOLS [126], rMATS [128],

SUPPA [172] and Whippet [173]. Regardless of their quantification metric, alternative

splicing analysis tools had at least one of the following shortcomings in 2018:

1. Lack of support for imputing pre-processed data (e.g., splice junction read counts),

leading to redundant, time-consuming RNA-seq read alignment and exon-exon

junction detection, preceding alternative splicing quantification when exon-exon

junction quantification is already available (e.g., when analysing TCGA, GTEx

or recount2 data).

2. Limited set of statistical options for differential splicing analysis, mostly relying

on median-based non-parametric tests and restricted to pairwise comparisons.

3. No incorporation of molecular or clinical information enabling analyses that re-

flect factorial designs or test linear models, for example. This is particularly

limiting in the exploration of clinical datasets where, for instance, survival analy-

ses permit assessing the potential prognostic value of alternative splicing events.

4. No support for transcriptome-wide filtering and sub-setting of events, based on

24



common features or the outcome of statistical analyses, for interactive exploration

of individual events of interest.

5. No user-friendly interactive graphical interface neither support for customisable

statistical plots.

Using available pre-processed splice junction read counts from big data reposito-

ries exempts researchers from storing and processing large raw files that require ex-

pensive computational resources. To our knowledge, until 2018 no tool performed

transcriptome-wide alternative splicing analysis using splice junction read counts from

publicly available RNA-seq datasets (e.g., from TCGA, GTEx and recount2) with the

option to easily compare them with user-provided groups interactively created based on

sample metadata. For instance, jSplice [174] and DIEGO [175] do quantify alternative

splicing from junction read counts but the user needs to manually convert such counts

into a file format accepted by those programs. Moreover, none of those tools support

survival analysis, exploratory and differential analyses of gene expression, or tests for

association between gene expression levels and/or alternative splicing quantification

changes.

To offer a comprehensive pipeline that integrates all the aforementioned features

through both a command-line and an easy-to-use graphical interface, we have developed

psichomics, an R package to quantify, analyse and visualise alternative splicing and gene

expression data using TCGA, GTEx, recount2 and/or user-provided data. Our tool in-

teractively performs dimensionality reduction, differential splicing and gene expression

and survival analyses with incorporation of molecular and clinical features.

psichomics is available as a web app at compbio.imm.medicina.ulisboa.pt/psichomics

and can be locally installed using Bioconductor (bioconductor.org/packages/psichomics)

or Docker (nunoagostinho/psichomics). The source code of psichomics is available at

github.com/nuno-agostinho/psichomics.

3.2 Materials and methods

psichomics allows to automatically process data (provided by the user or automati-

cally downloaded from TCGA, GTEX and recount2), quantify alternative splicing,

normalise and filter gene expression data and perform downstream analyses, including

dimensionality reduction, differential expression/splicing analysis, correlation analysis,

survival analysis and annotation of genes, transcripts and proteins (Figure 3.2).

The tool was designed as a modular R package to be easily modified and exten-

ded (Figure 3.3), including modules for automatic data retrieval from multiple sources,

parsing and standardisation of alternative splicing event identifiers from different pro-

grams and a variety of data analysis methodologies.
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Figure 3.2: psichomics workflow. The user can provide their own input data or load data
from TCGA, GTEx or recount2 to normalise gene expression data and quantify alternative
splicing for downstream analyses.

Figure 3.3: Visual representation of psichomics’ file structure. psichomics is a
modular program where, for instance, functions specific for different data sources and analyses
can be found in different files. As usual for R packages, the R folder is the heart of the code
and contains the main R scripts that define the logic and interface of the app. dev is a
non-standard folder in R packages used to store supporting scripts (e.g., test workflows); its
contents are not included when building the R package.
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psichomics can load splice junction read count data provided by the user or from

external sources, followed by the quantification of alternative splicing (in case no pre-

computed quantification is loaded) and subsequent analyses. Alternative splicing quan-

tification is computed based on RNA-seq reads that align to exon-exon junctions and

the genomic coordinates (annotation) of alternative splicing events. The proportion of

reads aligned to junctions that support the inclusion isoform, known as the Percent

Spliced-In or PSI [1], was the chosen quantification metric.

3.2.1 Data retrieval

Exon-exon junction and gene expression quantifications (obtained from pre-processed

RNA-seq data), clinical data and sample metadata are accessible through FireBrowse’s

web application program interface (API) for TCGA data retrieval (firebrowse.org/api-

docs). The FireBrowse API is used in psichomics to automatically download TCGA

data according to the user-selected tumour type(s) as tab-delimited files within com-

pressed folders, whose contents are subsequently loaded with minimal user interaction.

GTEx data are automatically downloaded via the GTEx data portal (gtexportal.org)

and select SRA project data via recount2 [8]. Other SRA projects and user-provided

files may also be loaded in appropriate formats (Table 3.2), allowing for subsequent

alternative splicing analysis2.

Table 3.2: Supported file formats in psichomics based on data source.

Source Sample
informa-
tion

Subject
informa-
tion

Gene ex-
pression

Exon
junction
quantifi-
cation

Alternative
splicing
quantifi-
cation

SRA Run Selector Yes

STAR Yes Yes

VAST-TOOLS Yes Yes

TCGA/FireBrowse Yes Yes Yes Yes

SRA/recount2 Yes Yes Yes Yes

GTEx Yes Yes Yes Yes

Other files Yes Yes Yes Yes Limiteda

a psichomics cannot fully parse alternative splicing events (e.g., it may not identify the cognate gene
and coordinates) based on tables from these sources.

2Refer to tutorial at nuno-agostinho.github.io/psichomics/articles/custom_data.
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3.2.2 Gene expression pre-processing

Gene expression quantifications can be filtered based on user-provided parameters (for

instance, to account solely for genes supported by 10 or more reads in 10 or more

samples, as performed by default) and normalised by raw library size scaling using

edgeR::calcNormFactors() [157]. Afterwards, counts per million reads (CPM) can

be computed and log2-transformed using edgeR::cpm(), as performed by default.

3.2.3 Alternative splicing annotation

Annotations of alternative splicing events are available on-demand in psichomics for

14 species (Table 3.3). To support multiple species, annotations were created based

on VAST-TOOLS 23.06.20 using a function from psichomics (including for human,

thus the redundancy with previous human annotations that were originated based on

multiple sources). Custom annotation files are also supported3.

Table 3.3: On-demand alternative splicing annotations for psichomics.

Species Assembly Source

Homo sapiens hg19 + hg38
Multiplea

VAST-TOOLS
Mus musculus mm9 + mm10 VAST-TOOLS
Bos taurus bosTau6 VAST-TOOLS
Gallus gallus galGal3 + galGal4 VAST-TOOLS
Xenopus tropicalis xenTro3 VAST-TOOLS
Danio rerio danRer10 VAST-TOOLS
Branchiostoma lanceolatum braLan2 VAST-TOOLS
Strongylocentrotus purpuratus strPur4 VAST-TOOLS
Drosophila melanogaster dm6 VAST-TOOLS
Strigamia maritima strMar1 VAST-TOOLS
Caenorhabditis elegans ce11 VAST-TOOLS
Schmidtea mediterranea schMed31 VAST-TOOLS
Nematostella vectensis nemVec1 VAST-TOOLS
Arabidopsis thaliana araTha10 VAST-TOOLS

a VAST-TOOLS, SUPPA, MISO and rMATS

The original hg19 annotation of human alternative splicing events was based on

files used as input by MISO [170], VAST-TOOLS [126], rMATS [128] and SUPPA

[172]. Annotation files from MISO and VAST-TOOLS are provided in their respective

websites, whereas rMATS and SUPPA identify alternative splicing events and generate

such annotation files based on a given isoform-centered transcript annotation. As such,

the human transcript annotation was retrieved from the UCSC Table Browser [176] in

GTF and TXT formats, so that gene identifiers in the GTF file (misleadingly identical

3Refer to tutorial at nuno-agostinho.github.io/psichomics/articles/AS_events_preparation.

28

https://nuno-agostinho.github.io/psichomics/articles/AS_events_preparation


to transcript identifiers) were replaced with proper ones from the TXT version.

The collected hg19 annotation files were non-redundantly merged according to the

genomic coordinates and orientation of each alternative splicing event and contain the

following event types: skipped exon (SE), mutually exclusive exons (MXE), alterna-

tive first exon (AFE), alternative last exon (ALE), alternative 5′ splice site (A5SS),

alternative 3′ splice site (A3SS), alternative 5′ UTR length (A5UTR), alternative 3′

UTR length (A3UTR), and intron retention (IR). The resulting hg19 annotation is

available as an R annotation package in Bioconductor at bioconductor.org/packages/

alternativeSplicingEvents.hg19, whereas the hg38 annotation (whose coordinates were

converted from those of the hg19 annotation using rtracklayer::liftOver() [177],

based on the hg19 to hg38 chain file from UCSC) is also available as an R annotation

package in Bioconductor at bioconductor.org/packages/alternativeSplicingEvents.hg38.

3.2.4 Alternative splicing quantification

For each alternative splicing event in a given sample, its PSI value is estimated by

the proportion of exon–exon junction read counts supporting the inclusion isoform

therein [1]. The junction reads required for alternative splicing quantification depend

on the type of event (Figure 3.4). Alternative splicing events involving a sum of junction

read counts supporting inclusion and exclusion of the alternative sequence below a user-

defined threshold (10 by default) are discarded to avoid imprecise quantifications based

on insufficient evidence.

Figure 3.4: Alternative splicing quantification. Splice junctions required to quantify
alternative splicing based on event type. C1A and AC2 represent read counts supporting
junctions between a constitutive (C1 or C2, respectively) and an alternative (A) exon and
therefore alternative exon A inclusion, while C1C2 represents read counts supporting the
junction between the two constitutive exons and therefore alternative exon A exclusion. A1*
and A2* represent the sum of read counts supporting junctions spanning the alternative first
(A1) and second (A2) exon, respectively. Legend: skipped exon (SE), mutually exclusive
exons (MXE), alternative 5′ splice site (A5SS), alternative 3′ splice site (A3SS), alternative
first exon (AFE) and alternative last exon (ALE).

Alternative splicing quantification in psichomics is currently based on exon-exon

junction read counts, yet intron retention events require intron-exon junction read

counts for their quantification [178], whereas alternative 5′- and 3′-UTR require exon
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body read counts. psichomics does not currently quantify those types of alternative

splicing events.

By default, psichomics quantifies all skipped exon events. However, the user can

select to measure other types of alternative splicing events (Figure 3.4) and may hand

in the list of genes whose alternative splicing events are to be specifically quantified.

Furthermore, the step of alternative splicing quantification may be avoided if previously

performed. psichomics allows the user to save the quantification of alternative splicing

in a file to be loaded in a future session.

3.2.5 Data grouping

psichomics allows to group subjects and their samples or genes and their alterna-

tive splicing events for subsequent analysis. Subject and sample grouping can be

performed based on available phenotypic (e.g., tissue type and histology) and clini-

cal (e.g., disease stage, smoking history and ethnicity) features. Gene and splicing

event grouping relies on respective user-provided identifiers. Moreover, the associ-

ation between subject/sample groups specified by the user and those defined by the

outcome of gene expression and alternative splicing analyses or by other clinical cate-

gorical variables can be statistically tested with Fisher’s exact tests, implemented with

stats::fisher.test().

3.2.6 Dimensionality reduction

Dimensionality reduction techniques can be performed on tables containing alternative

splicing and gene expression quantifications, with the samples of interest as rows and

the selected (if not all) splicing events or genes as columns, after centering and/or

scaling the respective distributions (by default, they are only centered).

Principal component analysis (PCA) identifies the combinations of variables that

contribute the most to data variance [179] and it is implemented through the singular

value decomposition (SVD) algorithm provided by stats::prcomp(). The total con-

tribution of each variable (splicing event or gene) towards data variance along selected

principal components is measured based on factoextra::fviz contrib().

Independent component analysis (ICA), used to decompose data into statistically

independent components [180], can also be performed based on fastICA::fastICA(),

preceded by data centering and/or scaling with scale().

As many of the aforementioned functions cannot handle missing data, a user-defined

threshold for the accepted number of missing values per alternative splicing event or

gene (5%, by default) is used to discard variables before performing dimensionality

reduction, whereas the remaining missing values are imputed for each variable as the

median from non-missing data samples.
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Moreover, samples can be clustered using k-means (based on stats::kmeans()),

partitioning around medoids (PAM, cluster::pam()) or clustering large applications

(CLARA, cluster::clara()) methods, with the latter being optimised for large data-

sets and thus the default recommendation.

3.2.7 Survival analysis

Kaplan-Meier estimators (and illustrating curves) [181] and proportional hazard (PH)

models [182] may be applied to groups of patients defined by the user based on clinical

features derived, for instance, from TCGA and user-owned data, with survival distri-

butions being compared using the log-rank test. Survival analyses are implemented

in psichomics using functions Surv(), survfit(), survdiff() and coxph() from R

package survival [155].

To evaluate the prognostic value of a given alternative splicing event, survival analy-

sis can be performed on groups of patients separated based on a given alternative

splicing quantification (i.e., PSI) cut-off. Patients with multiple samples are assigned

the average PSI value of their respective samples after sample filtering (e.g., when

using TCGA data, only tumour samples are used for survival analysis by default).

When survival differences are estimated for multiple PSI cut-offs for a single alterna-

tive splicing event, psichomics suggests the optimal cut-off that minimises the P-value

of the log-rank test used to compare survival distributions, graphically supporting the

suggestion with a PSI cut-off versus P-value scatter plot. Survival analysis can also be

performed on groups defined by an expression cut-off for a selected gene.

3.2.8 Differential splicing and gene expression analyses

In psichomics, analysis of differential splicing between user-defined groups of samples

can be performed on all or selected alternative splicing events. Given the non-normal

distribution of PSI values [183,184], median- and variance-based non-parametric tests,

such as the Wilcoxon rank-sum (also known as Mann–Whitney U), Kruskal–Wallis

rank-sum and Fligner–Killeen tests, are available and recommended [185]. Levene’s

and unpaired t-tests can nonetheless be performed as well. All these tests are available

through the stats package with their default settings, except for Levene’s test that

was implemented based on car::leveneTest.default().

To correct for multiple testing where applicable, P-value adjustment methods for

the family-wise error rate (Bonferroni, Holm, Hochberg and Hommel corrections) and

the false discovery rate (Benjamini–Hochberg and Benjamini–Yekutieli methods) are

available through stats::p.adjust(). By default, multiple testing correction is per-

formed using the Benjamini-Hochberg method.

Although the aforementioned statistical tests are also available to analyse the ex-
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pression of single genes, genome-wide differential gene expression analysis is implemen-

ted based on gene-wise linear model fitting (limma::lmFit() [156]) for two selected

groups, followed by moderated t-tests and the calculation of log-odds of differential

expression, using empirical Bayes moderation of standard errors (limma::eBayes())

and gene-wise variance modelling (limma-trend).

Statistical results can be subsequently explored through density and volcano plots

with customisable axes to assist in the identification of the most significant changes

when analysing distributions across single or multiple events, respectively. A corres-

ponding table with the results of all statistical analyses is also available and can be

retrieved as a tab-delimited plain text file.

3.2.9 Correlation between gene expression and PSI values

The Pearson product-moment correlation coefficient, Spearman’s rho (default) and

Kendall’s tau, all available with stats::cor.test(), can be used to correlate gene

expression levels with alternative splicing quantifications. Such analyses allow, for

instance, to test the association between the expression levels of RNA-binding proteins

(RBPs) and PSI levels of interesting splicing events to identify which of these may

undergo RBP-mediated regulation. As such, a list of RBPs is provided in-app [166],

but the user can also define their own group of genes of interest for the test.

3.2.10 Feature annotation and literature support

The representational state transfer (REST) web services provided by Ensembl [186],

UniProt [187], the Proteins API [188] and PubMed [189] are used in order to anno-

tate genes of interest with relevant biomolecular information (e.g., genomic location,

associated transcript isoforms and protein domains, etc.) and related research arti-

cles. psichomics also provides the direct link to the cognate entries of relevant external

databases, namely Ensembl [190], GeneCards [191], the Human Protein Atlas [192],

the UCSC Genome Browser [193], UniProt [187] and VAST-DB [127].

3.2.11 Performance benchmarking

To measure the time taken by psichomics to load data, normalise gene expression,

quantify PSIs for skipped exon events and perform global differential expression and

splicing analyses between pairs of GTEx v7 tissues and between normal and primary

solid tumour samples from multiple TCGA cohorts (data version 2016 01 28 from

FireBrowse), the program was run 10 times with the same settings for different combi-

nations of normal human tissues and tumour types in a machine running OS X 10.13.1

with 4 cores and 8GB of RAM, using Safari 11.0.1, RStudio Desktop 1.1.383 and R
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3.4.1. The median duration of the 10 runs was used as the performance indicator.

To determine the approximate time complexity of the aforementioned steps in

psichomics, gene expression and exon-exon junction quantification datasets were pre-

pared based on approximate distributions obtained from the respective TCGA datasets:

negative binomial distributions with a dispersion parameter of 0.25 and 0.2 reads and

a mean parameter of 2000 and 100 reads for raw gene expression and exon-exon junc-

tion quantification, respectively. Each run was performed on datasets with numbers of

samples ranging from 100 to 2500 in intervals of 100 (i.e., 100, 200, 300, . . . , 2500) and

20 000 genes or 200 000 splice junctions (gene expression or exon-exon junction quan-

tification, respectively). Splice junction identifiers (required for alternative splicing

quantification) were randomly retrieved from the TCGA reference annotation. Based

on their respective read counts, around 9000 alternative splicing events (i.e., those for

which all involved inclusion and exclusion junctions were retrieved) were quantified

across selected samples per run. For differential gene expression and splicing analy-

ses, samples were randomly divided into two groups based on the emitted values of a

Bernoulli distribution with a probability of success of 50%.

Polynomials of orders 1–6 were fitted to the relation between running time and the

number of samples. As the running time is assumed to always increase with an in-

creasing number of analysed samples, fitted polynomials were constrained to be mono-

tone for 0 or more samples, using MonoPoly::monpol() [194]. The best polynomial

fits (Figure 3.15) were selected based on analyses of variance (ANOVA) between fitted

polynomials of consecutive orders, starting with the comparison between polynomials

of orders 1 and 2. A polynomial with higher order is only selected if exhibiting a

significantly better fit (p-value < 0.05).

3.2.12 Alternative splicing quantification benchmarking

The publicly available RNA-seq data from multiple human, mouse and chicken tissue

and cell line samples used in the development of VastDB [127] were aligned with splice-

aware STAR [195] against the respective transcript-annotated genomes: UCSC hg19

genome assembly and GENCODE v19 annotation for human, UCSC mm10 genome

assembly and GENCODE vM14 annotation for mouse, and Ensembl 70 genome as-

sembly and annotation for chicken. In total, 120/706/34 (human/mouse/chicken) exon

skipping events quantified by psichomics (function psichomics::quantifySplicing()

with default settings) were compared with the respective RT-PCR- and VAST-TOOLS-

derived PSI values, available from VastDB [127].

Different numbers of junction reads were simulated for different given PSI values

to test the impact of read coverage on the accuracy and precision of PSI estimation

by psichomics. For each given PSI, junction reads supporting the exon inclusion were
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simulated as the number of successes obtained from a Bernoulli distribution with the

event’s junction read coverage (i.e., reads supporting inclusion plus reads supporting

exclusion) as the number of observations and the PSI value as the probability of suc-

cess. Those inclusion reads were then divided by the event’s junction read coverage to

estimate an ‘observed’ PSI value (as performed by psichomics) that was compared to

the given ‘real’ PSI value. These simulations were performed for PSI values from 0 to

1 in 0.1 intervals and event coverages of 10, 20, 50, 100, 500 and 1000 junction read

counts, with each combination being tested 10000 times.

TCGASpliceSeq [132] provides pre-computed alternative splicing quantifications

across TCGA cohorts, similarly to psichomics. As such, PSI estimates for each matching

(based on genomic coordinates) alternative splicing event and sample from both tools

were correlated across the entire TCGA dataset.

3.2.13 Continuous integration

Continuous integration (CI) tools ensure the automatic testing of software in mul-

tiple environments (different versions of operating systems, R, BioConductor, etc.).

Currently popular CI tools include Travis CI (macOS and Linux, limited support for

Windows), AppVeyor (Windows only) and GitHub Actions (Windows, macOS and

Linux). Although psichomics was initially set up with Travis CI and AppVeyor, the

flexibility of GitHub Actions in running the three main operating systems and the

easiness of adding complex routines led me to replace Travis CI and AppVeyor with

GitHub Actions.

psichomics has three GitHub Actions scripts to (1) create Docker images and

store them in GitHub and Docker Hub for every psichomics release or change in

the dev branch; (2) update the package documentation website via roxygen and

pkgdown; and (3) build and check the R package using rcmdcheck::rcmdcheck() and

BiocCheck::BiocCheck() for every change that is committed to the GitHub reposi-

tory. psichomics is tested in Windows, macOS and Ubuntu, allowing to automati-

cally check if the package builds correctly and if it passes all unit tests (created using

testthat) in multiple platforms, among other checks. The code coverage of the package

is then tested via Codecov. All of these tools are free for open-source projects.

3.3 Results

psichomics’ web app is available at compbio.imm.medicina.ulisboa.pt/psichomics. Alter-

natively, users can install psichomics in their own computers, allowing them to use local

computing resources. psichomics offers both a graphical and a command-line interface.

Although most features are common to both interfaces, we recommend less experienced
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users to opt for the Shiny-based graphical interface. To start the graphical interface in

the local version, load the psichomics package in R via library(psichomics) and run

psichomics(). The user’s default web browser will be launched with a local version

of the psichomics web app.

3.3.1 Case study

Several splicing factors have been reported to be involved in pluripotency, including

SRSF3, MBNL1/2, RBFOX2, and U2AF1 [196–199]. For instance, MBNL1/2 regulates

the mutually exclusive inclusion of two FOXP1 exons, inducing a switch from its

pluripotency-associated FOXP1-ES protein isoform, that promotes the expression of

OCT4, NANOG, and other key pluripotency transcription factors, to the canonical

differentiation-inducing FOXP1 isoform [200].

The early stage of somatic cell reprogramming, characterised by acquisition of

pluripotency features, is related with mesenchymal-to-epithelial transition, a crucial

development-related process affecting cell polarity and adhesion that is mediated by

the aforementioned splicing regulators [196,201]. Consistently, the alternative splicing

modulation of epithelial-to-mesenchymal transition is linked with both cancer progres-

sion and metastasisation and with the generation of cancer stem cells, characterised by

enhanced self-renewal, proliferation, and other stemness properties [196,201,202].

Using the graphical interface of psichomics, we analysed SRA project SRP063867

[203] containing genetically (i.e., isogenic) and not genetically (nonisogenic) matched

human induced-pluripotent stem cells (iPSC), embryonic stem cells (ESC), and fibro-

blasts to compare changes in alternative splicing between isogenic stem cells and iso-

genic fibroblasts. The code to run this analysis is publicly available at github.com/nuno-

agostinho/stem-cell-analysis-in-psichomics.

Data loading

We used psichomics to download preprocessed RNA-seq data for SRP063867 via re-

count2 [8], including sample annotation, raw gene expression and exon–exon junction

read counts. psichomics automatically downloads the data, loads the workspace and

displays information per dataset (Figure 3.5).

Gene expression filtering and normalisation

Next, we performed gene expression filtering and normalisation on the loaded raw gene

expression read counts using psichomics default settings (based on the edgeR [157] and

limma [156] R packages). We filtered out lowly-expressed genes with a minimum of

10 read counts for at least one sample and with a minimum total read counts of 15

(default settings in psichomics). We noticed that the density plot of the samples’ library
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Figure 3.5: Summary information on datasets. psichomics presents information on
the loaded datasets in a dedicated tab. That information includes summary statistics, like
the numbers of samples and genes profiled in each dataset, and plots, like the shown boxplot
to visualise the distribution of normalised gene read counts per sample.

size (i.e., the total number of mapped reads) suggests relatively low read coverage for

sample SRR2453313 (Figure 3.6a). At this time, we decided to keep this sample to

compare with other samples after data normalisation.

Afterwards, we normalised gene expression values by scaling raw library sizes across

samples. Default gene expression normalisation scales for raw library sizes based on

weighted trimmed mean of M-values (TMM) [157], followed by computation of log2-

transformed counts per million values. The default normalisation is not fully effective,

as very different distributions between samples are observed (Figure 3.6b).

We used voom instead, as it incorporates the mean-variance relationship of the

data to normalise expression levels between samples [156]. The distributions remain

heterogeneous (Figure 3.6c) based on the default weighted trimmed mean of M-values

(TMM) [157], used to normalise for library sizes, so we replaced it by quantile nor-

malisation [156]. This more vigorous normalisation of gene read counts made their

distributions comparable across samples, except for SRR2453313 (Figure 3.6d) that

was thus discarded. No obvious outlying gene expression distribution is apparent after

discarding that sample and renormalising (Figure 3.6e). The filtered and normalised
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Figure 3.6: Gene expression normalisation. (a) Density plot of the distribution of raw
library sizes (i.e., total number of mapped read counts) across samples. Highlighted with
the blue label is the sample with the smallest library. (b–e) Boxplots of distribution of gene
expression in log2-transformed counts per million (log2CPM per sample after low read count
filtering and raw library scaling (b), this procedure followed by voom modeling (c), voom
modeling using quantile normalisation instead of raw library scaling (d), and the latter after
discarding the sample with the smallest library, highlighted in blue (e).

gene expression dataset was now composed of 72 samples and 27 807 genes.

Alternative splicing quantification

The percent spliced-in (PSI) metric is commonly employed to measure the relative

abundance of the inclusion isoform of an alternative splicing event [1]. For each an-

notated event, psichomics was used to quantify PSI values based on the ratio of splice

(exon–exon) junction read counts that support the inclusion of the alternative sequence.

The selected alternative splicing annotation was Human hg38 (2018-04-30).

The default event types were quantified: skipped exon (SE), mutually exclusive

exon (MXE), alternative first and last exon (AFE and ALE, respectively), and alter-

native 3′ and 5′ splice site (A3SS and A5SS, respectively). By default, only alternative

splicing events with a minimum of 10 junction read counts supporting either inclu-

sion or exclusion of the alternative sequence are considered to avoid quantifying events

with insufficient evidence. For consistency with gene expression analysis, we discarded
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sample SRR2453313 with the lowest library size.

Figure 3.7: Alternative splicing quantification filter-
ing. (a) Selection, for further analyses, of alternative splicing
events with median PSI values between 0.05 and 0.95. (b)
Further filtering those events with PSI range > 0.15 and
log10(variance) > −3. For illustration purposes, grey points
represent the events discarded in panel a.

In total, a high num-

ber of 135 717 alterna-

tive splicing events were

quantified. However, only

events exhibiting some vari-

ance across samples are in-

formative when analysing

differential splicing. We

therefore filtered out low-

variance events with me-

dian PSI values between

0.05 and 0.95 (Figure 3.7a),

avoiding those whose me-

dian PSI is consistently

near 0 and 1 (i.e., splicing

events that are mostly con-

stitutive). This concomitantly filters out events of very low variance (Figure 3.7b). To

further select events that vary across samples based on a minimum PSI variance, we set

log10(variance) > −3 (Figure 3.7b). Alternative splicing events were further filtered

based on their PSI range (maximum — minimum PSI value across samples), as a

surrogate for the minimum changes in alternative splicing that can be considered bio-

logically meaningful, by setting the minimum PSI range to 0.15 (Figure 3.7b). The

number of potentially interesting events was reduced from 135 717 to 27 401.

Principal component analysis (PCA)

Data groups can be created in psichomics based on sample/subject matched metadata

or on alternative splicing events and respective genes. We grouped ESC and iPSC

samples together to compare them against Isogenic Stem Cells and Isogenic Fibroblasts.

Later we performed PCA on normalised gene expression after centring and scaling

the values. We allowed to impute at most 4 (i.e., around 5% of the 72 samples) tolerated

missing values per row4. The first two principal components explain around 50% of

the observed variance in the data.

The variance observed across principal component 1 seems to be related with the

cell type (fibroblast versus stem cell) (Figure 3.8b), whereas principal component 2 is

associated with isogenicity (i.e., isogenic vs nonisogenic; respective column named data-

set type in the SRA metadata) (Figure 3.8d). From the 15 most variance-contributing

4More information in subsection 3.2.6: Dimensionality reduction.
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Figure 3.8: PCA of normalised gene expression (a–d) and alternative splicing
quantification data (e–g). (a) Plot displaying the cumulative percentage of total gene
expression data variance explained by each principal component. (b, d) Scatter plots of scores
of each sample on principal components 1 and 2, with samples coloured based on cell type (b)
and isogenicity (d). (c) Scatter plot of loadings of each gene on principal components 1 and
2. Each gene’s bubble size is proportional to its relative contribution to principal components
1 and 2. For performance reasons, only the 100 most contributing variables (i.e., genes or
alternative splicing events) to the selected principal components are plotted by default. (e, f)
Scatter plots of scores of each sample on principal components 1 and 2, with samples coloured
based on cell type (e) and isogenicity (f). (g) Table of loadings of the 5 alternative splicing
events contributing the most to principal components 1 and 2.

genes, as displayed in the table below the loading plot, at least DNMT3B and RBPMS2

have been previously associated with pluripotency [204]. Specifically, RBPMS2 has

been reported to play a role in self-renewal following the knockdown of ESRP1, repor-

ted to act as a regulator of pluripotency [204].

Similarly, we performed and plotted PCA on alternative splicing data5. Akin to

the observations from PCA plots on normalised gene expression, principal component

1 appear to be associated with cell type and principal component 2 with isogenicity

(Figure 3.8e-f). The table below the loading plot allows to assess which alternative

5PSI values are not scaled by default, given they are dimensionless ratios that range from 0 to 1.
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splicing events contribute the most to those separations (Figure 3.8g). Some of the

cognate genes of those events have already been reported to be involved in conserved

splicing programs in stem cell differentiation, including KIF13A and PALM [198].

Differential expression and splicing analysis

We performed differential gene expression and differential splicing analysis between

isogenic stem cells and isogenic fibroblasts (Figure 3.9). First, normalised gene expres-

sion was linearly modelled, with explanatory variables defined based on the selected

groups. Moderated t-tests and log-odds of differential expression were then computed

by empirical Bayes moderation of the standard errors towards a common value [156].

Figure 3.9: Differential expression (a) and splicing (b, c) analyses. (a, b) Volcano
plots where orange-highlighted genes/events correspond to adjusted p-value < 0.01 and either
|log2(Fold change)| > 1 (a) or |∆ median PSI| > 0.1 (b). The CD46 penultimate exon
inclusion is labeled in b with the cognate gene symbol. (c) Table showing a subset of the
differential splicing results, sorted in ascending order by the adjusted p-value of Wilcoxon’s
rank-sum test. PSI distributions are colored by groups: pink for isogenic stem cells (isoSC)
and green for isogenic fibroblasts (isoFib). The selected alternative splicing event (in blue)
depicts the CD46 penultimate exon inclusion.

The volcano plot of differential splicing analysis between isogenic stem cells and

fibroblasts (Figure 3.9b) exhibits two strata, that is, two modes of Wilcoxon’s test sig-

nificance. The significance stratum in the top is the result of using such nonparametric

test (motivated by the non-normality of PSI distributions) when all values in one of

the groups are higher than those in the other group; the number of tested groups also

affects the significance of the difference. The lower significance stratum relates to a

consistent number of repeated values between samples (usually occurring when one of

40



the groups is closer to a PSI value of 0 or 1). As the Wilcoxon’s test is rank-based,

some ranks are not unique if there are two identical values; this occurrence (called a

tie) hampers the computation of exact p-values. Increasing the number of identical

values when performing the Wilcoxon’s test decreases the significance of the compari-

son, which may bias the significance of differentially spliced events when one of the

groups is characterised by PSI values close to 0 or 1 (constitutive splicing) and will

therefore present many 0’s or many 1’s.

Skipping of CD46 penultimate exon

The skipping of the penultimate exon of CD46 is one of the most significantly differ-

entially spliced sequences between isogenic fibroblasts and isogenic stem cells in our

analyses (Figure 3.9b-c). Based on its PSI distributions in the different cell types,

higher inclusion of the CD46 penultimate exon is associated with fibroblasts, whereas

lower inclusion is associated with stem cells, both ESC and iPSC (Figure 3.10a). The

inclusion of CD46 penultimate exon leads to a premature termination codon that may

cause the respective transcript to be targeted for nonsense-mediated decay [205].

We also tested the correlation between the gene expression of a list of RNA-binging

proteins [166] against the quantification of the CD46 penultimate exon inclusion, thus

identifying a potential regulatory role from the RNA-binding epithelial splicing regu-

latory proteins 1 and 2 (ESRP1 and ESRP2; Figure 3.10b-c). The skipping of CD46

penultimate exon is reportedly regulated by the ESRP1/2 proteins, involved in the

epithelial–mesenchymal transition and associated with the generation of cancer stem

cells [201,205]. ESRP1 has also been reported to regulate ES cell differentiation [204].

Extending the analyses to GTEx and TCGA

To correlate ESRP1/2 gene expression across GTEx tissues and TCGA tumour types

against the PSI values of the penultimate exon of CD46, gene expression data was

filtered and normalised using voom with quantile normalisation [156] and alternative

splicing was quantified based on annotation Human hg38 (2018-04-30).

In GTEx tissues where ESRP2 expression substantially varies across individuals

(e.g., breast, testis, vagina, small intestine, stomach, and prostate), it is, as expected,

negatively correlated with CD46 penultimate exon inclusion (Figure 3.11). Correlation

with ESRP1 expression cannot be performed, as the gene was filtered out for low read

counts, suggesting its low expression in differentiated GTEx tissues. As for TCGA,

the negative correlation between ESRP1/2 expression and CD46 penultimate exon

inclusion is observed in breast cancer and most cancer types (Figures 3.12 and 3.13).
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b c

d

Figure 3.10: Alternative splicing of the CD46 penultimate exon. (a) Density plots
of distributions of CD46 penultimate exon PSI values across samples, colored by isogenic
stem cells (pink) and isogenic fibroblasts (green). (b-c) Scatterplots of PSI values for CD46
penultimate exon inclusion versus normalised ESRP1 (b) and ESRP2 (c) expression across
samples. The red line illustrates the fitted Loess regression curve. The Pearson’s correlation
coefficients (r) and associated p-values are shown. (d) Genomic alignment of CD46 transcript
isoforms with penultimate exon highlighted in an orange shade (the gray shade includes the
neighboring constitutive exons to define the entire alternative splicing event).
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Figure 3.11: Scatterplots of normalised ESRP2 expression versus PSI values for
CD46 penultimate exon inclusion across GTEx tissues, altogether (a) and by
tissue (b). For each plot, the red line illustrates the fitted Loess regression curve. The
Pearson’s correlation coefficients (r) and associated p-values (P) are shown.
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Figure 3.12: Scatterplots of normalised ESRP1 expression versus PSI values for
CD46 penultimate exon inclusion across TCGA tumour types. For each plot, the
red line illustrates the fitted Loess regression curve. The Pearson’s correlation coefficients
(r) and associated p-values (P) are shown.

Legend: ACC adrenocortical carcinoma, BCLA urothelial bladder carcinoma, BRCA breast inva-

sive carcinoma, CESC cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL

cholangiocarcinoma, COAD colon adenocarcinoma, DLBC lymphoid neoplasm diffuse large B-cell

lymphoma, ESCA esophageal carcinoma, GBM glioblastoma multiforme, HNSC head and neck squa-

mous cell carcinoma, KICH kidney chromophobe, KIRC kidney renal clear cell carcinoma, KIRP

kidney renal papillary cell carcinoma, LGG brain lower grade glioma, LIHC liver hepatocellular car-

cinoma, LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, MESO mesothelioma, OV

ovarian serous cystadenocarcinoma, PAAD pancreatic adenocarcinoma, PCPG pheochromocytoma

and paraganglioma, PRAD prostate adenocarcinoma, READ rectum adenocarcinoma, SARC sar-

coma, SKCM skin cutaneous melanoma, STAD stomach adenocarcinoma, TGCT testicular germ cell

tumours, THCA thyroid carcinoma, THYM thymoma, UCEC uterine corpus endometrial carcinoma,

UCS uterine carcinosarcoma, UVM uveal melanoma.
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Figure 3.13: Scatterplots of normalised ESRP2 expression versus PSI values for
CD46 penultimate exon inclusion across TCGA tumour types. For each plot, the
red line illustrates the fitted Loess regression curve. The Pearson’s correlation coefficients
(r) and associated p-values (P) are shown. See caption of Figure 3.12 for legend.

Pancancer prognostic value of the skipping of CD46 penultimate exon

The prognostic value of a given alternative splicing event (or gene) may be evaluated

by separating subjects based on a PSI cutoff for a given alternative splicing event (or

expression cutoff for a given gene). The survival differences are then log-rank tested

based on Kaplan-Meier estimators.

We performed overall survival analysis by selecting right data censoring6, follow-up

time as days to death and the event of interest as death. Analysing days to death as

the follow-up time and death as the event of interest is known as an overall survival

analysis, that is, the study of the time until the subject’s death following diagnosis.

6psichomics supports left, right, and interval data censoring for survival analysis. Events may occur
after the last observation (right censoring, such as in the case of subjects having no event reported
during the study or dropping from it altogether), before an observation is performed (left censoring,
for instance when events happened in an uncertain time before the start of the study) or in-between
observations (interval censoring, such as when patients require periodic follow-ups and the time of an
event occurrence falls between follow-ups but is not certain) [206].
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For patients whose days to death are not available, we use days to last follow-up for

right-censoring.

In this context, we used clinical and transcriptomic data from TCGA to evaluate the

prognostic value of the skipping of CD46 penultimate exon based on overall survival

curves across TCGA tumour types to compare tumour samples with low and high

inclusion of the CD46 penultimate exon. A −log10(p-value) plot by cutoff displays

the p-values of the log-rank test of survival across multiple PSI cutoffs for the selected

alternative splicing event. The PSI cutoff maximising the significance of the survival

difference is automatically selected. The splicing of CD46 penultimate exon seems to

have prognostic value in select cancer types, such as brain lower-grade glioma and lung

adenocarcinoma (Figure 3.14).

a b

c d

Figure 3.14: Prognostic value of CD46 penultimate exon inclusion across select
TCGA cancer types. (a, b) Kaplan-Meier plots of overall survival for all patients stratified
by the respective alternative splicing event’s PSI cutoff that maximised the significance of
differences in survival between patient groups with a reasonable number of subjects within
each group. Each patient was assigned the PSI value of their tumour sample(s). (c, d)
Log-rank’s −log10(p-value) plot by PSI cutoff. Note that in panel d, for PSI values around
0.8, there are high log-rank −log10(p-value) although only one individual is being compared
against 506 subjects. Legend: LGG brain lower grade glioma, LUAD lung adenocarcinoma.

3.3.2 Time benchmarking

The runtimes required to load, quantify and analyse data from different TCGA (data

version 2016 01 28 from FireBrowse) and GTEx v7 cohorts were benchmarked. The

breast cancer cohort contains the highest number of RNA-seq samples in TCGA, thus

being the cohort for which takes more time to load, quantify and analyse alternative

splicing and gene expression data. Contrastingly, processed data from GTEx come

bundled in files containing all tissues. Although only data from specified tissues are

loaded, scanning though the large GTEx file still delays data loading. Tissues from

GTEx were loaded in pairs for subsequent differential splicing analyses (Figure 3.15A).
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GTEx Brain vs Nerve, 2574 samples

GTEx Blood Vessel vs Esophagus, 2152 samples

GTEx Colon vs Skin, 1901 samples

GTEx Heart vs Muscle, 1445 samples

TCGA Breast cancer, 1093 samples

TCGA Pan−kidney cohort, 889 samples

TCGA Glioma cohort, 676 samples
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Figure 3.15: Performance benchmark for alternative splicing analysis using RNA-
seq data from multiple TCGA and GTEx sample types. (a) Median times of 10 runs
of data loading, gene expression (GE) normalisation, skipped exon (SE) event quantification
and differential expression and splicing analysis (normal versus tumour for TCGA data or
pairwise tissue comparison for GTEx data) using psichomics. The default settings were used
during the runs. (b) Estimation of the time complexity of each of the aforementioned steps
in psichomics. Randomly generated synthetic datasets of different sample size s were used as
input. Equations and coefficient of determination (R2) for the best fits are displayed.

Synthetic datasets for gene expression and exon-exon junction quantification of mul-

tiple sample sizes were generated, based on TCGA data distributions, to determine the

time complexity of each step in psichomics as a function of the number of input samples

s (Figure 3.15B). Assuming a constant number of genes (20 000 in the benchmark) or

exon-exon junctions (200 000), the time taken to load data grows quadratically with s.

Gene expression normalisation and differential expression are based on commonly-used,

time-efficient bioinformatics tools and the times taken for each also grow quadratically

with s. Alternative splicing quantification is associated with element-wise operations

on matrices of dimensions s by the number of alternative splicing events and takes a

runtime approximately proportional to the square of s, for a given number of alternative

splicing events (around 9000 for each benchmarked run). Finally, differential splicing

is based on multiple, distinct statistical analyses of alternative splicing quantification

data and grows linearly with s.

3.3.3 Alternative splicing quantification benchmarking

Although jSplice’s [174] and DIEGO’s [175] splicing quantifications rely on junction

read counts, their alternative splicing module expression and junction usage metrics,

respectively, are not directly comparable with psichomics’ PSI values. To evaluate their

accuracy in the absence of any known tool with the same input (junction read counts)

and output metric (PSI) as psichomics, psichomics-estimated PSI values were com-

pared to those estimated by RT-PCR and using VAST-TOOLS [126] across multiple

tissue and cell line samples from human, mouse and chicken [127]. VAST-TOOLS fol-
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lows an analogous, and therefore more directly comparable, procedure for computing

PSI values and there is a substantial overlap between the alternative splicing event

annotations used by the two tools. psichomics estimates highly correlate with both

others, particularly for mouse and human (Figure 3.16), suggesting robustness and

reproducibility in alternative splicing quantification by psichomics. Of note, the lower

correlation for chicken samples is attributable to a single outlier, as its removal increases

the correlation coefficients between psichomics and RT-PCR estimates (Pearson’s r =

0.87, p-value < 0.01; Spearman’s rho = 0.87, p-value < 0.01) and psichomics and

VAST-TOOLS estimates (Pearson’s r = 0.93, p-value < 0.01; Spearman’s rho = 0.94,

p-value < 0.01).
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Figure 3.16: Comparison between PSI values estimated by psichomics, VAST-
TOOLS and RT-PCR across multiple tissue and cell line samples from human, mouse and
chicken. Pearson’s (r) and Spearman’s (rho) correlation coefficients and respective p-values
are shown. Linear regression lines are coloured per species with the respective 95% confidence
interval represented as their shades. Identity line in orange.

To assess the influence of RNA-seq read coverage on psichomics PSI estimates,

different numbers of junction reads per event were simulated for different given PSI

values (10 000 times for each combination). Figure 3.17 shows that the accuracy of PSI

estimation by psichomics is expectedly sensitive to junction read coverage, particularly

for intermediate PSI values, with 90% prediction intervals < 0.1 for coverage higher

than a few hundred reads.

Alternative splicing events annotated by TCGASpliceSeq [132], an online tool that

displays pre-computed PSI values across multiple TCGA tumour types, were matched

to those from psichomics based on their genomic coordinates. In total, 321 183 of

757 749 (42%) skipped exon, 70 837 of 126 725 (56%) alternative 5′ splice site and 90

940 of 155 799 (58%) alternative 3′ splice site events were successfully matched. When

available from both programs, PSI estimates for each of the 482 960 alternative splicing

events in each of the 9 913 matched samples were compared between TCGASpliceSeq

and psichomics, being highly correlated (N = 92 444 302; Pearson’s r = 0.97, p-value

< 1015; Spearman’s rho = 0.94, p-value < 1015; Figure 3.18).
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Figure 3.17: Dependence of accuracy of psichomics PSI quantification on event
read coverage. (a) Comparison between simulated ”real” PSI values and the mean, 95th
percentile and 5th percentile of their corresponding PSI estimates for different simulated
numbers of junction reads. (b) 90% prediction interval (i.e., difference between the 95th and
the 5th percentiles) across different number of junction reads for simulated ”real” PSI values.
(c,d) Density plots of PSI estimates for each simulated ”real” PSI and junction read coverage
combination (except those involving PSI = 0 and PSI = 1). Each ”real” PSI and junction
read coverage combination was simulated 10 000 times.
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Figure 3.18: Correlation of PSI estimates for TCGA samples between
TCGASpliceSeq and psichomics. For A3SS events, PSI values from psichomics cor-
respond to 1–PSI from TCGASpliceSeq (the splice site deemed as alternative in A3SS events
by TCGASpliceSeq is constitutive in psichomics and vice-versa). Pearson’s (r) and Spear-
man’s (rho) correlation coefficients and respective p-values are shown. Identity line in red.

3.4 Conclusion

Alternative splicing is a regulated molecular mechanism involved in multiple cellular

processes and its dysregulation has been associated with diverse pathologies [1, 207–

209]. The advent of next-generation sequencing technologies has allowed the investi-

gation of transcriptomes of human biological samples to be expanded to alternative

splicing. RNA-seq data, like those yielded by the GTEx and TCGA projects, are in-
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deed playing crucial role in the improvement of our insights into the role of alternative

splicing in both physiological and pathological contexts [1–3,74,208]).

However, the most commonly used tools for alternative splicing analyses currently

do not allow researchers to fully benefit from the wealth of pre-processed RNA-seq data

made publicly available by the aforementioned projects. For instance, they lack support

for estimating PSIs based on splice junction read counts. Such functionality would allow

users to overcome the difficulties caused by the raw RNA-seq data from GTEx and

TCGA being under controlled access and, more importantly, their processing requiring

computational resources inaccessible to the majority of research labs. psichomics thus

exploits pre-processed alternative splicing annotation and exon–exon junction read

count data from TCGA and GTEx, two of the richest sources of molecular information

on human tissues in physiological and pathological conditions, as well as recount2 and

user-owned data, allowing researchers to hasten alternative splicing quantification and

subsequent analyses by avoiding the time-consuming alignment of RNA-seq data to a

genome or transcriptome of reference followed by splice junction detection.

Together with support for the integration of molecular and sample-associated clini-

cal information, the group creation functionalities featured in psichomics ensure full

customisability of data grouping for downstream analyses. Interesting groups to com-

pare in TCGA, for instance, may range from the simple contrast between reformed and

current smokers in lung cancer to complex combinations of gender, race, age, country

and other subject attributes across multiple cancers. When survival data are available,

survival analyses can be performed on samples by PSI or gene expression levels, thereby

assessing the putative prognostic value of a respective molecular feature.

To ensure researchers with different skills can take the most out of psichomics,

we added an intuitive and more accessible graphical interface, while still supporting

a command-line interface. psichomics has recently been deployed online at compbio.

imm.medicina.ulisboa.pt/psichomics7 to allow the on-demand use of the latest version

of psichomics with no installation required, levering the intuitive graphical interface

to make alternative splicing analyses more enticing to less computationally-inclined

biomedical researchers.

Notwithstanding its merits, psichomics only quantifies alternative splicing events

based on exon–exon junction read counts, limiting the types of alternative splicing

events profiled. For instance, exon–intron junction, exon body and intron body quan-

tifications are vital to confirm intron retention and alternative 5′ and 3′ UTR events over

further transcriptional variations [178]. However, although GTEx (but neither TCGA

nor recount2) readily provides intron and exon body read quantification for retrieval,

none provides exon–intron junction quantification. To overcome this, psichomics al-

lows to import alternative splicing events quantified from other programs, including

7More information in chapter 5: CompBio app server.
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VAST-TOOLS that quantifies intron retention events.

Another limitation is psichomics’ reliance on existing alternative splicing event an-

notations and an on the pre-processing of RNA-seq data by third-party pipelines (as is

the case for GTEx, TCGA and recount2), depriving the user of the flexibility to identify

de novo alternative splicing events. Even so, when FASTQ or BAM files are accessi-

ble, psichomics supports the loading of alternative splicing annotations generated by

different programs that take those files as input, namely rMATS [128], which is able

to generate de novo annotations8.

Since its publication, psichomics has been used to analyse alternative splicing in

multiple scientific articles, such as [11–14]. Based on these citations and positive user

feedback, we believe that fellow researchers and clinicians are able to intuitively employ

psichomics to assist them in uncovering novel splicing-associated prognostic factors

and therapeutic targets, as well as in advancing our understanding of how alternative

splicing is regulated in physiological and disease contexts.

8More information in nuno-agostinho.github.io/psichomics/articles/AS_events_preparation.
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Chapter 4

cTRAP

During a stormy day in our 2017 Madeira Lab retreat, we brainstormed the unique

propositions of the lab that could most benefit the scientific community. One idea that

emerged was to make it easier to identify putative causal perturbations by comparing

the results of a custom differential gene expression analysis against the large-scale data-

base of differential expression profiles from CMap [15], a repository of transcriptomic

signatures for thousands of genetic (gene overexpression or knockout) and pharmaco-

logical perturbations of human cancer cell lines.

We thus developed cTRAP, an R package and web app to compare user-provided

differential gene expression profiles with the perturbations available from CMap, al-

lowing to infer putative candidate molecular causes for the observed differences, as well

as compounds that may promote or revert them (Figure 4.1).

Figure 4.1: cTRAP global interface screenshot (21 Dec 2021).
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After releasing the first version in Bioconductor, multiple features were added

(Table 4.1). Inspired by the method used to compare gene expression changes against

the CMap database, we also added a way to predict drugs targeting altered genes by

using datasets that featured both drug sensitivity and gene expression data for many

cell lines. Additionally, cTRAP also allows to analyse the enrichment of molecular

descriptor sets for compounds from NCI-60 and CMap. More recently, we developed a

Shiny-based visual interface to host cTRAP online with support for user sessions and

background tasks.

Table 4.1: Major cTRAP milestones.

Version Release date Main features

1.0 2 Nov 2018 Compare differential expression profiles against CMap dataa

1.4 12 Nov 2019
Predict targeting drugs using NCI-60, CTRP and GDSC data
Analyse enrichment for molecular descriptors of compounds
Load and process 21GB CMap z-scores file by chunks

1.8 30 Oct 2020 Include graphical functions to load data and analyse results

1.10 20 May 2021
Improve speed and memory usage when comparing data
Set custom size for data chunks (1 GiB by default)

1.12 28 Oct 2021 Add web server support (optimised to run in ShinyProxy)b

a First Bioconductor release. b First version available online.

The associated cTRAP manuscript (of which I am a co-first and co-corresponding

author) is in preparation for submission to an international peer-reviewed scientific

journal and shares similarities with this chapter.

4.1 Background

Understanding the biological mechanisms underlying uncharacterised phenotypes is

crucial to unravel the physiological role of genes and the mechanism of action of com-

pounds, alongside their therapeutic potential [15, 135–137, 210, 211]. Comprehending

novel genetic and pharmacological perturbations – including the modulation of the

expression of a gene or induction of an unknown compound in a cellular system – can

be achieved by profiling genome-wide gene expression, allowing to analyse the whole

cellular transcriptional response [210].

The gene expression profile of experimental phenotypic changes can be compared

with a database of characterised transcriptomic signatures of known perturbagens, in

order to infer putative molecular causes of the observed phenotype [15, 210]. This

approach requires a large, heterogeneous and representative dataset containing gene

expression profiles associated with known perturbagens across multiple cell lines [210].
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Such is the case of the Connectivity Map (CMap), a repository of transcriptomic sig-

natures of thousands of genetic and pharmacological perturbations of human cancer

cell lines [15].

CMap data can be explored and compared with user-provided data via a col-

lection of user-friendly web apps from the CMap and LINCS Unified Environment

(clue.io) [15]. However, clue.io limits the maximum number of input genes for CMap

queries (150 up-regulated and 150 down-regulated genes), is difficult to automate for

downstream analyses and cannot be run using local computing resources. Furthermore,

clue.io does not currently integrate with drug sensitivity datasets to further assist in

pinpointing compounds that selectively target cells [211].

We thus developed cTRAP (Figure 4.2), an R package and web app that identi-

fies potentially causal molecular perturbations by seamlessly comparing user-provided

differential gene expression results with those available from CMap. cTRAP also sup-

Figure 4.2: cTRAP analyses. cTRAP allows to perform three types of analyses: (1)
rank CMap perturbations based on the similarity between their associated gene expres-
sion alterations and user-provided differential gene expression values, (2) predict targeting
drugs by comparing user-provided differential gene expression values with matrices of cor-
relation between gene expression and drug sensitivity data across human cell lines and (3)
analyse drug descriptor set enrichment (v. main text) using the compound list from
either the first or second analysis.
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ports comparisons with gene expression/drug sensitivity associations derived from the

NCI-60 [16], the Cancer Therapeutics Response Portal (CTRP) [17] and the Genomics

of Drug Sensitivity in Cancer (GDSC) [18], to identify compounds that could target

the phenotypes associated with the user-provided differential expression profiles [211].

In cTRAP, similarity between differential gene expression results is measured by gene

set enrichment [15, 19] and correlation scores. Finally, cTRAP can also analyse a list

of compounds resulting from previous analyses for the enrichment in sets of computed

molecular descriptors (e.g., number of oxygen atoms or aromatic rings) from CMap and

NCI-60 compounds, allowing to identify common chemical properties of compounds of

interest.

cTRAP is available online as a web app at compbio.imm.medicina.ulisboa.pt/cTRAP,

but can be locally installed using Bioconductor (bioconductor.org/packages/cTRAP) or

Docker (nunoagostinho/ctrap). The source code of cTRAP is available at github.com/

nuno-agostinho/cTRAP.

4.2 Materials and methods

From a vector of user-provided differential expression results (e.g., t-statistic values)

with respective gene symbols, cTRAP can return a list of CMap perturbations ranked

by similarity or predict candidate drugs for targeting the associated phenotype. More-

over, cTRAP can also analyse the enrichment of drug sets in an ordered vector of

compounds to identify common chemical characteristics (Figures 4.3 and 4.4).

Figure 4.3: cTRAP workflow. A vector of differential gene expression values con-
taining gene names is required to rank similar perturbations and to predict targeting drugs.
Drug descriptor set enrichment analysis can then be performed based on those results.
CMap perturbagen data, gene expression/drug sensitivity correlation matrices and molecular
descriptors for drug sets can be automatically downloaded by cTRAP.
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Figure 4.4: Visual representation of cTRAP’s file structure. As usual in an R
package, the R folder contains the scripts with cTRAP functions and data. dev is a custom
folder that stores supporting scripts (e.g., test workflows and benchmarks); its contents are
not included when building the R package.

4.2.1 ENCODE knockdown data

Using cTRAP, we can query and download ENCODE knockdown (and respective con-

trol) samples [212] for multiple cell lines, filter genes/samples with low coverage from

gene expression data, convert from ENSEMBL gene identifiers to gene symbols, and

perform differential gene expression analysis using voom(), lmFit() and eBayes() from

the limma R package [156]. First, voom() is used with the quantile normalisation to

transform count data to log2 CPM (counts per million) and estimate the mean-variance

relationship to compute weights used in linear modelling. Gene-wise linear models are

then fitted using lmFit() between the knockdown and the control samples, followed

by moderated t-tests and the calculation of log-odds of differential expression, using

eBayes() for empirical Bayes moderation of standard errors.

cTRAP includes an example dataset (diffExprStat) with the differential gene

expression results (t-statistic values) associated with EIF4G1 knockdown in HepG2

cells (Listing 4.1).

Listing 4.1: Code to obtain example dataset diffExprStat.

1 library(cTRAP)

2 ENCODEmetadata <- downloadENCODEknockdownMetadata(cellLine="HepG2",

3 gene="EIF4G1")

4 ENCODEsamples <- loadENCODEsamples(ENCODEmetadata)[[1]]

5 counts <- prepareENCODEgeneExpression(ENCODEsamples)

6

7 # Remove low coverage genes (>= 10 counts shared by >= 2 samples)

8 minReads <- 10
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9 minSamples <- 2

10 filter <- rowSums(counts[ , -c(1, 2)] >= minReads) >= minSamples

11 counts <- counts[filter , ]

12

13 # Convert ENSEMBL identifiers to gene symbols

14 counts$gene_id <- convertGeneIdentifiers(counts$gene_id)
15

16 # Perform differential gene expression (DGE) analysis

17 diffExpr <- performDifferentialExpression(counts)

18

19 # Get t-statistic values of DGE and respective gene names

20 diffExprStat <- diffExpr$t
21 names(diffExprStat) <- diffExpr$Gene_symbol

4.2.2 Ranking of similar CMap perturbations

CMap perturbations can be categorised into gene knockdown, gene over-expression

and compounds. In cTRAP, available perturbation types and respective condi-

tions can be enquired using the function getCMapConditions() that will download

CMap perturbation metadata. Afterwards, filterCMapMetadata() allows to filter

the metadata based on selected perturbations types, cell lines, dosages and time

points, allowing to specifically load only the desired data in downstream analyses.

This information is passed to prepareCMapPerturbations() to download (if file

Figure 4.5: Loading data from CMap perturbations. Input arguments support either
the data themselves (as data frames) or their respective file path. If the file path directs to
a non-existing file, data are first downloaded and then saved to the given file path. To avoid
high memory usage, CMap perturbations’ differential expression z-scores (CMap zscores) are
not loaded into memory when a file path is given. Instead, only metadata are loaded into a
dummy object that can be subset as a normal R object for downstream analyses.
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is not found) and process CMap differential expression normalised z-scores (GCTX

file) and gene and compound information (Figure 4.5). Given that the GCTX

file size is around 21GB, we recommend to download the file directly from GEO

GSE92742’s Level 5 data link (ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/

GSE92742/suppl/GSE92742_Broad_LINCS_Level5_COMPZ.MODZ_n473647x12328.gctx.gz).

After comparing differential expression normalised z-scores from select

CMap perturbations against user-provided differential expression results,

rankSimilarPerturbations() returns a table with ranked CMap perturba-

tions. Ranks closer to the top indicate perturbations whose differential expression

profiles are more similar to the user-provided data, i.e., CMap perturbations that

potentially mimic the user-provided transcriptomic changes, whereas higher ranks

define perturbations that may revert those changes.

To rank CMap perturbations, cTRAP performs Spearman’s and Pearson’s corre-

lations between the user-provided statistics for differential expression and values from

CMap perturbations, and calculates a GSEA-based score (described below). All three

methods are run by default. For each method, the similarity scores are averaged across

multiple cell lines for the same conditions (i.e., same exposure time, dose and induced

compound or gene target) and those averages are then used to rank CMap perturba-

tions. By default, results for individual cell lines are provided for informative purposes

(e.g., to check the heterogeneity of response across cell lines) but not used when ranking.

The different ranking scores are combined via the rank product [213], ultimately used

to sort the CMap perturbations.

The GSEA-based score is calculated via the following steps:

1. Order genes by the user-provided differential expression statistics.

2. Define the top 150 (by default) and bottom 150 (by default) genes as two sets.

3. For each CMap perturbation, sort genes by their differential expression z-scores

and calculate the Weighted Connectivity Score (WTCS), a composite and bi-

directional version of the weighted Kolmogorov-Smirnov enrichment statistic (ES)

[15] where GSEA is run for the most up- and down-regulated genes from the

user’s differential expression profile. The WTCS is the mean between EStop and

ESbottom; however, WTCS = 0 if both sets have the same sign [15].

As an example, for a CMap perturbation with a similar differential expression

profile to user’s input, we expect to find higher enrichment of the top gene set in the

most up-regulated genes and higher enrichment of the bottom gene set in the most

down-regulated genes.

To minimise peak RAM usage, prepareCMapPerturbations() downloads the

GCTX file (a customised HDF5 file) for the CMap’s perturbation differential ex-
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pression z-scores (if not previously downloaded) and returns its path without loading

the file content itself, creating a dummy object that only stores its file path, per-

turbation names, gene symbols and other associated metadata (Figure 4.5). Based

on the file path of this dummy object (that can be subset like a normal R object),

rankSimilarPerturbations() loads a ≤ 1 GiB chunk1, compares its differential ex-

pression z-score values against user-provided data and repeats the analysis for the next

chunk (Figure 4.6). For each chunk, multithreaded support for Linux and macOS can

be enabled per comparison method via parallel::mclapply()2, enabled by setting

the number of threads to 2 or higher.

Figure 4.6: cTRAP similarity analysis. User-provided differential gene expression sta-
tistics are compared with reference data (e.g., differential expression z-scores of CMap per-
turbations) and ranked by similarity. If the reference is contained in an HDF5 file, the file
is processed in 1 GiB chunks (by default) to minimise peak memory usage. These analyses
support multiple threads in Linux and macOS.

The ranked list from rankSimilarPerturbations() can be plotted using plot(),

showing a list of all results ordered by a given score or either a scatterplot or GSEA

plot of the results for a single CMap perturbation (examples shown in subsection 4.3.1:

Case study).

1The default 1 GiB (10243 bytes) allows loading chunks of around 10000 columns and 14000 rows
(10000× 14000× 8 bytes/10243 = 1.04 GiB). CMap’s GCTX file has around 14000 rows (genes).

2mclapply() parallelises tasks via forking where multiple child processes are spawned and share
their parent’s memory. Forking is unavailable in Windows and its alternatives were deemed unsatis-
factory, given that they copy 1GiB chunks per thread, significantly slowing down runtime.
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4.2.3 Prediction of targeting drugs

Gene expression and drug activity data across multiple cell lines are available from

NCI-60 [16], Cancer Therapeutics Response Portal (CTRP) 2.1 [17] and Genomics

of Drug Sensitivity in Cancer (GDSC) 7 [18] (Table 4.2). For each source, the

prepareExpressionDrugSensitivityAssociation() function performs the following:

1. download all the necessary data depending on given source;

2. perform Spearman’s correlation (by default) across cell lines between the expres-

sion of each gene and the sensitivity to each drug;

3. generate a matrix with the correlation coefficients per gene and drug; and

4. prepare metadata for downstream analyses, including gene, compound and cell

line information from each source.

As this process can take multiple hours to finish for all sources, the resulting

objects were stored online for each aforementioned source and can be listed with

listExpressionDrugSensitivityAssociation() and downloaded and loaded into R

using loadExpressionDrugSensitivityAssociation().

A positive correlation coefficient for a given gene and drug suggests a gene whose

expression is associated with sensitivity to that drug across multiple cell lines. By

calculating the susceptibility of genes for each annotated drug, we can then correlate

this information with a given phenotype to rank compounds based on their poten-

tial to selectively target the queried (or similar) phenotypes, i.e., to selectively target

phenotypes characterised by the overexpression of genes conferring susceptibility to the

compounds.

Table 4.2: Drug sensitivity data-
set statistics. Number of screened
compounds and human cancer cell lines
available in cTRAP datasets.

Source Compounds Cell lines

NCI-60 21 738 60

GDSC 7 266 983

CTRP 2.1 545 823

To identify compounds that could tar-

get the phenotype associated with spe-

cific differential expression profiles, we use

predictTargetingDrugs() with those pro-

files and a correlation matrix of gene expres-

sion and drug sensitivity as input. The cor-

relation coefficients between gene expression

and drug sensitivity for each drug are com-

pared against user-provided differential ex-

pression results by Spearman’s and Pearson’s

correlation and WTCS (as performed when ranking CMap perturbations, results from

comparison methods are ranked and then those rankings are finally used to calculate

the rank product’s rank). predictTargetingDrugs() returns a table with ranked

predicted targeting drugs and their respective correlation coefficients and WTCS
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(Figure 4.6). The ranks closer to the top comprise drugs that may target phenotypes

similar to the user-provided differential expression profile.

The resulting object can be plotted with plot(), showing a list of all results ordered

by a given score or either plots for a single predicted targeting drug. The func-

tion plotTargetingDrugsVSsimilarPerturbations() compares the results from pre-

dicted targeting drugs and CMap perturbations that may mimic or revert the observed

phenotype. For the available compound identifiers in the metadata pertaining from

the different datasets (e.g., compound name, Broad ID, PubChem CID and SMILES),

the function will automatically select the identifiers with higher number of matching

values between the two datasets, unless the identifiers are explicitly defined by the user.

A scatterplot is then returned using, by default, the rank product’s rank of targeting

drugs against the rank product’s rank of similar perturbations (examples shown in

subsection 4.3.1: Case study).

4.2.4 Drug descriptor set enrichment analysis

Juan Carlos, a former member of the lab, computed drug descriptors (e.g., molecu-

lar weight and number of aromatic rings) for compounds from CMap and NCI-

60 based on their three-dimensional (3D) and two-dimensional (2D) characteris-

tics. These descriptors were uploaded to compbio.imm.medicina.ulisboa.pt/public/cTRAP/

and the resulting files can be automatically downloaded and processed to R using

loadDrugDescriptors().

prepareDrugSets() allows to create sets of descriptors. By default, the function

creates a maximum of 15 sets per drug descriptor. For each alphanumeric descriptor,

one set is created per unique value of that descriptor. Alphanumeric descriptors con-

taining more than 15 unique values (by default) will be discarded. For numerical

descriptors, prepareDrugSets() internally uses the binr::bins() function to create

evenly-distributed bins of drug descriptors, where each set contains a minimum num-

ber of points equal to the number of non-missing values divided by the number of

maximum sets (15 by default) divided by a constant (5 by default).

The analyseDrugSetEnrichment() function analyses the enrichment of the cre-

ated drug descriptor sets in a named numeric vector or an object returned from

rankSimilarPerturbations() or predictTargetingDrugs(). The GSEA-based en-

richment analysis is internally performed using fgsea::fgsea() [214]. The resulting

object can be plotted with plot(), showing a list of all results ordered by a given score

or plots for a single predicted targeting drug.
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4.2.5 Time and memory benchmarking

We measured elapsed time using R’s Sys.time() immediately before and after ranking

similar CMap perturbations, predicting targeting drugs (using NCI-60 expression and

drug sensitivity association, the most time-consuming option) and performing drug set

enrichment analysis using a development version of cTRAP 1.10 (commit 296f9b2 from

January 2022). As input, we used the t-statistics for the differential expression between

EIF4G1 knockdown versus control based on ENCODE gene expression data for cell

line HepG2 (cTRAP::diffExprStat object).

Using the same input, we measured heap memory usage of cTRAP 1.10 dev

(296f9b2) while ranking CMap perturbations when running R 4.0.3 in debug mode

with heaptrack 1.0.03. For R to work properly with heaptrack, the /usr/bin/R file

was edited – all lines of the last if statement were commented out, except for:

exec ${debugger} ${debugger_args} "${R_binary}" ${args} "${@}"

Afterwards, we benchmarked the memory usage while running cTRAP with:

R -d heaptrack -f ${cTRAP_Rscript} --args ${cTRAP_Rscript_args}

All benchmarks were run in a workstation with Ubuntu 18.04.5 LTS, 768 GB of

RAM memory and 72 cores (Intel Xeon Gold 6254 CPU @ 3.10GHz). The benchmark

scripts are open-source and describe how to profile time and memory in cTRAP and

plot subsequent results: github.com/nuno-agostinho/cTRAP/tree/master/dev/benchmark.

4.2.6 Continuous integration

Akin to psichomics (subsection 3.2.13: Continuous integration), GitHub Actions are

used with cTRAP to update its Docker images in Docker Hub (nunoagostinho/ctrap) and

GitHub (github.com/nuno-agostinho/cTRAP); update website documentation via roxygen

[145] and pkgdown [215]; and check for errors and warnins when building cTRAP in

Windows, macOS and Linux.

4.3 Results

cTRAP’s web app is available at compbio.imm.medicina.ulisboa.pt/cTRAP. Alternatively,

users can install cTRAP, allowing them to use local computing resources. Similarly

to psichomics, cTRAP offers both graphical and command-line interfaces. Although

most features are common to both interfaces, we recommend less experienced users to

opt for the Shiny-based graphical interfaces.

3heaptrack is an open-source memory allocation profiler available at github.com/KDE/heaptrack

62

https://github.com/nuno-agostinho/cTRAP/commit/296f9b2
https://github.com/nuno-agostinho/cTRAP/commit/296f9b2
https://github.com/nuno-agostinho/cTRAP/tree/master/dev/benchmark
https://hub.docker.com/r/nunoagostinho/ctrap
https://github.com/nuno-agostinho/cTRAP
https://compbio.imm.medicina.ulisboa.pt/cTRAP
https://github.com/KDE/heaptrack


4.3.1 Case study

To showcase cTRAP, we used RNA-seq data from EIF4G1 shRNA knockdown experi-

ments in the HepG2 cell line from the ENCODE project [212]. EIF4G1 (Eukaryotic

Translation Initiation Factor 4 Gamma 1) encodes for the EIF4G1 scaffolding protein

that contains binding sites for subunits of the EIF4F protein complex, required to

initiate cap-dependent translation [212, 216, 217]. EIF4G1 is involved in cancer cell

proliferation and migration and EIF4G1 knockdown has been suggested to impair

tumourigenicity in prostate and epithelial cancer cells [216,217].

Using cTRAP functions, we downloaded pre-processed gene quantification data for

EIF4G1 knockdown (ENCFF955TXI and ENCFF049UZV, two replicates) and con-

trols (ENCFF657KMW and ENCFF726AVT) from ENCODE [212]. Afterwards, we

quantilise-normalised the gene expression data with voom [156] and performed differen-

tial expression analysis with limma [156].

Comparison with CMap perturbations

We compared ENCODE’s t-statistic for the EIF4G1 knockdown expression changes

against the normalised z-scores associated with CMap’s knockdown and small mole-

cule perturbations in HepG24. The comparisons were performed using Spearman’s

correlation, Pearson’s correlation and WTCS (using the default 150 up-regulated and

150 down-regulated genes). All results were ordered based on the rank product’s rank.

Within CMap knockdown perturbations, the top result is expectedly the knockdown

of EIF4G1 in CMap data, working as a positive control (Table 4.3 and Figure 4.7).

Table 4.3: Top 10 most similar CMap HepG2 gene knockdown perturbations
compared to EIF4G1 knockdown profile. Results ordered by rank product’s rank. Legend:
rho is Spearman’s coefficient and r is Pearson’s coefficient.

Gene rho r WTCS Gene description

EIF4G1 0.18 0.19 0.49 eukaryotic translation initiation factor 4 gamma, 1
SKIV2L 0.14 0.18 0.51 Ski2 like RNA helicase
MECP2 0.19 0.18 0.39 methyl-CpG binding protein 2
KIF20A 0.17 0.18 0.46 kinesin family member 20A
MEST 0.17 0.19 0.42 mesoderm specific transcript
COPS5 0.18 0.18 0.42 COP9 signalosome subunit 5
PPIH 0.19 0.17 0.44 peptidylprolyl isomerase H
STAT1 0.18 0.19 0.38 signal transducer and activator of transcription 1
KIAA0196 0.19 0.18 0.35 KIAA0196
SQRDL 0.19 0.17 0.40 sulfide quinone reductase-like (yeast)

4This comparison could also be performed to perturbations in a different cell line (or in all cell
lines using the average result across cell lines).
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Figure 4.7: Comparison of the EIF4G1 knockdown experiments in HepG2 cells
between ENCODE and CMap. (a) Scatterplot of differential gene expression values of
EIF4G1 knockdown for common genes between ENCODE (t-statistics; X-axis) and CMap
(normalised z-scores; Y-axis). (b-d) GSEA plot of the enrichment of the most up- (b) and
down-regulated (c) genes from ENCODE EIF4G1 knockdown relative to the ranked genes
from the CMap perturbation (d). The genes are ranked (X-axis) based on the CMap nor-
malised z-scores (Y-axis).

Afterwards, we compared the EIF4G1 knockdown gene expression changes against

those associated with CMap compound perturabtions in HepG2 (Table 4.4). The

knockdown of EIF4G1, a gene that encodes for a translation initiation factor subunit

relevant in the assembly of the EIF4F complex for initiation of cap-dependent trans-

lation [212, 216, 217], shows a similar expression profile to the perturbation caused by

homoharringtonine, a translation elongation inhibitor.

Table 4.4: Top 10 most similar CMap HepG2 compound perturbations compared
to the differential expression profile of EIF4G1 knockdown in HepG2 cells from ENCODE.
Results ordered by rank product’s rank. Legend: rho is Spearman’s coefficient, r is Pearson’s
coefficient and Time is the exposure time.

Compound rho r WTCS Dose Time Mechanism of action

homoharringtonine 0.23 0.21 0.44 10 µM 6 h protein synthesis inhibitor
homoharringtonine 0.22 0.21 0.42 10 µM 24 h protein synthesis inhibitor
BRD-K51592837 0.21 0.21 0.42 30 µM 24 h
wortmannin 0.13 0.22 0.50 10 µM 24 h PI3K inhibitor
AKT-inhibitor-IV 0.19 0.21 0.48 500 nM 24 h
thioridazine 0.15 0.21 0.50 10 µM 24 h dopamine receptor antagonist
BRD-K45534781 0.20 0.21 0.46 10 µM 24 h
BRD-K79826210 0.18 0.21 0.46 30 µM 24 h
anisomycin 0.22 0.21 0.40 10 µM 24 h DNA synthesis inhibitor
puromycin 0.23 0.23 0.27 10 µM 24 h protein synthesis inhibitor

Predicted targeting drugs

We can infer compounds targeting the phenotypes associated with the input differen-

tial expression profile by comparing them against gene expression and drug sensitivity
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associations. Gene expression alteration profiles associated with increased drug sensi-

tivity suggest the susceptibility of that (and similar) phenotypes for that compound,

whereas profiles associated with decreased drug sensitivity suggest their resistance. We

used the gene expression and drug sensitivity association based on CTRP 2.1 to infer

targeting drugs for the EIF4G1 knockdown’s differential expression profile (Table 4.5).

Compounds were ranked by their relative targeting potential based on the input dif-

ferential expression profile (i.e., the 1st-ranked compound has higher targeting potential

than the 2nd-ranked one).

Table 4.5: Top 10 CTRP targeting drugs compared to the differential expression profile
of EIF4G1 knockdown in HepG2 cells from ENCODE. Results ordered by rank product’s
rank. Legend: rho is Spearman’s coefficient and r is Pearson’s coefficient.

Compound rho r WTCS Mechanism of action

BRD-K75293299 0.14 0.13 0.33 product of diversity oriented synthesis
palmostatin B 0.12 0.12 0.36 inhibitor of acyl-protein thioesterase 1
FGIN-1-27 0.13 0.11 0.27 TSPO activator
niclosamide 0.054 0.067 0.39 inhibitor of STAT3 signaling
JW-55 0.094 0.091 0.29 inhibitor of tankyrase
968 0.10 0.080 0.21 inhibitor of glutaminase
bafilomycin A1 0.071 0.072 0.32 inhibitor of the vacuolar-type H+-ATPase
LY-2157299 0.13 0.12 0.0 TGFBR1 inhibitor
BRD-K49290616 0.084 0.079 0.26 product of diversity oriented synthesis
BRD8899 0.088 0.073 0.25 inhibitor of serine/threonine kinasase STK33

For drugs in common between the two analyses (i.e., between CTRP and CMap),

we also compared the ranks of targeting potential and similarity with CMap pertur-

bations towards the EIF4G1 knockdown differential expression profile (Table 4.6 and

Figure 4.8). This strategy highlights compounds that may both revert expression

changes and target cells with a similar phenotype to the input differential expres-

Table 4.6: Drugs that may target the EIF4G1 knockdown phenotype and revert
the associated expression changes. Table of predicted CTRP 2.1 targeting drugs against
similarity scores from CMap compound perturbations. Legend: Time is the exposure time.

Compound Dose Time Mechanism of action

FGIN-1-27 10 µM 6 h TSPO activator
simvastatin 10 µM 6 h inhibitor of HMG-CoA reductase
lovastatin 40 µM 6 h inhibitor of HMG-CoA reductase
blebbistatin 40 µM 6 h inhibitor of myosin II ATPases
CAY10576 5 µM 6 h inhibitor of IKK-epsilon
Compound 1541A 10 µM 6 h activators of caspases 3, 6 and 7
NSC 74859 100 µM 6 h inhibitor of STAT3
ML334 diastereomer 500 nM 24 h inhibitor of KEAP1-NFE2L2 interaction
GMX-1778 100 nM 6 h inhibitor of NAMPT
isonicotinohydroxamic acid 0.04 µM 24 h inhibitor of HDAC6
pevonedistat 10 µM 6 h inhibitor of Nedd-8 activating enzyme
GW-843682X 10 µM 6 h inhibitor of PLK1 and PLK3
purmorphamine 40 µM 6 h activator of smoothened receptor
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sion [211]. However, the association between those ranks is not statistically significant

according to Fisher’s exact test. Nevertheless, EIF4G1 depletion is associated with cell

proliferation impairment by increasing levels of cell cycle inhibitor p27, thereby pro-

moting autophagy [218], whereas top candidate targeting drugs purmorphamine [219]

and blebbistatin [220] have been reported to inhibit autophagy.

a b

Figure 4.8: Drugs that may target the EIF4G1 knockdown phenotype and revert
the associated expression changes. Scatter plot of predicted CTRP 2.1 targeting drugs
against similarity scores from CMap compound perturbations based on rank product’s rank
(a) and Spearman’s coefficient (b) for both datasets. The Spearman’s coefficient results are
displayed for illustrative purposes. The 13 compounds amongst both the top 25% compounds
that may revert EIF4G1 knockdown and the top 25% targeting drugs are highlighted.

Drug set enrichment analysis

In order to elucidate a potential consensus in the modes of action of the most promising

CMap chemical perturbations, we analysed their enrichment in 2D molecular descriptor

sets (computed from all CMap compounds by collaborator Juan Carlos Gómez Verjan,

INGER Mexico).

Enrichment scores are provided based on the signal of the ranked metric, yet ranks

are only positive. As such, we centre the ranking so that the top-ranked compounds’

values are positive, the bottom-ranked compounds’ are negative and the middle-ranked

compound is 0 (the additive inverse of the ranking is used so that the top-ranked

compounds are positive after scaling). The values are also scaled to hint to the user

that the values were transformed.

Based on these results (Figure 4.9), the number of rings closures associated with

CMap chemical perturbations that mimic the EIF4G1 knockdown phenotype seems

lower (between 0 and 2) than for those perturbations that revert the phenotype

(between 6 and 14), potentially indicating a chemical property associated with the

phenotype that could be interesting to further study. The semblance between the drug

sets associated with 2 rings closures and 0 or 1 is due to how cTRAP generates drug
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sets (described in subsection 4.2.4: Drug descriptor set enrichment analysis). If

these (or other) sets are usually associated in different contexts, this may suggest the

need to further optimise the default generation of drug sets.

(a) Rings Closures: 6 to 14 (b) Rings Closures: 0 to 1 (c) Rings Closures: 2

Figure 4.9: Drug set enrichment analysis on CMap compound perturbations ranked
by similarity to EIF4G1 knockdown phenotype. GSEA plots displayed for select molecular
descriptors with adjusted p-value < 0.05. The rank metric is the scaled and centred additive
inverse of the rank product’s rank.

4.3.2 Time and memory optimisation

cTRAP allows comparing user-provided differential expression results against the

CMap perturbation z-scores that are contained in a 21GB GCTx file. The GCTX

format stores annotated, high-dimensional data matrices and is based on the HDF5

format for efficient indexing and loading of subsets of the whole data [221]. Instead

of loading the whole GCTx file into memory, cTRAP 1.4 and newer versions mini-

mise peak RAM usage by loading and processing user-selected subsets of perturbation

z-scores (e.g., only compound perturbations) in chunks of 1 GiB (default).

Although processing data by chunks helped reducing the memory footprint of

cTRAP, we later refactored the code of the comparisons in cTRAP 1.10, a milestone

that included multiple improvements to speed and memory:

• Faster WTCS calculation by improving code efficiency.

• Slightly improved runtime by avoiding redundant loading of data chunks. This

change was also required to enable multi-thread support in systems that imple-

ment process forking (e.g., Linux and macOS, but not Windows).

• Optional argument to set a custom size for data chunks (1 GiB by default).

• As the NCI-60 gene expression and drug sensitivity correlation matrix is also large

(3.3GB), we saved that matrix as a HDF5 file that is then loaded and processed

by cTRAP in chunks of 1 GiB (by default), minimising peak RAM usage when

predicting targeting drugs based on the NCI-60 data.
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We benchmarked time and memory when ranking CMap perturbations based on

Spearman’s correlation, Pearson’s correlation and WTCS using a development version

of cTRAP 1.10 (commit 296f9b2) and using as query the t-statistics for differential

expression of EIF4G1 knockdown in HepG2 cells from ENCODE. The number of CMap

compound perturbations (241 258) is much higher than those of the knockdown (48

862) and over-expression (24 627) perturbations and this is expected to reflect on time

and memory for data processing.

When ranking CMap compound perturbations in cTRAP 1.8 and 1.10, the runtime

was decreased from 95 to 53 minutes when loading the whole data and from 77 to 28

minutes when loading by chunks (Figure 4.10). For each chunk, we parallelised the

calculations performed per perturbation and this can help to speed up runtime, with 4

threads, from 28 to 12 minutes. However, the usage of 8 threads is not recommended

as the runtime is similar to using 4 threads while consuming more resources.
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Figure 4.10: Time benchmark of CMap perturbation ranking. Times were measured
for cTRAP 1.8 (1 thread only) and 1.10 (1, 4 and 8 threads) for over-expression, knockdown
and compound perturbations whose data was loaded by 1 GiB chunks or as whole.

Benchmarked memory was annotated based on the different internal steps per-

formed by cTRAP (Figure 4.11). When ranking against the CMap compound pertur-

bations, loading and processing their z-scores at once requires 59.7 GiB, compared to

5.4 GiB when loading and processing 1 GiB chunks. The differences were not as stark

when using the knockdown and over-expression perturbations, but were still crucial to

allow the possibility of running cTRAP in a common laptop with 8 GiB of RAM.
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Figure 4.11: Memory benchmark of CMap perturbation ranking, annotated using
the different steps performed by cTRAP. Memory was benchmarked when ranking com-
pound, knockdown and overexpression perturbations against differential expression results.
The maximum memory used for each condition is labelled.

4.3.3 Graphical interface

To assist users that may prefer graphical interfaces, most cTRAP functionality is ex-

posed via 5 modular and independent Shiny-based functions (Figure 4.12):

• launchDiffExprLoader() to load differential expression data. Returns a dif-

ferential expression object that can be used in cTRAP analyses.

• launchCMapDataLoader() to explore and load CMap data by type of perturba-

tion, cell types, time points and dosages. Returns filtered CMap data based on

the user’s selection.

• launchMetadataViewer() to check metadata of given cTRAP objects.

• launchResultPlotter() to view and plot cTRAP results given as input.

• launchDrugSetEnrichmentAnalyser() to analyse drug set enrichment and visu-

alize respective results.

Like usual R functions, these graphical interface functions accept input arguments

and may return output, allowing to intertwine them with R code (Listing 4.2). There-

fore, users can interactively prepare and explore data before running long-running
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(a) launchDiffExprLoader (b) launchCMapDataLoader (c) launchMetadataViewer

(d) launchResultPlotter (e) launchDrugSetEnrichmentAnalyser

Figure 4.12: Screenshots of the modular cTRAP graphical interface functions.

tasks in the command-line, avoiding the need to have Shiny working while the tasks

run (which may also slow down those tasks) and allowing to parallelise them.

Listing 4.2: Calling cTRAP’s graphical interface functions in an R script.

1 library(cTRAP)

2

3 # Launch differential expression loading interface to select knockdown

4 # data from ENCODE (pre -filtered for HepG2 cell line and EIF4G1 gene)

5 diffExpr <- launchDiffExprLoader(cellLine="HepG2", gene="EIF4G1")

6 # After filter selection , launchDiffExprLoader () does the following:

7 # 1. Download ENCODE ’s HepG2 data for EIF4G1 knockdown and controls

8 # 2. Perform DGE between EIF4G1 knockdown vs. control

9 # 3. Return resulting t-statistics by gene

10

11 # Load CMap knockdown data in HepG2

12 cmapKD <- launchCMapDataLoader(

13 cellLine="HepG2",

14 perturbationType="Consensus signature from shRNAs targeting the

same gene")

15 # Load CMap compound data in HepG2

16 cmapCompounds <- launchCMapDataLoader(cellLine="HepG2",

17 perturbationType="Compound")

18 # Load all CMap data in HepG2

19 cmapPerts <- launchCMapDataLoader(cellLine="HepG2")

20

21 # View metadata of all resulting CMap data objects

22 launchMetadataViewer(cmapKD , cmapCompounds , cmapPerts)

23
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24 # Rank similar perturbations -----------------------------------------

25 compareKD <- rankSimilarPerturbations(diffExpr , cmapKD)

26 compareCompounds <- rankSimilarPerturbations(diffExpr , cmapCompounds)

27 comparePerts <- rankSimilarPerturbations(diffExpr , cmapPerts)

28

29 launchResultPlotter(compareCompounds , compareKD , comparePerts)

30

31 # Predict targeting drugs --------------------------------------------

32 listExpressionDrugSensitivityAssociation ()

33 assocMatrix <- listExpressionDrugSensitivityAssociation ()[[1]]

34 assoc <- loadExpressionDrugSensitivityAssociation(assocMatrix)

35 predicted <- predictTargetingDrugs(diffExpr , assoc)

36 launchResultPlotter(predicted)

37

38 # Plot targeting drugs vs similar perturbations ----------------------

39 launchResultPlotter(predicted , compareCompounds)

40

41 # Analyse drug set enrichment ----------------------------------------

42 descriptors <- loadDrugDescriptors("NCI60", "3D")

43 drugSets <- prepareDrugSets(descriptors)

44 launchDrugSetEnrichmentAnalyser(drugSets , compareCompounds)

45 launchDrugSetEnrichmentAnalyser(drugSets , predicted)

cTRAP also provides a Shiny-based global visual interface that encompasses all

graphical interface modules into one web app by running function cTRAP(), the basis

for its online version5. However, that implementation for a single interface would mean

that each cTRAP session needed to be live and consume useful resources during the

long-running cTRAP analyses, which does not properly scale in a web server with

multiple users requiring heavy memory resources simultaneously. To circumvent this

issue, long-running tasks can be optionally managed via job queues running in the

background. In order for users to redeem their results once they finish calculating, we

also implemented storage and retrieval of user session data in cTRAP.

User session data

Session data are saved in folders named after a random alphanumeric string (token)

that uniquely identifies each session and can be downloaded as an RDS file – a list

containing data for all datasets from the user session. Users can load these RDS

files in any R session and in local instances of cTRAP. Downloading user sessions is

encouraged because cTRAP session folders are removed from our server if not accessed

in the last 30 days based on the access timestamp to optimise resources and scalability

5More information in chapter 5: CompBio app server.
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with multiple users6.

Figure 4.13: Welcome modal.

cTRAP visitors are greeted with a welcome

screen that allows them to create a new session or

restore previous ones (Figure 4.13), a dialog that

can be opened at any time from the session menu.

When creating a new session, a unique token

is created. As soon as session-specific data are

loaded, a new folder is created in the working

directory and named after the session token

(Figure 4.14). Any updates to the session data

are automatically saved to the session folder. To

avoid downloading commonly-used files (e.g., the

21GB CMap perturbations z-scores file), an ap-

propriate folder stores data shared across sessions,

thus avoiding downloading, storing and processing

redundant data.

Figure 4.14: User session workflow. cTRAP allows to create new sessions or load a
previous one via a given token or RDS file. When loading session via a RDS file, a new
cTRAP session is created before loading the data from RDS file. Sessions can also be loaded
using a token if any folder with such token exists in cTRAP’s working directory.

When restoring a session via a token, cTRAP loads the contents of the folder named

after the token located in cTRAP working directory or warns the user if no such folder

exists (Figure 4.14). In case the user uploads the RDS file of a previous session, cTRAP

will load its contents into a new session (Figure 4.14).

6In Linux, the access timestamp (atime attribute) for a directory indicates the last time a file
within was read/written or its contents were listed.
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Background tasks

When running a Shiny app, the user has to wait for all foreground tasks to finish

before the app responds to user’s commands. This issue can be mitigated by using

R packages promises/future or by manually running another R process in the back-

ground. However, these solutions require the Shiny app to be active during the whole

process, which can be especially egregious if the R session is consuming many com-

puting resources, disallowing other apps or users to take advantage of those resources

until the whole session is terminated.

Alternatively, we can use light-weight job schedulers to manage and run large tasks

in the background, such as Celery, a Python-based task queue manager that is com-

plemented by Flower, a monitoring app that provides an HTTP API and graphical

interface to manage Celery jobs.

Celery requires a tasks.py file detailing the tasks to run. As we intend to run

R code submitted by cTRAP, we set up a Celery task that runs arbitrary R code by

running the Rscript command via the subprocess Python module (Listing 4.3).

Listing 4.3: An example tasks.py file to run R commands or Rscript files via Celery.

1 import os , time

2 from datetime import datetime

3 from subprocess import run , PIPE

4 # Celery configuration

5 from celery import Celery

6 os.environ.setdefault(’C_FORCE_ROOT ’, ’true’)

7 app = Celery(

8 "tasks",

9 broker=os.environ.get(’CELERY_BROKER_URL ’, ’redis :// redis’),

10 backend=os.environ.get(’CELERY_RESULT_BACKEND ’, ’redis :// redis’))

11 app.conf.CELERY_WORKER_SEND_TASK_EVENTS = True

12

13 # Runs R command and returns output

14 # - Use cat(), e.g., ’cat (2+2) ’, to capture output as a job result

15 # - Errors will result in a task state of FAILURE

16 def execR(cmd):

17 return run(cmd , check=True , stdout=PIPE , text=True).stdout

18

19 # Run a given R expression as a Celery job

20 @app.task

21 def R(cmd): return execR(["Rscript", "-e", cmd])

22

23 # Run a given Rscript file as a Celery job

24 @app.task

25 def Rscript(cmd): return execR(["Rscript", cmd])

26

27 if __name__ == "__main__": app.start()
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Flower can assist job submission to Celery via HTTP methods, facilitating the com-

munication between cTRAP and Celery. To assist using Flower in R, I created the R

package floweRy (github.com/nuno-agostinho/floweRy) that contains wrapper functions

for most of its HTTP API functions. Internally, floweRy calls HTTP methods with

the httr R package, creating dedicated commands that make it easier than using just

plain httr, as briefly demonstrated in Listings 4.4 and 4.5.

Listing 4.4: Job submission with httr.

1 library(httr)

2 flower <- function (...) paste0(

3 "http://localhost :5555", ...)

4 # Run R command ’3 + 4’ in Celery

5 POST(flower("/api/task/apply/

tasks.R")), body="3 + 4",

encode="json")

6 # Get status of all Celery tasks

7 GET(flower("/api/tasks"))

Listing 4.5: Job submission with floweRy.

1 library(floweRy)

2 options(flowerURL=

3 "http://localhost :5555")

4 # Run R command ’3 + 4’ in Celery

5 taskApply("tasks.R", "3 + 4")

6

7

8 # Get status of all Celery tasks

9 taskList ()

cTRAP currently supports ranking similar CMap perturbation and predicting tar-

geting drugs as background processes by submitting jobs to Celery with the exact R

commands to run via the Rscript command [154]. Users can monitor the status of

background tasks in their cTRAP session (Figure 4.15)7.

Figure 4.15: Progress of Celery jobs in cTRAP, updated every 5 seconds. Job status
can be: Waiting in job queue to start, Running, Loaded, Error for unknown failures, and Not
Found if the job results cannot be found (e.g., when re-uploading the same RDS file, the job
results were already removed). When job results are loaded, the respective dataset name is
a link to access them (in blue).

All Celery jobs are saved as dummy objects in cTRAP’s user session data, con-

taining the job identifier and metadata from expected results. When the background

processes finish, their output is saved into the session folder. If the user is actively

using that session in the cTRAP website, the data are automatically loaded – repla-

cing the previous dummy objects – and the user is informed of such via a notification

7Flower allows to monitor and manage Celery jobs, but its web interface is only accessible in the
iMM network (via ethernet cable or VPN). More information in subsection 5.3.4: Background tasks.
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in cTRAP (Figure 4.16). Otherwise, the next time that session is loaded by the user

(either via its token or an RDS file), the job for every dummy object in the session

data is returned if finished.

Figure 4.16: cTRAP process running in Celery. Time-demanding cTRAP processes
can be run in the background using Celery/Flower. While running in Celery, the output
of the cTRAP process is saved to the folder associated with the token of the user’s session.
When that specific session is active, all finished files are automatically loaded as part of the
data session and the user is notified.

4.4 Conclusion

The analysis of uncharacterised phenotypes may help understanding relevant biolo-

gical insights and developing novel therapies by comparing changes in gene expression

against a large reference database – such as CMap – containing differential expression

data associated with known perturbagens [15,210]. The clue.io website is a collection

of web apps to explore CMap data and to compare user-provided differential expres-

sion results against those from genetic and pharmacological CMap perturbations [15].

However, its shortcomings include limited queries with a maximum of 150 up-regulated

and 150 down-regulated genes, poor automation with downstream analyses and lack

of support to run with local computing resources.

We thus present cTRAP as a R package and web app to identify causal molecular

perturbations from differential expression data, as well as pinpoint compounds that may

promote or revert observed differences in gene expression. Besides the WTCS used by

clue.io that only considers the top 150 up- and top 150 down-regulated genes, cTRAP

also allows to measure similarity based on Pearson’s and Spearman’s correlations, thus
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considering the expression of all common genes between datasets. Moreover, cTRAP

allows to customise the number of up- and down-regulated genes in the set (by default,

150 like clue.io). When performing multiple comparisons, cTRAP also returns the

rank product’s rank as a ranked summary of selected comparison methods.

Unlike clue.io, cTRAP also uses publicly available drug sensitivity and gene ex-

pression data from NCI-60, GDSC and CTRP. The comparison of these data with user-

provided differential expression profiles may help unravel compounds that selectively

target cells. Furthermore, integrating such results with those from CMap comparisons

allow to identify putative compounds associated with the queried expression changes

and that may target cells with a similar profile to the user input [211].

Inspired by gene set enrichment analysis, cTRAP allows to analyse the enrichment

of drug sets based on 2D and 3D molecular descriptors computed from NCI-60 and

CMap compounds. This feature may assist in identifying common characteristics across

ordered lists of compounds, therefore discerning candidate chemical properties to guide

researchers in finding sets of similar compounds associated with the observed phenotype

from previous results. However, the biological insights of (gene) set enrichment analysis

is dependent on the sets used as input [222]. Although cTRAP allows to customise the

drug set generation from the molecular descriptor data8, the default drug sets could

be further optimised and benchmarked for biological relevance.

Given the large input data from CMap (21GB of differential expression data), we

optimised cTRAP for speed and memory usage. When comparing user-provided data

against the 241 258 CMap compound perturbations in our benchmarks, cTRAP took

28 minutes to run in a single thread with a peak memory usage of 5.4 GiB. This

reduced memory demand is due to loading and processing CMap data in 1 GiB chunks

by default. The speed and memory optimisations also apply when predicting targeting

drugs based on the 3.3GB pre-processed dataset from NCI-60.

Besides its command-line interface, most of cTRAP’s functionality can be accessed

via multiple, modular graphical user interface functions that can be intertwined with

R code. cTRAP also features a global user interface that is available as a web app at

compbio.imm.medicina.ulisboa.pt/cTRAP. The web app allows users to download a RDS

file to load cTRAP output into a local R session (e.g., to use with cTRAP locally or

to perform other downstream analyses) or into the web app at a later time.

From our experience with psichomics, we expect the graphical interfaces of cTRAP

to be popular among users that are less comfortable with coding in R. Nevertheless, the

web app could benefit from emailing users when jobs finish (successfully or not). This

would require to set up an email address to which to send emails from, preferentially

from an official institutional account. Unfortunately, Celery does not have built-in

support for emails and this is not trivial to implement.

8As described in subsection 4.2.4: Drug descriptor set enrichment analysis.
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In future cTRAP iterations, we aim to add support for CMap LINCS 2020, a CMap

data expansion described as a 3-fold expansion on the previous resource, and [whose]

notable new subsets of data include CRISPSR knockout of >5k genes and hematopoietic

and non-cancer cell models (clue.io/data/CMap2020#LINCS2020). However, this dataset is

still in beta and requires some adjustments to cTRAP given the files are now provided

individually per perturbation type.

We hope that users will be able to successfully employ cTRAP in identifying can-

didate causal molecular perturbations and compounds to better understand the bio-

logical mechanisms underlying differences in gene expression alterations, as well as in

prioritising targeted therapeutic agents for disease-associated queries.
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Chapter 5

CompBio app server

Since I started building psichomics, I wanted my work to be publicly available as an

online web app, providing users the most up-to-date version at their fingertips, without

having to install, update and manage different versions of R, Bioconductor, psichomics

and all their dependencies. Five years after the first Bioconductor release of psichomics

in 2016, that vision finally came true.

One of our lab’s ambitious goals is to develop interactive visual tools to assist in

exploring biological data, either provided by users or from big datasets. We want our

tools to be intelligibly used by anyone, no matter their computational background. To

turn that dream into reality, I set up the CompBio app server, a Linux virtual machine

running in the iMM computing cluster that hosts psichomics, cTRAP and other Shiny

apps from my lab colleagues. The server is accessible at compbio.imm.medicina.ulisboa.

pt (Figure 5.1) and its code at github.com/nuno-agostinho/compbio-app-server.

Figure 5.1: CompBio’s homepage screenshot. List of hosted web apps (1 Sep 2022).
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5.1 Background

Our lab uses the R statistical language to analyse clinical and molecular data from

public sources and collaborators. In order to share data insights with our collaborators

or even the whole scientific community, we have been creating exploratory dashboards

using the Shiny R package [160]. While developing interactive Shiny web apps, it is

natural to wonder: what is the best way to share them?

5.1.1 Desktop apps

Shiny apps are written in R, an interpreted programming language whose source code

can run in multiple platforms [154,160]. When run locally, the Shiny app starts running

in the device itself (localhost) and is accessible via a web browser. Shiny apps can

be part of an R package and be provided in CRAN or Bioconductor (such as in the

case of psichomics and cTRAP). Nonetheless, this requires the user to install multiple

programs in their computer: R, Shiny, the Shiny app, and all their dependencies. This

can take up some time if the user does not have R and many of the required libraries

installed. For instance, installing psichomics in a new system can take up to 1 hour.

Moreover, it still requires opening an R session to start the visual interface, which may

discourage technically-challenged users to try out psichomics.

One way to reduce the number of dependencies installed is by using Docker

(docker.com), allowing to run isolated Linux virtual environments (containers) that

already contain programs and all their dependencies set up. This approach simply

requires end-users to install Docker and to download the desired Docker images online.

Still, Docker is a program that needs administrator privileges for installation that (1)

not all users may have and (2) may not feel comfortable to give to a software they

would not otherwise install.

An alternative is Electron (electronjs.org), a software framework that allows to de-

velop cross-platform graphical user interface apps using web technologies by combining

a web browser rendering engine (Chromium, used in Chrome and other web browsers

to convert HTML and CSS code into an interactive web page) and a JavaScript envi-

ronment. The app itself runs the underlying web app as a usual desktop app. Some

open-source projects like electricShine (github.com/chasemc/electricShine) and photon

(github.com/COVAIL/photon) allow to convert Shiny apps to Electron apps, but they are

still not fully developed and lack important features (like support for some operative

systems). Regardless, compared to native apps, Electron apps are slower, have a sig-

nificant overhead, take more space and consume more RAM, making Electron less

attractive for intensive data-processing apps.
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5.1.2 Web apps

Web apps are cross-platform, always up-to-date and can be accessed by any (modern)

web browser, making access to such apps easier for end-users [140]. However, a con-

stantly online web server needs to be running and share its computing resources (e.g.,

amount of RAM, storage and CPU threads) across multiple users. The resources al-

located to a web server depend on the resources consumed per app, the number of

simultaneous users and the data stored per user. The price of components and their

maintenance is specially relevant if anticipating a large number of end-users.

Multiple web app hosting services support Shiny apps or Docker containers of Shiny

apps, including Heroku (heroku.com) and shinyapps.io. Both of these app hosting ser-

vices offer subscription plans depending on allocated system resources, including a free

plan useful to run basic apps: Heroku’s free plan offers 2 threads, 512 MB of RAM and

500 MB of storage per app1, whereas shinyapps.io’s free plan allows for 5 apps with

25 computing hours per month using 1024 MB of RAM and 1 GB of storage per app2.

Such services take care of deploying the web apps and we can select a different plan to

scale up the required resources to run the apps, depending on their usage. They also

allow to monitor app resource usage and understand how the apps are being used and

if the resources employed are sufficient or not without much effort to the developer.

Besides third-party server hosting, Shiny apps can also be deployed in local web

servers. This requires server maintenance and may be harder to scale resources because

of higher up-front costs. The following programs allow to locally host Shiny apps:

• Shiny Server (rstudio.com/products/shiny/shiny-server) is a bare-featured open-

source program with only the essential features to host Shiny apps.

• RStudio Connect (rstudio.com/products/connect) is a paid program3 with many

more features than Shiny Server, including user authentication, Python-based

app support and resource usage metrics.

• ShinyProxy (shinyproxy.io) is an open-source program to host Shiny apps in

Docker containers with many of the features found in RStudio Connect, including

user authentication, Python-based app support and resource usage metrics.

Given that we have sufficient computing resources at our lab’s disposal, we decided

to build an app server – a web server dedicated to deploy our web apps. We decided

1According to Heroku (heroku.com/pricing and devcenter.heroku.com/articles/limits) as of 24 Novem-
ber 2021. Unverified accounts (i.e., not associated with a valid credit card) are limited to 5 apps.

2According to official shinyapps.io documentation (docs.rstudio.com/shinyapps.io/applications.html
and shinyapps.io#pricing) as of 24 November 2021.

3According to RStudio (rstudio.com/pricing), all RStudio commercial products are free for teaching
purposes and 50% discounted for academic research from their regular bundle pricing starting at
22000$ per year as of 24 November 2021.
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to use ShinyProxy as it has many of the advantages of using the proprietary RStudio

Connect for free. Following this choice, we had to think how to properly develop the

web server so it is easy to maintain, update and add new apps.

In this chapter, I describe CompBio, our app server built with Docker Compose,

a program to simultaneously manage multiple interacting Docker containers to allow

for R/Shiny and Python app deployment (ShinyProxy) over a reverse proxy (Nginx),

background tasks (Celery, Redis and Flower), website analytics (Plausible, PostgreSQL

and ClickHouse), resource monitoring (Prometheus and Grafana), and feature testing

(RStudio Web, only used to develop features and R scripts). CompBio is currently

running in a virtual machine in a Linux computing cluster and hosts Shiny apps from

NMorais lab, including the tools previously mentioned in this document: psichomics

and cTRAP. CompBio is so named because it powers Computational Biology apps.

5.2 Materials and methods

CompBio is built using Docker Compose to manage the Docker images of multiple ser-

vices: ShinyProxy, Nginx, Celery, Redis, Flower, Plausible, PostgreSQL, ClickHouse,

Prometheus, Grafana and RStudio Web (Table 5.1). RStudio Web is only available

in the development profile. The services communicate between each other via a single

network created by Docker (Figure 5.2).

Table 5.1: CompBio services.

Role Service Port Docker imagea

Web app deployment ShinyProxy 8080 openanalytics/shinyproxy

Reverse proxy Nginx 443 nginx

Background tasks
Celery + cTRAP Based on nunoagostinho/ctrapb

Redis redis

Flower 5555 mher/flower

Website analytics
(i.e., track visitor
metrics)

Plausible 8000 plausible/analytics

PostgreSQL 5432 postgres

ClickHouse yandex/clickhouse-server

Resource monitoring

Prometheus 9090 prom/prometheus

Grafana 3000 grafana/grafana

Nginx monitoring nginx/nginx-prometheus-exporter

System monitoring prom/node-exporter

RStudio (testing) RStudio Webc 8787 Based on rocker/rstudio

a Available in Docker Hub, unless stated otherwise. b Python and Celery are installed on top of
cTRAP Docker image, allowing Celery to run cTRAP analyses: see file celery/Dockerfile. c Only
available in the development profile.
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Figure 5.2: App server architecture is based on Docker Compose. All services are
provided via Docker images and communicate with each other via a Docker-created network
using the name of the service and a specific port (e.g., Nginx communicates with ShinyProxy
via shinyproxy:8080). The groups (analytics, system monitoring and background tasks) are
strictly conceptual.

Services whose ports are listed in Table 5.1 may be accessed when connected via

an ethernet cable at iMM or via the VPN of Universidade de Lisboa by using an

internal HTTP (not HTTPS) URL specifying the service port. For instance, opening

http://imm-nmorais-p2.fm.ul.pt:8000 allows to access the Plausible dashboard4.

5.3 Results

The CompBio app server was developed to be easily maintained and extended, allowing

to add new and update existing Shiny apps and other modules. The server also supports

running background processes5, tracking simple visitor metrics (e.g., Shiny app usage

time, number of visitors and user countries) and monitoring system usage. This project

is open-source and free (github.com/nuno-agostinho/compbio-app-server) and the app

server can be publicly accessed at compbio.imm.medicina.ulisboa.pt.

The app server makes use of a two-tiered architecture as the user interface is dis-

played using the user’s web browser to render the HTML, CSS and JavaScript code,

whereas the application and database layers are all run in the same server. The server

itself is a virtual machine running in Lobo (iMM computing cluster) with 16 CPU

threads, 64GB RAM and 200GB SSD. By exploiting a powerful infrastructure, the vir-

tual machine can be manually modified to increase or decrease associated computing

4If the web browser starts redirecting HTTP requests to HTTPS, the website should be accessed
in private mode to avoid that behaviour, given that HTTPS disallows specifying ports.

5More information in subsection 5.3.4: Background tasks.
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resources depending on system usage.

The code can be run in Linux and macOS6 machines with Docker Compose installed,

thus making the setup easily portable and requiring minimal user setup. Docker Com-

pose also confers modularity and maintainability to the project, given that system

components are easy to update and replace without affecting other components.

5.3.1 Docker Compose

There are a lot of programs that can go into a web server. Experimenting different pro-

grams while managing their manifold dependencies to develop an healthy web server is

like an intricate ballet where all finely-coordinated dancers interplay for an astounding

performance: a wrong move can affect the whole show. After all, each program or

dependency has its own requirements and some may be a distress to (un)install. More-

over, when the server is online, errors may arise due to configuration changes (such as

new app updates), requiring a fast rollback to minimise server downtime. A solution

is to use self-contained and modular programs, such as Docker containers. But how to

coordinate several artists to beautifully perform the Swan Lake?

With the modularity from Docker Compose, multiple applications are run isolated

in their own Docker containers, allowing to easily update or replace them without

affecting other system components, as well as make the code of this project publicly

6CompBio was not tested in Windows.

Figure 5.3: Visual representation of the file structure of the CompBio app server.
Each folder contains files associated with a specific service: rstudio-server and celery

contain Dockerfiles for building custom Docker images of the respective services; multiple
README.md document the usage of the services; and file docker-compose.yml in the root of
the project contains the main configuration of each service.
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available and portable. All services spawned in Docker Compose are based on Docker

images that are either pre-created (e.g., downloaded from Docker Hub) or built on-

demand – some services of this project have their own Dockerfiles, a recipe file to

create custom Docker images.

For organisation purposes, the project is structured by folders named after

each service, where each folder stores files associated with the respective applica-

tion (e.g., Dockerfile, configuration and data; Figure 5.3). A single file named

docker-compose.yml (Listing 5.1) contains the main configuration of each applica-

tion in the server and extra configuration files are available in the local directory.

Listing 5.1: Shortened version of the docker-compose.yml file used for the project. This

version only contains the configuration for Nginx and ShinyProxy.

1 version: "3.9"

2 services:

3 nginx:

4 image: nginx

5 container_name: nginx

6 restart: always

7 ports:

8 - 80:80

9 - 443:443

10 volumes:

11 - ./ nginx:/etc/nginx

12 - /etc/ssl/imm:/ certs:ro

13 - ./ nginx/public :/ public:ro

14 depends_on:

15 - shinyproxy

16 shinyproxy:

17 image: openanalytics/shinyproxy :2.6.0

18 container_name: shinyproxy

19 restart: always

20 ports:

21 - 8080:8080

22 volumes:

23 - /var/run/docker.sock:/var/run/docker.sock

24 - ./ shinyproxy/application.yml:/opt/shinyproxy/application.yml

25 - ./ shinyproxy/templates :/opt/shinyproxy/templates:ro

26 - shinyproxy -server :/log

27 - shinyproxy -containers :/container -logs

28 networks:

29 default:

30 name: shiny -net

31 volumes:

32 shinyproxy -server:

33 shinyproxy -containers:
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To start all the Docker Compose services, running the command

docker compose up -d --build

downloads Docker images in docker-compose.yml, builds Docker images from

Dockerfiles and starts the services in detached mode.

Although data from Docker containers are temporarily stored while the container is

running, specific files and directories can be preserved in Docker volumes to avoid data

loss. When starting the docker-compose.yml project, Docker volumes are mounted

for specific directories labelled volumes in Listing 5.1.

Docker Compose has multiple commands to manage the associated services. For

instance, to apply new configurations, it is useful to restart a single service:

docker compose restart shinyproxy

To apply changes from docker-compose.yml, all services need to be restarted:

docker compose restart

Secrets

Most configuration files of the server are public, including default passwords that should

only be used for testing purposes. To define sensitive information (i.e., secrets), all we

need is to set custom information in a .env file at the root of the project directory

(Listing 5.2). When starting the services, Docker Compose will replace the default

environment variables from docker-compose.yml with those from .env.

Listing 5.2: Template of a .env file that defines sensitive data.

1 RSTUDIO_PASSWORD=rstudio_pass

2

3 POSTGRES_USER=postgres_user

4 POSTGRES_PASSWORD=postgres_pass

5

6 GRAFANA_USER=grafana_user

7 GRAFANA_PASSWORD=grafana_pass

8

9 PLAUSIBLE_EMAIL=someone@email.com

10 PLAUSIBLE_USER=plausible_user

11 PLAUSIBLE_PASSWORD=plausible_pass

Staging and production environment

The services in the app server (production environment) are live for the whole world

to access. Any changes made to this server will be publicly seen by active users and

should be avoided to also mitigate potential issues. Instead, changes should be tested

in another system (staging environment), such as a personal computer in a testing
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environment that resembles the production one. Preparing the staging environment is

easy (Listing 5.3) and automatically performs the following:

• Creates a copy of the default Nginx and ShinyProxy configuration. This configu-

ration files are not tracked by git and can be modified at will.

• Pulls and builds any Docker images used by Docker Compose and ShinyProxy.

• Modifies Nginx configuration to ignore SSL certificates. Nginx would throw an

error otherwise because the SSL certificates only match the computer currently

hosting the app server.

• Creates empty directories for web apps that may be populated with test data.

Listing 5.3: Setup testing environment.

1 # setup files for testing and download Docker images

2 ./setup -testing -mode.sh

3 # start services and RStudio in detached mode

4 docker compose --profile dev up -d

The services should be fully operational in about 30 seconds after running these

commands and accessible via http://localhost of the machine7. Some services are only

available via their specific ports (Table 5.1), e.g., http://localhost:8000 for Plausible

and http://localhost:8787 for RStudio.

Automated Testing

Testing is automatically performed via GitHub Actions. Every change to the GitHub

repository is automatically checked to see if the command docker compose up works

without throwing errors. In the future, automated testing could be extended to check

specific functionalities of each service in the project, allowing to better understand if

everything is working as expected following changes to the code.

5.3.2 ShinyProxy

ShinyProxy is an open-source program that deploys R/Shiny and Python apps via

Docker. When a user starts an app, ShinyProxy creates a new Docker container ex-

clusively for that user. The containers are automatically terminated 30 minutes (by

default) after the last user interaction. ShinyProxy offers multiple built-in features,

including:

7When using a remote machine, it is necessary to set up port forwarding via SSH to access the
remote machine’s localhost.
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• App recovery: when restarting ShinyProxy, ShinyProxy-initiated Docker con-

tainers continue running in the background. The apps will be unavailable while

ShinyProxy is not running, but will be attached to ShinyProxy once it is running

again, allowing for quick server maintenance tasks8.

• User authentication: authentication with multiple methods, including social

login via GitHub, LinkedIn, Google, etc. However, user authentication requires

all visitors to login before continuing. As we prefer users to be able to anony-

mously access our apps, this feature is currently disabled.

• Multiple app instances: users can open and manage multiple app instances

simultaneously (not currently enabled in the app server)9.

Add and update web apps

Deploying new Shiny apps in the app server is as simple as making a Docker image

available in Docker Hub, pulling it to the app server and then listing it in the

ShinyProxy configuration. It is important to check first if the Shiny app can be

launched via the Docker image in a local machine.

Afterwards, we add the configuration of the Docker image in the ShinyProxy con-

figuration file (shinyproxy/application.yml; for instance, Listing 5.4), based on the

available fields from ShinyProxy. The most important fields are id, display-name and

description to identify an app, container-image to identify the associated Docker

image and container-cmd to start up the Shiny app (although the command to start

up the app can be included directly in the Dockerfile instead). If the app requires any

data, volumes can be mounted using container-volumes. The container-network

should remain "$proxy.docker.container-network" for all apps, given that it is

required for proper communication between ShinyProxy and Docker Compose.

Listing 5.4: Simplified ShinyProxy configuration with psichomics.

1 proxy:

2 title: NMorais Lab - Bioinformatic Apps

3 template -path: /opt/shinyproxy/templates

4 container -wait -time: 30000

5 docker:

6 internal -networking: true

7 container -network: shiny -net

8 specs:

9 - id: psichomics

10 description: Alternative splicing visualisation and analysis

11 container -image: nunoagostinho/psichomics :1.18.6

8More information in shinyproxy.io/documentation/app-recovery.
9More information in shinyproxy.io/documentation/ui/#using-multiple-instances-of-an-app.
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12 container -cmd: ["R", "-e",

13 "psichomics :: psichomics(host =’0.0.0.0’, port =3838)"]

14 container -network: "${proxy.docker.container -network}"
15 container -volumes: [ "/srv/apps/psichomics/data:/root/Downloads" ]

16 template -properties:

17 startup -time: 15s

18 listed: true

Custom properties (template-properties) are also set for this project, including

whether an app should be publicly listed (listed) and a rough estimate of its startup

time to show a progress bar to visitors (startup-time). These custom properties are

described in more detail ahead.

After defining this script, we only need to restart the ShinyProxy with docker

compose restart shinyproxy and any configured apps will be available for use. Up-

dating an app is as easy editing shinyproxy/application.yml with the most recent

Docker version and pulling that version to the app server, before restarting ShinyProxy.

Custom HTML pages

Custom HTML pages are located in folder shinyproxy/templates. ShinyProxy uses

custom files located there if available, falling back to its own default files otherwise.

In other words, to get the original ShinyProxy behaviour for the default HTML pages,

we only need to remove the files from that folder and restart ShinyProxy.

The HTML pages provided by ShinyProxy are based on the Thymeleaf template

engine that uses HTML-like code scripting. Directly editing HTML pages provided by

ShinyProxy allows to add the custom features described in the following subsections,

as well as custom error pages (e.g., ”404 page not found” or issues when starting

containers).

Progress bar when loading ShinyProxy apps

Figure 5.4: Progress bar displayed while
psichomics loads (11 Nov 2021).

When ShinyProxy is loading an app, a

spinning wheel is shown as a loading in-

dicator. For apps that take more than

10 seconds to load (e.g., psichomics and

cTRAP), the user may think the website

is not working and close the window be-

fore the app is loaded. To avoid that,

the spinning wheel was replaced with a

progress bar to provide a time estimate

for app loading (Figure 5.4), making wait

times more tolerable [223,224].
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By default, the progress bar takes 5 seconds to fill (as sample Shiny apps take that

much to launch in ShinyProxy), but the time is customisable for specific apps by editing

the ShinyProxy configuration file (shinyproxy/application.yml) and adding a

template-properties.start-up parameter to a specific app. For instance, psichomics

takes 20 seconds to fully load the progress bar (i.e., template-properties.start-up:

20s), whereas cTRAP takes 15 seconds. When the app finishes loading, the progress

bar is replaced by the app regardless of the progress displayed to the user. The accuracy

of the progress bar does not need to be perfect to serve its purpose [223,224].

To create this progress bar, shinyproxy/templates/app.html was edited to re-

move the spinning wheel and to include an empty progress bar. The progress bar’s

width is changed from 0% to 100% using JavaScript. By default, the CSS width

transition applied to the progress bar is transition: width 5s ease-in-out; (ani-

mating a change of width that last for 5 seconds in an ease-in animation) where 5s is

replaced by the template-properties.startup-time parameter if set.

Private web apps

In the website’s landing page (Figure 5.1), ShinyProxy lists all apps described in the

configuration file by default (shinyproxy/application.yml). This may not be desired

when hosting apps with confidential results to be shared with specific collaborators.

For this reason, we added the key template-properties.listed that can either be

false (default) or true. The file shinyproxy/templates/index.html was edited to

show only apps whose template-properties.listed key is set to true. Thus, non-

listed web apps are not displayed in the landing page, but are still directly accessible

via URL based on their app ID, e.g., compbio.imm.medicina.ulisboa.pt/app/psichomics.

However, if the information contained in the web app should not be acces-

sible to strangers at all, apps can also implement a password input form (e.g.,

shiny::passwordInput()) in the code itself before loading any data and/or informa-

tion. That password should be securely shared with the intended audience only.

5.3.3 Nginx

Nginx is a reverse proxy, i.e., an intermediary that controls what is shown to the user

depending on the URL visited – akin to those switchboard operators seen in old movies.

In CompBio, Nginx fulfills user requests and performs many other functions:

• Ensure HTTPS traffic is encrypted via SSL certificates from the IT team

at iMM. We simply point to the correct location of those certificates.

• Serve publicly available files in the nginx/public folder, whose directory

structure is accessible at https://compbio.imm.medicina.ulisboa.pt/public/.
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• Show a custom error page if ShinyProxy is not responding (e.g., tempo-

rarily down or overloaded). When ShinyProxy is down, Nginx informs end-users

to retry refreshing the page and that ShinyProxy is probably down, informing

end-users to retry refreshing the page. ShinyProxy can be down for multiple

reasons, such as during a restart or due to resource overloading.

• Display the website favicons stored in folder nginx/favicon.

5.3.4 Background tasks

In our app server, we use Celery to run background tasks, alongside Flower to manage

Celery jobs via its graphical interface and HTTP API10. We also use the Redis broker

to communicate between the two Docker containers.

Currently, cTRAP is the only web app in our server that exploits background tasks.

We built a Docker image based on the official cTRAP Docker image (nunoagostinho/

ctrap) with the Celery app installed on top.

Celery was configured to use 3 to 10 processes based on demand, as well as CPU

and memory usage via an independent plugin (github.com/jcushman/celery-resource-

autoscaler). For instance, each process in Celery can use up to 10GiB of RAM and

run up to 12 hours, thus avoiding rogue tasks.

To run other programs in Celery, we need to create a custom Dockerfile containing

those programs (e.g., based on their Docker images) with Python and Celery installed.

The Nginx configuration needs to include the new Celery service (Listing 5.5).

Listing 5.5: Configuration of the Celery service for cTRAP in docker-compose.yml.

1 celery -ctrap:

2 container_name: celery -ctrap

3 build: ./ celery

4 command: celery -A tasks worker -c5 -l info -E -n ctrap

5 volumes:

6 - ./ celery:/celery:ro

7 - ../ apps/cTRAP/sessions:/data

8 depends_on:

9 - redis

5.3.5 Resource monitoring

Prometheus monitors the server resources and the collected data can be visualised using

Grafana (Figure 5.5). The tracked resources include Celery job usage, ShinyProxy

metrics (app usage time, app failures, users per app, etc.), Nginx status and Linux

system resources (e.g., RAM usage, available disk space and CPU stress).

10More information in section 4.3.3: Background tasks.
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(a) Linux system metrics. (b) ShinyProxy metrics.

(c) Celery metrics. (d) Nginx metrics.

Figure 5.5: Grafana dashboards showing tracked metrics (1 Jun 2021).

5.3.6 Website analytics

Figure 5.6: Plausible dashboard
showing CompBio website analytics
for the last year (as of 31 May 2021).

Plausible is an open-source, privacy-focused web

analytics tool that collects traffic metrics for mul-

tiple websites and provides them via an interac-

tive dashboard (Figure 5.6). CompBio runs the

self-hosted version of Plausible. All of Plausible

metrics (e.g., visitor numbers, total page views

and session duration) are anonymously aggregated

without cookies, thus avoiding individual tracing

of users.

Plausible uses the database management sys-

tems ClickHouse and PostgreSQL to store tracking

data. PostreSQL can also be used as the server’s

SQL database system, although currently no

Shiny web apps in the server use it.

Using the self-hosted version of Plausible guarantees that the tracking of user data

is performed locally in the server. Plausible also protects user privacy by making their

data hard to individually trace and by complying with current privacy laws.
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5.3.7 Server maintenance

CompBio is a web server that hosts Shiny applications and is publicly accessible by

everyone online. This makes our server a target for potential security attacks. In

order to mitigate such vulnerabilities, it is crucial to update its components, including

Docker, Docker Compose, Nginx and ShinyProxy. As updates may contain breaking

changes that hamper website functionality, it is recommended to read change logs

related to new software versions to pinpoint potential issues before updating.

Updates to Docker and Docker Compose need to be performed by an administrator

using Linux’s apt-get command11. On the other hand, Docker images of the server

(including Nginx and ShinyProxy) require a user in the docker group to edit the

versions of the Docker images used in docker-compose.yml and restart the Docker

Compose project12. The advantage of using Docker Compose is that if something goes

wrong with the updated Docker images, we simply need to revert docker-compose.yml

to a previous working state and restart all services.

5.4 Conclusion

The CompBio app server was developed to host web apps from NMorais Lab using

ShinyProxy and Docker Compose, allowing to easily add new or update existing Shiny

apps containerised via Docker. It also contains multiple components to run background

cTRAP tasks, track app usage and monitor computing resources.

CompBio currently runs in a virtual machine in Lobo, iMM computing cluster.

The hardware is taken care by the iMM IT team and they also support us with issues

regarding SSL certificates, WebSocket connections and resource allocation. Moreover,

I expect the server components to be easy to maintain and update. Components can

be manually updated by simply editing the intended version in docker-compose.yml

and restarting all the services. In case of issues, it is easy to rollback to a stable,

working version of the app server based on previously used Docker images. Testing

new changes to the server can be performed using the staging mode, allowing to mirror

the app server and test changes locally before pushing them live to the app server.

The project also makes uses of Nginx as a reverse proxy. An issue with using Nginx

is that it is especially verbose compared to more recent reverse proxies. Although

I would have liked to replace Nginx with a simpler reverse proxy – such as Caddy

(caddyserver.com) –, Nginx is more popular and widely used, thus making it easier to

find documentation and to search for issues.

In the future, we can adapt available computing resources of our virtual machine as

needed. In case we prefer to port the app server to a new machine, as the project was

11sudo apt-get update && sudo apt-get upgrade
12While inside the project folder: docker compose down && docker compose up -d --build
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built on Docker Compose, relocating the app server is as easy as moving the project

data to the new machine, installing Docker and Docker Compose, downloading required

Docker images and starting the app server as previously indicated.

By publicly hosting the project code in GitHub, we hope to demonstrate the flexi-

bility of setting up Docker Compose to other labs and entities, promoting an easily

portable, reproducible and documented configuration of a Shiny web app server that

can facilitate sharing public apps among the scientific community and beyond.
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Chapter 6

Discussion

Continuing the path I started walking during my MSc, my PhD gave me the opportu-

nity to further develop web apps to be used by the scientific community and to enrich

my knowledge about app development and explore multiple new technologies.

6.1 psichomics

Since starting to work in psichomics, I struggled with the lack of guidelines on how

to properly design and test interactive bioinformatic web apps. Although there are

resources to build generic web apps, the field of bioinformatics could be richer if we

better understood how researchers and clinicians explore data to help them find what

they are looking for. Also, the lack of a systematic approach to app design is notable

in multiple bioinformatics programs in the wild, reflected by popular apps lacking

in efficiency and usability, as well as abandoned programs due to completed and/or

unrenewed grants.

Ultimately, I think that bioinformaticians that want to create apps to be adopted by

the scientific community should be aware of software design to properly write apps fol-

lowing requirement analysis and that are designed for the long-term; data visualisation

to design interactive plots that intuitively convey the desired information and allow to

conveniently explore the data; and user interface design to improve the user experience

and unleash the full potential of the software functionality.

psichomics was the most challenging program I created and the project of my life-

time. It allowed me to develop an app based on multiple topics of my interest (e.g.,

transcriptomics, data visualisation, web technologies and user interface design), while

providing a tool with a graphical interface for alternative splicing and gene expression

analysis based on user-provided and public data.

psichomics is limited in the types of alternative splicing events profiled given that

it only supports exon-exon junction read counts when quantifying alternative splicing.

Support for other types of reads (exon–intron junction, exon body and intron body

94



counts) would be required to calculate intron retention and alternative 5′ and 3′ UTR

events [178]. This issue is partially mitigated by allowing to import alternative splicing

quantifications from user-provided tables and VAST-TOOLS [126, 127]. For future

iterations of psichomics, users have also been requesting support to process the output

from other popular alternative splicing quantification tools, including Whippet [173]

and rMATS [128].

psichomics was employed in multiple peer-reviewed scientific articles, being used to

perform genome-wide identification of differentially spliced events in TCGA data for

a review article on alternative splicing in lung cancer [11], to assess mutation effects

associated with the splicing of specific exons between GTEx brain and skin tissue data

alongside VAST-TOOLS and experimental data [12], and to study how IGF2 over-

expression and reduced SRSF3 splicing activity are negatively associated with the

overall survival of liver cancer patients using TCGA data [14]. The use of psichomics

in these publications demonstrates the usefulness of allowing users to access public,

pre-processed data to analyse clinical, gene expression and alternative splicing data to

complement other bioinformatic and experimental analyses.

6.2 cTRAP

Current clue.io tools allow to compare user-provided data with those from CMap, but

have some limitations: they only consider a restricted input set of 150 up-regulated

and 150 down-regulated genes, are difficult to automate, offer no option to run using

local computing resources and have no integration with data from relevant sources that

can benefit from similar analyses (e.g., drug sensitivity data from NCI-60, CTRP and

GDSC). By overcoming such issues, we expect cTRAP will make it easier for users to

identify candidate causal molecular perturbations of phenotypes and compounds, as

well as in prioritising targeted therapeutic agents for disease-associated queries.

Thanks to working on psichomics, my knowledge of R was more mature and allowed

me to flourish my creativity while developing cTRAP. In the optimisation department,

it was challenging to improve cTRAP’s runtime, reduce peak memory usage and add

multicore support in order to properly perform cTRAP functions as efficiently as pos-

sible. This lead to rewriting a lot of the core code in cTRAP 1.4 (subsection 4.3.2:

Time and memory optimisation).

Regarding its user interface, we created graphical interface functions that can be

intertwined with R code. Although their practical usefulness may be limited, their

modular design made it relatively easy to create the intuitive global interface that

culminated into the cTRAP web app. To further test command-line and graphical

interfaces of cTRAP, we asked fellow scientists to use them while under cTRAP de-

velopment and tweaked the interface and internal logic according to their feedback.
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Creating the web app with support for background tasks via Celery and user ses-

sions was also demanding and required a lot of experimentation to design the cur-

rent implementation, including the creation of the floweRy R package to interact with

Flower/Celery, testing the whole integration in the web server and to make all the

code and documentation available in cTRAP so users can host their own servers with

background task and user session support. Nevertheless, the web app could still benefit

from email support to improve the user experience, but it is not a trivial functionality

as Celery does not have built-in support for sending emails.

We are currently preparing a manuscript for publication in a peer-review journal.

Nonetheless, the early availability of cTRAP in GitHub and Bioconductor led to users

asking for the integration of differential gene expression results from single-cell analyses

tools, such as Seurat [225]. Such integration with results from popular R packages could

promote the use of cTRAP as a downstream analysis tool to further investigate their

molecular data.

6.3 CompBio

Creating the app server to host web apps was an enormous challenge, but I am satisfied

with the final result. With the exception of R/RStudio and Docker, I had to learn

about all of the software stack used (Docker Compose, ShinyProxy, Nginx, Celery1,

Plausible, Prometheus, Grafana, etc.) and how these pieces interact amongst each

other to properly fine-tune the server to our needs. It was also interesting to configure

the server to work in a testing environment so it is easy to test it on any machine

before deploying to production.

Our app server currently hosts psichomics and cTRAP, among other web apps from

my colleagues. In the future, we intend to host new web apps developed by the lab. In

case user demand rises, we may need to increase the available RAM memory and disk

space available to the server, which the current iMM infrastructure contemplates.

Although outside of the scope of this work, we decided to make CompBio codebase

open-source, allowing other laboratories to repurpose this project, set up their own

computing servers and deploy their favourite R and Python web apps. This could

make it easier for users to quickly start using the developed web apps without the

need to install R packages, Python libraries and their dependencies, as well as avoiding

potential installation issues by leveraging Docker images.

1I started developing the app server at the same time I was researching how to run background
tasks for cTRAP. I decided on Celery only after confirming it worked with the app server.
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6.4 PanAShé

There are many other projects that I have been part of during my PhD but unfortu-

nately did not progress much. However, there is still one that I was a part of and I

hope my colleagues will be able to complete: PanAShé.

In a collaborative lab effort, we are developing a Nextflow pipeline to process raw

RNA sequencing data from TCGA [6] and GTEx [7] in order to provide processed

gene expression and alternative splicing data from samples from multiple normal and

diseased tissues. The aims of this project extend those of recount2 [8] and include al-

ternative splicing analysis, as well as a complementary dashboard to help users explore

the data in these data sources. We are also considering integrating the data from this

project in psichomics in lieu of the limited processed data from the public sources for

TCGA and GTEx.

All the software stack in PanAShé is based on Docker images for portability and

reproducibility. This means that only Docker and Nextflow are required to run the

pipeline. We intend to write a peer-reviewed article regarding this project, as well as

share our scripts and processed data with the scientific community as soon as possible.

6.5 Conclusion

With the work I hereby presented, I hope to provide researchers and clinicians with

useful tools to analyse gene expression and alternative splicing, predict therapeutic

drugs and deploy web apps. Amongst my personal objectives for a PhD, psichomics

helped me complete one of them: to create a useful tool to others’ research. I can only

hope that the rest of my work is as successful as psichomics has been in contributing

to science.

As small as all my contributions may have been, these last 4 years were worthy

for the prospect of having a (tiny little bit) part in helping unraveling the biological

mysteries of this world, along with everything I learned and all the friends I made and

danced with along the way.
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[5] Climente-González H, Porta-Pardo E,

Godzik A, Eyras E. The Functional

Impact of Alternative Splicing in Can-

cer. Cell Rep. 2017;20(9):2215–2226.

doi:10.1016/j.celrep.2017.08.012.

[6] Chang K, Creighton CJ, Davis C, Done-

hower L, Drummond J, Wheeler D,

et al. The Cancer Genome Atlas

Pan-Cancer analysis project. Nature

Genetics. 2013;45(10):1113–1120.

doi:10.1038/ng.2764.

[7] Lonsdale J, Thomas J, Salvatore M, Phil-

lips R, Lo E, Shad S, et al. The

Genotype-Tissue Expression (GTEx) pro-

ject. Nature Genetics. 2013;45(6):580–585.

doi:10.1038/ng.2653.

[8] Collado-Torres L, Nellore A, Kammers

K, Ellis SE, Taub MA, Hansen KD,

et al. Reproducible RNA-seq analysis

using recount2. Nature biotechnology.

2017;35(4):319–321. doi:10.1038/nbt.3838.

[9] Saraiva-Agostinho N, Barbosa-Morais NL.

psichomics: graphical application for alter-

native splicing quantification and analysis.

Nucleic Acids Research. 2018;47(2):e7–e7.

doi:10.1093/nar/gky888.

[10] Saraiva-Agostinho N, Barbosa-Morais NL.

Interactive Alternative Splicing Analysis of

Human Stem Cells Using psichomics. In:

Kidder BL, editor. Stem Cell Transcrip-

tional Networks: Methods and Protocols.

New York, NY: Springer US; 2020. p. 179–

205. Available from: https://doi.org/

10.1007/978-1-0716-0301-7_10.

[11] Coomer AO, Black F, Greystoke A,

Munkley J, Elliott DJ. Alternative

splicing in lung cancer. Biochimica et

Biophysica Acta (BBA) - Gene Regu-

latory Mechanisms. 2019;1862(11):194388.

doi:10.1016/j.bbagrm.2019.05.006.

[12] Baeza-Centurion P, Miñana B, Schmiedel
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