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Abstract

This study aimed to investigate the influence of clinical, histologic, and MRI biomarkers on the evaluation of
biochemical relapse in patients with prostate tumors who underwent radical prostatectomy (RP). The study
involved a statistical analysis of MRI data acquired from patients with prostate cancer at the Radiology
Department of the Hospital da Luz, Lisbon.

The logistic regression analysis identified three significant predictors of biochemical recurrence: prostate
volume, index lesion size, and smooth capsular bulging. These variables demonstrated a strong association
with the likelihood of relapse. Prostate volume serves as an indicator of tumor size, while index lesion size
has consistently been linked to prostate cancer prognosis and relapse prediction. The extension of the tumor
beyond the prostate capsule, known as smooth capsular bulging, was also associated with an increased risk
of recurrence.

Survival curve analysis showed a gradual decline in the survival probability over time, emphasizing an in-
creased risk of relapse with extended post-surgery periods. This highlights the importance of continued
surveillance and appropriate interventions to mitigate the risk of relapse in patients with prostate tumors.

The random forest model provided moderate prediction accuracy, suggesting its potential as a predictive tool
for relapse outcomes. However, the overall performance of the models in predicting relapse fell short of
expectations, indicating the complexity and heterogeneity of prostate cancer.

Future research should consider alternative models and analytical approaches, such as feature selection tech-
niques, neural networks, and decision tree analysis, to further explore the intricacies of biochemical recur-
rence and the time until relapse.

In summary, this study contributes valuable insights into the identification of biomarkers for relapse detection
in patients with prostate tumors who underwent RP. However, further research is necessary to fully unravel
the complexities of biochemical recurrence and develop more accurate predictive models.

Keywords:Biochemical Recurrence, Biomarkers, Survival Analysis,Logistic Regression, Random Forest

iv



v



Resumo

Este estudo teve como objetivo investigar a influência dos biomarcadores clínicos, histológicos e de ressonân-
cia magnética na avaliação da recidiva bioquímica em pacientes com cancro da próstata submetidos a prosta-
tectomia radical (PR). A pesquisa envolveu uma análise estatística abrangente dos dados de ressonância
magnética (RM) adquiridos de pacientes com cancro de próstata no Departamento de Radiologia do Hospital
da Luz, em Lisboa.

A prostatectomia radical é considerada a principal intervenção cirúrgica para o tratamento do cancro de prós-
tata localizado, envolvendo a remoção completa da próstata e tecidos circundantes. A (RM) é uma técnica
de imagem não invasiva que fornece informações detalhadas, tanto anatómicas como funcionais, sobre a
próstata, permitindo a avaliação das características do tumor.

Através da análise estatística abrangente dos dados de RM e da avaliação dos biomarcadores clínicos, his-
tológicos e de RM, este estudo teve como objetivo obter uma compreensão mais aprofundada dos fatores
que contribuem para a recidiva bioquímica nos pacientes após prostatectomia radical. Os resultados desta
investigação têm o potencial de melhorar a estratificação de risco, auxiliar na tomada de decisões de trata-
mento e, em última instância, contribuir para melhores resultados para os pacientes no tratamento do cancro
da próstata.

O cancro da próstata é um problema de saúde global significativo, representando uma das principais causas
de mortalidade em todo o mundo. Apesar de extensas pesquisas e ensaios clínicos conduzidos ao longo de
várias décadas, as estratégias de tratamento eficazes para o cancro da próstata permanecem um desafio. A
natureza complexa da doença, juntamente com a sua heterogeneidade e diferentes apresentações clínicas,
dificulta o desenvolvimento de intervenções direcionadas e universalmente bem-sucedidas.

Fatores de risco reconhecidos desempenham um papel crucial no desenvolvimento e progressão do cancro
da próstata. A história familiar da doença, especialmente em parentes de primeiro grau, tem sido identificada
como um fator de risco significativo, sugerindo um potencial componente genético. A etnia também desem-
penha um papel, com certas populações, como homens afrodescendentes, apresentando taxas de incidência
e mortalidade mais elevadas em comparação com outros grupos étnicos. A idade avançada é outro fator de
risco proeminente, uma vez que o cancro da próstata afeta principalmente indivíduos mais velhos.

A identificação precoce e o diagnóstico do cancro da próstata são vitais para obter melhores resultados no
tratamento. Atualmente, três métodos principais são utilizados para a deteção: teste do antígeno específico
da próstata (PSA), exame retal digital (ERD) e técnicas de imagem. O teste de PSA mede os níveis de uma
proteína específica, chamada antígeno específico da próstata, no sangue. A presença de níveis elevados de
PSA pode indicar a existência de anormalidades na próstata, incluindo cancro. No entanto, embora o teste
de PSA seja amplamente utilizado, tem limitações, como a falta de especificidade e potencial para resultados
falsos-positivos, o que tem gerado discussões sobre a forma ideal de utilização e a necessidade de abordagens
diagnósticas complementares.

O ERD é um exame físico realizado por um profissional de saúde para avaliar o tamanho, forma e textura
da próstata. Embora menos sensível que o teste de PSA, o toque retal pode detetar anormalidades palpáveis,
como nódulos ou irregularidades, que podem indicar a presença de cancro da próstata. A combinação do teste
de PSA e ERD pode aumentar a taxa de deteção do cancro da próstata, pois cada método fornece informações
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complementares.

As técnicas de imagem desempenham um papel crucial no diagnóstico e estadiamento do cancro da próstata.
A ultrassonografia transretal (UST) permite a visualização da próstata e a identificação de áreas suspeitas
que podem requerer uma investigação mais aprofundada. A RM ganhou uma atenção considerável nos últi-
mos anos devido à sua superior resolução de tecidos moles e capacidade de detetar e caracterizar tumores da
próstata. A RM é particularmente valiosa na avaliação do tamanho, localização e extensão extracapsular do
tumor, fornecendo informações essenciais para o planeamento do tratamento e prognóstico. Estas ferramen-
tas de diagnóstico desempenham um papel vital na deteção, avaliação e tratamento do cancro da próstata,
permitindo abordagens de tratamento personalizadas.

Este estudo foca-se na avaliação do impacto de vários biomarcadores clínicos, histológicos e de ressonância
magnética na previsão de recidiva bioquímica após prostatectomia radical. Para selecionar os preditores mais
relevantes, foi utilizada uma abordagem de seleção stepwise. Por meio desse processo iterativo, a análise de
regressão logística identificou três preditores significativos: volume da próstata, índice de tamanho da lesão
e protuberância capsular lisa. O volume da próstata, como indicador do tamanho do tumor, teve um impacto
direto na progressão da doença e na probabilidade de recidiva. O índice do tamanho da lesão, consistente-
mente associado ao prognóstico do cancro da próstata e à previsão de recidiva, demonstrou importância como
preditor de risco de recidiva. A presença da protuberância capsular lisa, indicando extensão tumoral além
da cápsula prostática, aumentou ainda mais o risco de recidiva. Utilizando o método de seleção de variáveis
stepwise, o modelo de regressão logística foi capaz de selecionar os preditores mais relevantes para prever
a recidiva bioquímica em pacientes após prostatectomia radical. Esse método permitiu uma exploração efi-
ciente e sistemática dos potenciais preditores, permitindo que apenas as variáveis mais significativas fossem
retidas no modelo final.

O volume da próstata, o tamanho da lesão índice e a protuberância capsular lisa surgem como preditores
significativos, fornecendo informações valiosas sobre a progressão da doença e os riscos de recidiva. Ao
incorporar esses biomarcadores na tomada de decisões clínicas, os profissionais de saúde podem melhorar a
estratificação de risco e personalizar as estratégias de tratamento para pacientes com cancro da próstata.

A análise de sobrevivência, uma técnica estatística valiosa, foi aplicada neste estudo para complementar os
resultados da regressão logística e explicar a natureza do tempo até o evento de recidiva. Ao contrário da
regressão logística, que se concentra em resultados binários, a análise de sobrevivencia considera o tempo
necessário para que um evento ocorra, como a recidiva bioquímica. Ao analisar o declínio gradual na proba-
bilidade de sobrevivência ao longo do tempo, essa análise fornece informações sobre o aumento do risco de
recidiva com períodos prolongados após a cirurgia.

O declínio observado na probabilidade de sobrevivência salienta a importância da vigilância contínua e in-
tervenções oportunas para mitigar o risco de recidiva em pacientes com tumores de próstata. O cancro da
próstata pode apresentar taxas variadas de progressão e recorrência, tornando omonitoramento regular crítico
para detetar quaisquer sinais de recidiva. A vigilância rigorosa permite que os profissionais de saúde inter-
venham prontamente e implementem estratégias de tratamento adequadas, potencialmente melhorando os
resultados dos pacientes e prolongando a sobrevida.

O modelo de Random Survival Forests, usado neste estudo, mostrou uma precisão moderada na previsão da
recidiva. É uma técnica de machine learning que utiliza um conjunto de decision trees para fazer previsões.
A sua capacidade de lidarem com interações complexas e capturar relações não lineares entre os preditores
torna-as uma ferramenta promissora para prever recidivas em pacientes com cancro da próstata.
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No entanto, embora o modelo de Survival Forest tenha demonstrado potencial, o desempenho geral dos
modelos na previsão de recidivas ficou aquém das expectativas. Vários fatores podem ter contribuído para
essas limitações. A heterogeneidade da população-alvo, composta por pacientes com diversas características
clínicas e perfis tumorais, pode introduzir complexidade e dificultar a precisão da predição. Além disso, as
restrições de tamanho da amostra podem limitar a generalização dos resultados. O cancro da próstata é uma
doença multifacetada com vários fatores que influenciam a recidiva, tornando assim difícil capturar todos os
preditores relevantes dentro do tamanho da amostra.

Para aumentar a precisão da previsão, pesquisas futuras devem explorar abordagens alternativas de mod-
elagem. Técnicas de seleção de recursos, que identificam o subconjunto mais informativo de preditores,
podem ajudar a identificar as principais variáveis que levam à recidiva. As neural networks, com a sua ca-
pacidade de capturar padrões complexos e relacionamentos não lineares, podem fornecer mais informações
sobre a previsão de recidivas. A análise de árvores de decisão, uma abordagem de modelagem intuitiva e
interpretável, pode oferecer informações valiosas sobre as relações hierárquicas entre os preditores.

Ao considerar essas abordagens de modelagem alternativas, os investigadores podem expandir a compreen-
são da previsão de recidivas no cancro da próstata. Essa exploração pode levar ao desenvolvimento de mod-
elos de previsão mais precisos, permitindo uma melhor estratificação de risco e estratégias de tratamento
personalizadas para os pacientes.

Em conclusão, este estudo contribui com informações valiosas para a identificação de biomarcadores para
a deteção da recidiva bioquímica em pacientes com tumores de próstata após PR. Os achados destacam a
importância de considerar as características do tumor, incluindo o volume da próstata, o índice do tamanho
da lesão e a protuberância capsular lisa, na avaliação do risco de recidiva. Além disso, o estudo realça a
necessidade da realização de futuros estudos para aprofundar a compreensão da recorrência bioquímica.

Palavras Chave: Recurrencia Bioquímica, Biomarcadores, Análise de sobrevivência, Regressão Logistica,
Florestas Aleatórias
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Chapter 1

Introduction

The prostate is a gland that is part of the male reproductive system. It is located just below the bladder and
in front of the rectum. Its function is to produce a fluid that makes up a part of semen.

Figure 1.1: Illustrative figure of Prostate Cancer

Cancer is a disease in which cells in the body grow out of control and when it is started in the prostate it is
called prostate cancer. For many years humankind has been fighting cancer. According to the International
Agency for Research on Cancer, cancer was the leading cause of death worldwide in 2020, with almost 10
million deaths in that year[4].

Although there have been decades of research and clinical trials, cancer is still a very hard disease to cure
because we still know very little about it [5], however there are a few well-known risk factors that lead to
prostate cancer, such as a person’s family history, ethnicity, old age, and genetic factors[6].

In 2018, prostate cancer was responsible for 358,989 deaths (3.8% of all deaths caused by cancer in men) with
1,276,106 new cases, making it the second most frequent malignant cancer (after lung cancer). The average
age of diagnosis worldwide is 66 years, and increasing age is correlated with the incidence and mortality of
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the disease. It is estimated that until 2040 there will be 2,293,818 new cases and that there will be an increase
of 1.05% in mortality [6]. In Portugal 6759 new cases were diagnosed in 2020 with a total of 1917 deaths in
the same year [7].

According to more recent research, when an inflammatory response occurs following an injury to epithe-
lial cells, it can lead to prostate cancer. It is a complex process influenced by genetic changes and various
processes, in which normal cells can evolve into possibly atrophic cells, these from prostatic intraepithelial
neoplasia to local cancer, and the latter to metastatic cancer. The development of cancer can also be facili-
tated by growth factors and hormones (androgens). Thus, it is possible to say that prostate cancer is caused
by complex interactions, which occur throughout life, of mutable factors inherent to the subject’s life [8].

Identifying this disease early is very important, and currently there are three methods of diagnosis: Prostate-
specific-antigen (PSA) testing, Digital Rectal Exam (DRE) and Imaging [9].

PSA is the most important factor for identifying men at increased risk of prostate cancer. In 1994, PSA testing
gained FDA approval, recommending to perform biopsy on patients with PSA higher than 4 ng/mL, which
was later found that a fifth of cancers are present with PSA values lower than 4 ng/mL [10].

A DRE is technique where a physician feels the prostate by inserting a finger into the rectum to identify if
the prostate is enlarged, has lumps, areas of hardness or other types of abnormal texture.

North American and European urology guidelines recommend incorporation of a DRE with PSA screening,
because when used in combination it improves cancer detection rate, as compared with either test used alone
[11].

Conventional diagnostic imaging is obtained via Transrectal Ultrasound (TRUS), as it allows for structural
assessment of the gland. More recently Magnetic resonance imaging (MRI) has been used for detection,
characterization, and staging of prostate cancer [10] .

Figure 1.2: MRI of a man with prostate cancer

MRI is the most accurate tool and it allows us to locate and understand at what stage the cancer is, making it
easier to choose the most appropriate and specific treatment for each patient[10].

The enormous technological development in MRI with the arising of equipment and methods of image acqui-
sition and processing more and more sophisticated has led to increasing use of this technique in areas such as
diagnosis support, tumour staging and therapeutic decision. The excellent spatial resolution and the diversity
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of contrasts used in MRI (for example, anatomical image and diffusion) give this technique a high sensitivity
and specificity in the detection of prostate tumours, being fundamental for the planning of minimally invasive
robotic surgical interventions.

The interest in mapping non-invasive histological/functional/anatomical features using MRI as a possible
alternative to the pathological anatomy and predictive biomarker in prostate surgeries has recently increased
[12], nonetheless such methodologies need clinical validation.

One of the ways to treat prostate cancer is to do a Radical prostatectomy (RP), which aims to remove the
entirety of cancer and it is used when the cancer is thought to be confined only within the prostate. During
the intervention, the prostate and some tissue around it are removed.

Biochemical recurrence (BR) happens if the PSA exceeds a defined level post RP and it marks the return of
the disease.

The natural history of BR after RP can be long but variable, approximately 35% of patients will develop a
PSA recurrence within 10 years after surgery [13].

The main goal of this study is to analyse the influence of clinical, histologic and MRI biomarkers on the
evaluation of the BR of the patients with a prostate tumour operated by RP.

This work involves the statistical analysis of MRI data of patients with prostate cancer, acquired in the ra-
diology department of the Hospital da Luz, Lisbon. Data collection was performed between April 2022 and
June 2022 and statistical analyses were performed between July 2022 and March 2023.

The methods that will be used are: Exploratory analysis; Multiple Logistic Regression and evaluation of
models’ performance; Survival Analysis; Random Survival Forest.

In Chapter 2, the Methodology used will be described, including all the statistical methods and the statistical
software used. In Chapter 3, the data that was used to the statistical analyses will be described . In Chapter
4, the Results from all the performed statistical analyses will be described and finally, in Chapter 5, the main
conclusions and the Discussion will be presented.
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Chapter 2

Methodology

The present study aims to investigate the impact of various clinical, histologic, and MRI biomarkers on
the prediction of BR in patients who have undergone RP for prostate cancer. A retrospective analysis was
conducted on a sample of 151 patients who have undergone RP between 2013 and 2021, using both logistic
regression and survival analysis methods.

Logistic regression was used to model the association between various predictor variables and the binary
outcome of BR status. Several candidate predictors were included in the model, including age, PSA levels,
index lesion size, prostate volume, capsular contact length, and the presence of Black striation periprostatic
fat on MRI.

Survival analysis was also employed to examine the time to BR event. Specifically, the Kaplan-Meier method
was used to estimate the probability of remaining free from BR over time. The log-rank test was used to
compare survival curves between different groups of patients, based on their values for the predictor variables
of interest.

Overall, the use of both logistic regression and survival analysis has allowed to comprehensively evaluate
the role of various biomarkers in predicting BR status in patients who have undergone RP. The following
sections will provide a more comprehensive description of the methodology employed in this study.
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2.1 Logistic Regression Analysis

Logistic Regression Analysis (LRA) [14] is a statistical analysis method used to predict a dichotomic out-
come, modeling the chance of an outcome based on individual characteristics. This binomial outcome can
take two values: 0- outcome absent or 1- outcome present. Some possible examples of this are the presence
or absence of a certain disease (yes/no), a yes or no question (yes/no), among others.

LRA is based on probabilities associated with the values of the dichotomous random variable Y . More
precisely, Y represents a categorical outcome that only takes the value 1 (success or positive outcome) or 0
(failure or negative outcome).

The relationship between Y and the covariates is based on the logistic function,

Y = loge

[
π

1− π

]
= β0 +

p∑
j=1

βjXj , (2.1)

where β0 represents the intercept term, signifying the log-odds when all predictors are zero. βj represents all
the coefficients that correspond to the predictor variablesXj , with j ranging from (1, 2, ..., j).

The logit transformation allow one to write:

P (Y = 1|X1, ..., Xp) =
exp

(
β0 + β1X1 + ...+ βpXp

)
1 + exp

(
β0 + β1X1 + ...+ βpXp

) , (2.2)

where π indicates the probability of the event given the variables, P (Y = 1|X) is the probability of the
outcome variable Y being equal to 1, given the values of the predictor variables X1, ..., Xp, β0 is the inter-
cept term, and β1, ...,βp are the predictor variables’ coefficients. These coefficients and the intercept are
estimated using the maximum likelihood method [15].

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE)[16] is a method used to estimate the parameters of a statistical
model by maximizing the likelihood function. In the context of logistic regression, MLE involves finding
the values of the coefficients that maximize the probability of observing the given set of outcomes. This
process is often carried out by taking the natural logarithm (log) of the likelihood function, leading to the
log-likelihood function:

ℓ(β0, β1, . . . , βp) =
n∑

i=1

yi · ln(pi) + (1− yi) · ln(1− pi), (2.3)

where β0, β1, . . . , βp represent the coefficients representing the effects of predictor variables, yi the observed
binary outcome for the i-th observation and pi the predicted probability of the event based on the logistic
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regression model.

Maximizing the log-likelihood is equivalent to maximizing the likelihood function itself. Optimization tech-
niques, such as gradient descent or Newton-Raphson, are commonly employed to find the values of the
coefficients that result in the highest likelihood of observing the given data.

In summary, the likelihood function quantifies the probability of observing the data given a particular set of
model parameters, and Maximum Likelihood Estimation seeks the parameter values that make the observed
data most probable under the assumed model. This method forms the basis for estimating coefficients in
logistic regression and other statistical models.

Odds ratio

In logistic regression, Odds Ratio (OR) is a measure used to quantify the relationship between the response
variable and the predictors. It is defined as the ratio of the odds of the event occurring in the presence of
a particular predictors to the odds of the event occurring in the absence of that predictor, while holding all
other predictors constant [15].

To compare what happens when there is an increase of one unit to one of the predictor variables, the ratio of
the predictions is computed:

Oddsxj+1

Odds
=

eβ0+β1X1+...+βj(Xj+1)+...+βpXp

eβ0+β1X1+...+βjXj+...+βpXp
= eβj . (2.4)

The result of equation 2.4 can be interpreted as follows: a one-unit change inXj results results in an increase
in the log odds by eβj .

Table 2.1: Odds ratio interpretation

odds ratio of 1
No association between the re-
sponse variable and the predictor
variable

odds ratio greater than 1

Positive association, An increase
in the value of the variable is as-
sociated with an increase in the
odds of the event occurring.

odds ratio less than 1

Negative association, An in-
crease in the value of the variable
is associated with a decrease in
the odds of the event occurring.

In addition to estimating the logistic regression model’s coefficients, it is crucial to evaluate the predictor
variables’ significance. This can be accomplished by conducting hypothesis testing or inspecting the coef-
ficients’ confidence intervals. The logistic regression model’s overall significance can be determined using
the Wald test statistic[15].
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2.1.1 Diagnostics of the logistic model

The fundamental prerequisites for performing logistic regression should be fulfilled at all times. There are
4 basic assumptions: independence of errors, linearity, lack of strongly influential outliers and absence of
multicollinearity.

Independence of errors assumption

The independence of errors assumption assumes that the errors or residuals of the model are independent
of each other. This means that the observations or outcomes within the dataset are assumed to be unrelated
and not influenced by each other.

When the independence of errors assumption is violated, it means that the errors or residuals exhibit some
form of correlation or dependence. This can occur when there are repeated measures within the same in-
dividual, clustered data, or other forms of correlated observations. Violation of this assumption can lead to
biased parameter estimates, inflated or underestimated standard errors, and incorrect statistical inferences.

Linearity assumption

The linearity assumption assumes that there is a linear relationship between the independent variables (pre-
dictors) and the log-odds of the outcome variable.

In logistic regression, the log-odds (logit) of the probability of the outcome variable being in a certain category
are modeled as a linear combination of the predictor variables. The linearity assumption states that the effect
of each predictor variable on the log-odds is constant and follows a straight-line relationship.

However, in many real-world scenarios, the relationship between the predictors and the log-odds may not be
strictly linear. In such cases, the linearity assumption may be violated, leading to biased or unreliable model
estimates.

To assess the linearity assumption, researchers often examine plots or evaluate statistical tests that assess
the linearity between each predictor variable and the logit of the outcome. If the relationship appears to
be nonlinear, transformations of the predictor variables, such as quadratic terms or splines, can be used to
account for the nonlinear associations.

Lack of strongly influential outliers assumption - Cook’s Distance

The lack of strongly influential outliers assumption refers to the expectation that extreme or atypical ob-
servations should not have a disproportionately large impact on the model’s results or overall accuracy.

The assumption of the lack of strongly influential outliers suggests that the model’s results should remain
relatively stable and reliable even in the presence of a few extreme observations. If there are too many
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outliers or if a single outlier has a strong influence on the model’s outcome, the overall accuracy and validity
of the model can be compromised.

Cook’s Distance (CD) is a method used to evaluate the impact of individual observations on the estimated
coefficients in regression analysis, identifying potential influential points (data points that have a significant
impact on the results of statistical analysis). It measures the distance change in the predicted values of the
response variable when a particular observation is omitted from the analysis, relative to the overall variation
in the response variable.

In the follow equation, δi is defined as the sum of all the changes in the regression model when observation
i, for i = 1, .., n, is removed from it:

δi =

∑n
j=i

(
Ŷj − Ŷj(i)

)2
(p+ 1)σ̂2

, (2.5)

where σ̂ is the standard deviation, p represents the number of predictors in the regression model, Ŷj is the jth
fitted response value and Ŷj(i) is the fitted response value obtained when excluding observation i.

The identification of influential observations is now widely recognized as a crucial aspect of statistical anal-
ysis, and Cook’s distance is a common tool for detecting such observations in regression analysis. However,
CD should not be applied as a sole criterion for accepting or rejecting individual cases as it is not a statistical
test [17].

Absence of multicollinearity assumption - Variance inflation factor

The absence ofmulticollinearity assumption assumes that there is no high correlation or redundancy among
the independent variables included in the model [18].

When multicollinearity is present, it becomes difficult to distinguish the separate effects of the correlated
variables on the outcome variable. The estimated coefficients may become unstable, and the standard errors
of the coefficients may become inflated. As a result, it becomes challenging to identify the true contribution
of each predictor variable to the model.

The variance inflation factor (VIF) is a measure that shows how much the variance of the estimated coef-
ficient is being inflated by multicollinearity, and is defined as:

V IFi =
1

1−R2
i

, (2.6)

where R2
i is the unadjusted coefficient of determination for regressing the ith independent variable on the

remaining ones [19]. Values of VIF higher than 10 indicate multicollinearity[20].
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2.1.2 Model Selection Methods

The objective of a model is that it can predict an outcome with the use of variables, but it is possible to have
two different models that predict the same outcome. What is wanted is that the model that is chosen is the
most simple, yet the one that is more accurate. There are several methods to create this ”optimal model”.

Backward elimination (step-down)

This procedure allows us to know if a model is preferred to another. The following is a list of how this process
works:

1. Build a regression model that contains all the possible variables;

2. Perform a Wald test to see what variables are significant (H0 : βj = 0 for j = 1, ..., p). If all the
coefficients are significant then all the variables are important to explain the explanatory variable and
none of them should be cut from the model.

3. If at least one of the above variables is not significant, the one with the biggest p-value is cut and a new
model is adjusted considering the remaining variables.

4. Repeat the second and third steps until there are only significant variables in the model.

Its important to note that for a categorical variable, an F test should be used to test the null hypothesis that
all the parameters of associated dummy variables are equal to zero [21].

Forward selection (step-up)

Another common procedure is designated as forward selection (step-up):

1. Begin with a model that contains no predictor variables.

2. Fit simple models for each individual predictor variable and evaluate their performance using a chosen
criterion.

3. Choose the predictor variable that, when added to the current model, improves the model fit the most
according to the chosen criterion.

4. Include the selected predictor variable in the model.

5. Repeat the process by evaluating the remaining predictor variables, adding the one that provides the
most significant improvement in model fit.

6. Continue this process until at least one of the variables is not significant [21].
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Stepwise selection

The most used procedure for the selection of variables is the Stepwise Selection.

This procedure is a fusion of step-down and step-up model selection. It is possible to start with all variables
or just one, and each time one variable is removed or added, all the variables that are present in the model
are analyzed with the objective to check if they should be removed from the model at that step [21].

Akaike Information Criteria

Akaike Information Criteria (AIC) is a measure of quality of the adjusted model. It takes into account the
precision and complexity of the model, and it is given by

AIC = −2 log(ℓ̂) + 2p, (2.7)

where, ℓ̂ represents the maximized value of the likelihood function of the model and p the number of param-
eters in the model.

The larger the number of parameters in the model, the more significant the likelihood, so log(L) grows with
the complexity of the model.

The AIC is a tool for the selection of models. The lower the AIC, the better the model [21].

For the comparison of two AICs, the absolute value of each means nothing. What can give some information
is their difference:

∆l = AICl −AICmin, (2.8)

where the AIC of the l-th model is denoted asAICl, whileAICmin represents the lowest AIC obtained from
the set of models under consideration [22].

To interpret∆l the criteria is displayed in Table 2.2:

Table 2.2: AIC difference interpretation

∆l < 2
the l-th model has substantial support and is
likely to be a good description of the data

2 < ∆l < 4 strong support for the i-th model
4 < ∆l < 7 very weak support for the i-th model.
∆l > 10 model has essentially no support

Bayesian information criterion

Bayesian information criterion (BIC) is a statistical measure that balances the goodness of fit of a model with
its complexity, by penalizing models with more parameters, in order to identify the most likely model among
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a set of alternatives [23]. BIC is calculated based in the following equation:

BIC = p log (n)− 2 log (ℓ̂), (2.9)

where ℓ̂ represents the maximized value of the likelihood function of the model, p the number of parameters
in the model and n the sample size or number of observations in the dataset[24].

Just like AIC, the model with the lowest BIC value is preferred.

2.1.3 Goodness-of-fit diagnostics for the Logistic Regression Model

Goodness-of-fit diagnostics are used to assess how well a logistic regression model fits the observed data.
These diagnostics evaluate the overall performance of the model in terms of its ability to predict the outcome
variable based on the independent variables. There are several goodness-of-fit diagnosticsmethods, including
binned residuals, precision, recall and receiver operating characteristic (ROC) curves, and area under curve
(AUC) that will be further described.

Binned Residuals

Binned residual plots [25] are a useful tool for assessing the fit of regressionmodels for binary outcomes, such
as logistic or probit models. Unlike residual-versus-fitted plots used for linear regression, binned residual
plots can accommodate the discrete nature of residuals from binary outcome models.

The construction of binned residual plots involves ordering predicted probabilities and calculating residuals,
then dividing the data into equal-sized bins and plotting the average residual against the average predicted
probability for each bin. If the model is correct, approximately 95% of the points are expected to lie within
the confidence limits. Departures from random scatter can indicate that the fitted model does not accurately
describe the data [25].

Positive predictive value, Sensitivity and ROC curves

Positive predictive value and Sensitivity can be used as goodness-of-fit measures for evaluating the perfor-
mance of a logistic regression model. In the context of logistic regression, the model predicts the probability
of a binary outcome, and a threshold is applied to classify instances as positive or negative based on their
predicted probabilities [26].

Table 2.3: Confusion Matrix for positive predictive value and Sensitivity

actual positive actual negative
predicted positive TP FP
predicted negative FN TN
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TrueNegative (TN) represents the instances that themodel correctly identified as negative. On the other hand,
False Positive (FP) corresponds to instances where the model incorrectly identified them as positive. False
Negative (FN) signifies instances incorrectly labeled as negative by the model. In contrast, True Positive
(TP) denotes instances that the model correctly identified as positive.

Additionally, the True Positive Rate (TPR), also known as Sensitivity, is the proportion of actual positive in-
stances correctly identified by the model. Conversely, the False Positive Rate (FPR) quantifies the proportion
of actual negative instances that the model incorrectly identified as positive.

Positive predictive value measures the proportion of correctly predicted positive instances out of all instances
predicted as positive. In logistic regression, positive predictive value can be interpreted as the proportion of
correctly predicted events,

Positive predictive value =
TP

TP + FP
. (2.10)

Sensitivity, on the other hand, measures the proportion of correctly predicted positive instances out of all
actual positive instances. In logistic regression, sensitivity can be seen as the ability of the model to capture
the true positive events,

Sensitivity =
TP

TP + FN
. (2.11)

Furthermore, positive predictive value and sensitivity are closely related to the Receiver Operating Charac-
teristic (ROC) curve [27]. The ROC curve is a graphical representation of the model’s performance at various
classification thresholds, plotting the true positive rate (TPR) (also known as Sensitivity) against the false
positive rate (FPR).

The TPR measures the fraction of positive examples that are correctly labeled,

TPR =
TP

FP + TN
. (2.12)

The FPR measures the fraction of negative examples that are misclassified as positive,

FPR =
FP

FP + TN
= 1− Specificity. (2.13)

Figure 2.1 displays two ROC curves, one for Algorithm 1 and another for Algorithm 2. The performances of
the algorithms appear to be comparable.

Ideally, a good classification model will have a ROC curve that hugs the top-left corner of the plot, indicating
a high TPR and a low FPR across different thresholds.
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Figure 2.1: ROC Curve example for the comparison of two Algorithms

The area under the ROC curve (AUC-ROC) is commonly used as a summary measure of the model’s discrim-
inating ability. A higher AUC-ROC indicates better discrimination between positive and negative instances.

Area Under Curve

The AUC[28] refers to, as its name indicates, the area under the ROC curve.

It is a summary measure of the overall performance of a diagnostic test and represents the probability that a
randomly chosen positive case will be ranked higher than a randomly chosen negative case by the test[27]
and can be computed using the trapezoidal rule [29].

Table 2.4 displays the interpretation of the AUC values, ranging from 0.5 to 1 [29]:

Table 2.4: AUC values interpretation

AUC test score
<0.7 non-useful

0.7-0.79 fair
0.8-0.89 good
0.9-0.99 excellent

1 perfect

To compare the AUC of two different ROC curves, the DeLong test is employed to check/verify if there is a
significant difference between the two curves [30].
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2.2 Survival Analysis

The first life table ever produced was back in 1662 when John Graunt invented it, beginning the development
of Survival analysis.[31]

Survival analysis is an important methodology for the analysis of data on events observed over time, such as
disease occurrence, disease recurrence, recovery, or other experiences of interest.

2.2.1 Survival Data

Two of the most important terms when referring to Survival analysis are Survival data and time. Survival
data is data that represents the time of life or survival of individuals who belong to a specific population.
Time represents the time taken from the initially defined instant until the occurrence of an event of interest.

Survival analysis is distinguished from other statistical areas because of the possible existence of censored
data. Censored data happens when the event of interest does not occur to a patient or subject during the time
the study is taking place [32].

There are several methods to censor data. The more common are: right-censored, left-censored or Interval-
censored, which will be further described.

Figure 2.2: Example of Left-censored (Patient 1), Right-censored (Patient 3) and not censored (Patient 2) Data

Right-Censored Data exists when the study comes to a halt before an event occurs or when the subject
simply leaves the study before it has ended. In Figure 2.2 it is possible to observe that the Patient 3 event did
not happen before the end of the study, and because of that the data is right-censored.

Left-Censored Data exists when subjects enter the study when the event has already occurred and there is
no information about at what time it happened. Figure 2.2 illustrates an instance of such an occurrence where
Patient 1 was enrolled in the study post the occurrence of the event. Thus, the timing of the event is unknown,
leading to left-censored data.

Interval-Censored Data also exists, and the only difference from Left-censoring is that an interval of when
the event occurred is known[33].
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There also exists Truncation. In survival analysis, truncation occurs when the observation period for indi-
viduals in a study is limited, and only those who survive past a certain point or experience an event within
a specific time-frame are included in the analysis. Truncation is essential to consider when interpreting sur-
vival outcomes, as it influences the estimation of survival probabilities and can impact the generalizability
of study findings.

It is likely that when performing a study using survival analysis there will be factors that influence the survival
of the subject. Those factors are namedRisk factors. Those factors can be inherent to the subject or external.
A variable can be classified as constant if its values remain constant throughout the study, such as sex or
variables that are only measured once. On the other hand, a variable is considered time-dependent if its value
changes over the course of the study[32].

2.2.2 Survival and Hazard Function

Using T that represents the time of life of an individual that belongs to a homogeneous population as a
non-negative, continuous variable [32], we can define the Survival Function on the instant t as being the
probability of an individual surviving beyond the instant t:

S(t) = P (T > t) = 1− F (t), t ≥ 0, (2.14)

where F (.) is the distribution function of the random variable T .

Due to the characteristics of the distribution function, S(.) has the following properties: S(t) is a continuous,
strictly decreasing function, and

S(0) = 1, lim
t→∞

S(t) = 0, (2.15)

that is, the probability of survival in the instant 0 (t = 0) is 1, and the limit of the Survival Function when t
approaches∞ is always 0. i.e., the survival function will approach zero has the time t increases.

The Hazard function, equation 2.16, specifies the instantaneous rate of death in the instant t, that is, the
probability of an individual experiencing an event in the infinitesimal interval [t, t+ δt[, knowing that he/she
has not experienced the event until time t. In other words, it corresponds to the instantaneous event rate for
an individual who has survived until time t. The Hazard Function is defined as,

h(t) = lim
dt→0+

P (t ≤ T < t+ dt| T ≥ t)

dt
. (2.16)

A note about relevant properties of the hazard function:

h(t) ≥ 0

∫ ∞

0
h(t)dt = ∞. (2.17)

15



The Hazard function, h(t), does not take negative values, as we can see in equation 2.17, describing the
evolution of the probability of instant death of an individual throughout time. Furthermore, the integral of
h(t) between 0 and∞ is equal to∞. Therefore, the hazard function is not a probability but rather a rate since
its counter-domain is not restricted to the interval [0,1] but the set of non-negative real numbers. Note that the
hazard function focuses on the event’s occurrence, whereas the survival function relies on not experiencing
the event.

2.2.3 Life tables and survival curves

Life tables (also called a mortality tables or actuarial tables) are the core of Survival analysis. They are
a statistical tool used to analyze survival data and estimate mortality rates for a population. They provide
information on the probability of surviving to a certain age or experiencing an event, such as death, based
on the age-specific death rates observed in a population. Life tables can be used to estimate life expectancy,
calculate cumulative survival rates, and compare mortality patterns across different populations. They are
commonly used in demography, epidemiology, and public health research [32].

If we consider a cohort of n individuals that come from the same study population, the interval [0,∞[ is
divided in k + 1 adjacent intervals and a fixed amplitude of

Ij = [aj−1, aj [, j = 1, ..., k + 1 (2.18)

with a0 = 0, ak = L and ak+1 = ∞, where ℓ is the upper limit of observation.

Based on this results, life tables give us the following information:

• The number of people at risk at instant aj−1: nj

• The number of censured cases at Ij : mj

• The number of deaths at Ij : dj

• The Probability of survival beyond Ij : Pj = S(aj)

• The conditional probability of death, in Ij knowing that survived beyond Ij−1: q̂j [32].

These tables are often presented graphically as a survival curve that plots Time vs Cumulative Survival.

A survival curve, is a graphical representation of the probability of survival over time in a specific population
or group. It is commonly used in medical and survival analysis to analyze the time it takes for an event of
interest, such as death or failure, to occur.

Time can be presented in any measure unit which is pertinent to the study (seconds, years, millenniums...)
and cumulative survival is a measure that ranges from 0 to 1, with 1 being the first instance (meaning that at
time 0, survival is 100%) and 0 the last (meaning that at the last instance of time, survival is null).
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The estimation of the survival curve requires the initial estimation of the survival function, which is accom-
plished using the non-parametric estimator of the survival function, a statistical method [34].

Kaplan-Meier Estimator is the generalization for censured data from the empirical survival function. Let:

• t(1), ..., t(r) distinct death instants in a sample with dimension n (r ≤ n)

• di: number of deaths that have occurred in t(i), i = 1, ..., r

• ni: number of individuals in the study immediately before t(i), i = 1, ..., r

then,

Ŝ(t) =
∏

i:t(i)≤t

(
1− di

ni

)
, (2.19)

where Ŝ(t) is equal to 1 for 0 ≤ t ≤ t(1).

It is possible to compute Ŝ(t) recursively:

Ŝ(t(1)) = 1− d1
n1

, (2.20)

Ŝ(t(i)) = Ŝ(t(i−1))

(
1− di

ni

)
. (2.21)

Based on this results it is possible to compute the Kaplan–Meier curve.

Figure 2.3: Illustrative Example of Two Kaplan-Meier curves, with n subjects for two groups

The x-axis represents Time, and the y-axis represents the cumulative probability of survival. Steps in the
graph correspond to the times at which events were observed. As failures (events) begin to occur during the
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follow-up period, the survival probability decreases. The survival probability decreases as failures (events)
occur during the follow-up period. The study’s accuracy is higher at the left of the curve (higher sample size)
and reduces with time [34].

In figure 2.3, is represented a plot with two Kaplan-Meier Curves, Group 1 (Blue) and Group 2 (Black). By
visually comparing the two curves it is possible to see the survival experience of two different groups of
subjects and determine whether there is a significant difference in survival time between them. If the two
curves are significantly different, this suggests that the factor being compared (e.g. treatment group, disease
severity, etc.) impacts survival. If the two curves are similar, it suggests that the factor being compared does
not have a significant effect on survival.

It is important to note that Kaplan-Meier curves can be affected by several factors, such as censoring, follow-
up time, and sample size. Therefore, it is important to carefully consider these factors when interpreting the
results of a Kaplan-Meier analysis.

In summary, the Kaplan-Meier estimator serves as an exploratory method in survival analysis by allowing
researchers to visually explore and compare survival curves, identify time-dependent patterns, examine dif-
ferences between groups, and assess the impact of censoring. It provides a foundation for further analysis
and inference in survival studies and aids in generating hypotheses and insights into the underlying dynamics
of the data.
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2.3 Cox proportional hazards model

The most used method for establishing the relationship between the survival of a patient and several explana-
tory variables is the Cox proportional hazards model [32].

Using T as a continuous random variable that represents time of life, the risk function at the instant t, for an
individual that is associated with a vector of variables z = (z1, ..., zp)

′ in the form:

h(t; z) = h0(t) exp(β1z1 + ...+ βpzp) (2.22)

where β1, ..., βp are the unknown coefficients of the regression that represent the effect of the p covariates on
survival and h0(t) is an arbitrary non negative function.

Considering two individuals that are associated to the vectors z1 and z2, that only differ in the values of the
co-variable zj . Given a proportional risk function, there is

h(t; z1)

h(t; z2)
=

h0(t) exp(β1z11 + ...+ βjz1j + ...+ βpz1p)

h0(t) exp(β1z21 + ...+ βjz2j + ...+ βpz2p)
= exp(βj(z1j − z2j)), (2.23)

where exp(βj) represents the relative risk of the occurrence of the event for the two individuals that differ
a unit in the values of the co-variable zj , with the remaining variables respective values being equal [32].

Maximum Likelihood Estimation

In a study with n individuals that were observed at k distinctive times of life t(1) < ... < t(k), k < n. The
risk at the instant t(i) is

Ri = R(t(i)) = {j : tj ≥ t(i)}, (2.24)

with z(i) as the vector of variables associated with the individual who experienced an event at time t(i). The
inference in β is based on this function [32]:

L(β) =
k∏

i=1

exp(β′z(i))∑
l∈Ri

exp(β′zl)
. (2.25)

This likelihood function does not depend on h0(t) (the baseline hazard function), so it allows for inference
on the vector of parameters β. Under general conditions, the partial Maximum likelihood estimator of β is
consistent, asymptotically normal with a mean value β and a covariance matrix I(β)−1 [32], where
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Ijk(β) = −E

(
∂2log(L)

∂βj∂βk

)
. (2.26)

2.3.1 Model Selection Methods

One of the most important information in survival analysis is knowing which variables significantly influence
survival time. Using theWald test, given a coefficient βj that represents the effect of a co-variable zj in the
survival of a given patient, it is possible to test:

H0 : βj = 0 vs H1 : βj ̸= 0, (2.27)

in which, under H0, the test statistic
ˆβ
2

j

var(β̂j)
has asymptotic distribution χ2

1.

If the results from the test are not statistically significant, there is no evidence that βj is different than 0, so
the variable does not influence survival time in the presence of the other variables [32].

Aiming to identify the most relevant variables to include in a model, Stepwise selection is one of the widely
used techniques for automated variable selection. It iteratively adds or removes variables based on specific
criteria, such as statistical significance or goodness-of-fit measures.

Stepwise is comprised of 3 main types of variable selection: forward selection, backward elimination, and
bidirectional elimination. These stepwise methods provide a systematic approach to variable selection, but
it’s important to be mindful of their limitations, such as the potential for overfitting and sensitivity to initial
conditions

2.3.2 Goodness-of-fit diagnostics for the Cox model - Proportional Hazard Assumption

The Cox model has one fundamental Assumption, the Hazards are proportional. Proportional Hazard (PH)
assumption assumes that the hazard functions for different groups or levels of a predictor variable are propor-
tional over time. It is important because violating this assumption can lead to biased estimates and incorrect
inferences in survival analysis. When the assumption holds, the Cox PH model provides a flexible and pow-
erful tool for analyzing survival data [35].

In the subsequent chapter, we will delve into various techniques for assessing the proportional hazards as-
sumption. One commonly employed approach is the Schoenfeld residuals test, which offers a formal assess-
ment of the proportional hazards assumption. Additionally, we will explore the evaluation of the Schoenfeld
residuals plot, another method utilized to examine the assumption. By discussing these techniques in detail,
we will gain a comprehensive understanding of how to effectively assess the proportional hazards assumption
in survival analysis.

Residuals play a key role in the diagnostic methods for the Cox model. Various types of residuals are defined
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for it and serve for different objectives[36].

Schoenfeld residuals

As referenced before, Schoenfeld Residuals are a fundamental part in testing PH assumption [2].

Considering p covariates and n independent observations consisting of time, covariates, and censoring infor-
mation. These observations can be represented as (ti, zi, ci), where i ranges from 1 to n, and ci equals 1 for
uncensored observations and 0 otherwise. It is possible to derive the Schoenfeld residuals as explained next,
consider the kth covariate:

∂Lp(β)

∂βk

=
n∑

i=1

ci

{
zki −

∑
j∈R(ti)

zkje
z′jβ∑

j∈R(ti)
ez

′
jβ

}
=

n∑
i=1

ci {zki − z̄kwi
} , (2.28)

where

z̄kwi
=

∑
j∈R(ti)

zkje
z′jβ∑

j∈R(ti)
ez

′
jβ

. (2.29)

Based on equation 2.28, the Schoenfeld residual estimator on the kth covariate for the ith individual is ob-
tained by the substitution of the partial likelihood estimator of the coefficient, β̂:

r̂kSi
= ci

(
zki − ẑkwi

)
(2.30)

where

ˆ̄zkwi
=

∑
j∈R(ti)

xkje
z′jβ∑

j∈R(ti)
ez

′
jβ

. (2.31)

Based on this understanding, the discussion will now focus on the Schoenfeld residuals test and plot.

The Schoenfeld residuals test is a statistical procedure that evaluates the relationship between the Schoenfeld
residuals and time. By assessing the correlation between these residuals and time, this test provides a formal
assessment of the PH assumption. If the resulting p-value is significant, it indicates a violation of the PH
assumption [37].

Schoenfeld residuals are also useful because plots of these residuals against time can reveal whether or not a
covariate coefficient is time-dependent [2].
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The plot of Schoenfeld residuals against time for each covariate should exhibit consistent residuals without
any discernible pattern. Any noticeable pattern in the residuals suggests that the corresponding covariate is
time-dependent. As a general guideline, a non-zero slope in the plot indicates a violation of the proportional
hazard assumption.
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Figure 2.4: Schoenfeld residuals obtained for waist circumference in the multivariate Cox model for the example case-cohort study
of colorectal cancer risk which utilized waist circumference levels as the primary exposure variable. [1].

The plot in Figure 2.4 does not show a pattern of changing residuals for waist circumference, indicating that
the covariate is not time-dependent and suggesting that it does not follow the PH assumption. [1].

Cox-Snell residuals

The Cox-Snell residual for an individual i, where i = 1, 2, ..., n is given by [2]:

rCSi = exp(β̂
′
zi)Ĥ0(ti), (2.32)

where Ĥ0 is the estimated baseline Hazard and if the correct model has been fit to the data, then the rCSi

will have a unit exponential distribution with a hazard ratio of 1 and β̂ and Ĥ0(t) are the partial maximum
likelihood estimations. To test if the Cox-Snell residuals are approximately unit exponentially distributed, a
residual plot can be constructed.

In this residual plot, if the estimate of the integrated hazard rate based on rCSi when plotted against rCSi

yields a straight line with a slope equal to 1 then the Cox-Snell residuals are approximately unit exponentially
distributed [2].
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Figure 2.5: Cox-Snell residual plot using data on cabinet durations of 314 European cabinet governments.[2]

Cox-Snell residual plots are useful devices to quickly gauge the adequacy of the suggested model.

The 45-degree line through the origin in the figure 2.5 is a reference line. If Cox model holds, Estimated
Hr(rCSi) versus rCSi should fall roughly on the line, meaning that the correct model has been fit to the data.
In this case, it is possible to conclude that the correct model was fit to the data.

Martingale and Deviance Residuals

Martingale residuals are calculated as the disparity between the observed event indicator, represented by the
censoring indicator δi(t), and the expected number of events, denoted by the integrated hazardHi(t):

M̂i(t) = δi(t)− e
ˆβ′ziĤ0(ti) = δi(t)−Ri (2.33)

The residual commonly used to evaluate outlying observations is the deviance residual. The deviance residual
is simply a martingale residual re-scaled to have approximate symmetry around 0. Plots of deviance residuals
against the duration time or against the observation number can be used to identify aberrant observations or
clusters of observations.

Based on this information, the deviance residuals can be computed:

Ri = sign(M̂i(t)){−2[Mi(t) + δilog(δi − M̂i(t))]}1/2, (2.34)

whereMi(t) is the martingale residual for the ith observation and δi the observed event for the ith observation
[2].
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Figure 2.6: Plot of observation numbers against deviance residuals for results from a cox model adjusted to military intervention
data[2]

In figure 2.6, by plotting the deviance residuals against the observation numbers of military intervention
data it is possible to evaluate the presence or absence of outliers. In this plot, the residuals exhibit a fairly
uniform distribution around zero. However, it is worth noting that a few observations have significantly
large negative residuals, which may require additional investigation or scrutiny. This suggests that for these
particular observations, the estimated hazard rate is likely overestimated [2].

There are several methods to assess the predictive performance of models, that will be further described.

Harrell’s C-Index

The usual method to assess the predictive performance of the ensemble is to compute the C statistic for
survival data, commonly referred to as Harrell’s C-Index [38].

The appeal of the C-index lies in its interpretation as a probability of misclassification, making it a preferred
choice for prediction error assessment. Moreover, it does not rely on a predetermined time point for evalua-
tion, distinguishing it from other survival performance metrics that primarily account for censoring [39].

To calculate the C-index, the model’s predicted survival times are compared with the actual survival times
for each individual.

C =

∑
i ̸=j I(T̃i > T̃j) · I(ηi > ηj) ·∆j∑

i ̸=j I(T̃i > T̃j) ·∆j

, (2.35)

where the indices i and j refer to pairs of observations in the sample, (T̃i, T̃j) represent the “time-to-event”
response of each individual, (ηj , ηi) the predicted risks, ∆j the factor that is equal to zero if the pairs of
observations are not comparable because the smaller survival time is censored, or 1 otherwise, and I(·)
represents an indicator function that takes a value and returns 1 if the argument is true, and 0 otherwise [38].
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Harrell’s C-index is a useful metric for assessing the predictive power of an ensemble in survival analysis.
A value of 0.5 indicates a non-informative model, while a value of 1 indicates perfect prediction. Harrell’s
C-index accounts for the full range of observed survival times, making it an easily interpretable coefficient
[38].

Another way to access the performance of a model are Prediction Error Curve (PEC). The curve shows the
relationship between time and the difference between the predicted and actual survival probabilities [40].

Prediction Error Curve

In the context of model selection, the Prediction Error Curve (PEC) can be a valuable tool to compare and
assess the performance of different predictive models.

When evaluating multiple models, the PEC can be calculated for each model using the Brier score or any
other appropriate performance metric. It allows for the visualization and comparison of the prediction accu-
racy and calibration of the models across different predicted probability ranges.

By examining the PECs of different models, patterns or trends can be identified in their performance. Models
with lower Brier scores, indicating better prediction accuracy and calibration, are generally preferred. The
shape of the PECs can also be compared to determine if certain models consistently outperform others across
different predicted probability ranges [3].

The expected Brier score is defined as

BS(t) = E
[
(Y (t)− π(t|X))2

]
, (2.36)

where X represents the covariate vector ,Y (t) indicates the vital status of an individual at a given time t
(taking values of 0 if the event as occurred or 1 if it has not), and π(t|X) as the conditional event-free
probabilities at time t, given the covariate combinationX = x [3].

The expected Brier score is a measure that represents the average Brier score one would expect to obtain if
the predictive model’s predicted probabilities were used to make predictions on new, unseen data. It provides
an estimate of the model’s overall prediction accuracy and calibration.

Furthermore, the Brier score can be considered as a function of time, which leads to prediction error curves
in the whole observation period and allows transient assessment over time. The curves are primarily thought
of as explanatory tools and are used to display the predictive ability of different prognostic classification
schemes.
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Figure 2.7: Example of Estimated Prediction Error Curves for Cox models with varying covariate settings where the Kaplan-Meier
curve yields a benchmark value [3].

In figure 2.7, Prediction Error Curve (PEC)s obtained from 3 different Cox models are displayed. These
methods are applied to data from node-positive breast cancer patients as collected by the German Breast
Cancer Study Group [3].

The prediction error curves of the full Cox model, which includes all six predictors, and the selected Cox
model, which includes tumor grade, number of lymph nodes, and progesterone receptor, show a striking
similarity. This indicates that the three remaining covariates in the full model do not have substantial effects
in the presence of the three selected covariates.

However, if the most important predictor, which is the number of lymph nodes, is excluded from the selected
Cox model, the prediction error of this incorrectly specified model significantly increases. It becomes more
similar to the prediction error obtained from the naive prediction using the pooled Kaplan-Meier estimate,
which ignores all covariate information.

In summary, the Cox model with only three variables appears to be the most suitable model based on the
analysis conducted.

The techniques demonstrated can assist clinical researchers in identifying the suitable statistical model when
the primary objective is to predict events during the progression of a patient’s disease [3].
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2.4 Random Survival Forest model

Random Survival Forest (RSF) is a machine learning algorithm for time-to-event outcomes that can effec-
tively capture intricate relationships between predictors and survival time without needing pre-specification,
whilst showing superior predictive performance [41].

This technique is used to build a risk prediction model in survival analysis, where the predictor is an aggregate
formed by consolidating the outcomes of numerous survival trees. This approach has 3 main Steps [40]:

1. Draw B bootstrap samples.

2. Grow a survival tree based on the data of each of the bootstrap samples b = 1, . . . , B:

(a) At each tree node select a subset of the predictor variables.
(b) Among all binary splits defined by the predictor variables selected in (a), find the best split into

two subsets (the daughter nodes) according to a suitable criterion for right censored data, like the
log-rank test.

(c) Repeat (a)–(b) recursively on each daughter node until a stopping criterion is met.

3. Aggregate information from the terminal nodes (nodes with no further split) from the B survival trees
to obtain a risk prediction ensemble.

The Nelson-Aalen estimator is used to estimate the conditional cumulative hazard function in each terminal
node of a tree, adding to the ensemble survival function from random survival forest:

Ŝrsf (t|x) = exp

(
− 1

B

B∑
b=1

Ĥb(t|x)

)
, (2.37)

where Ĥb(t|x) is the Nelson-Aalen estimator, as seen in [40].

2.4.1 Variable importance

Variable Importance (VIMP) in a RSFmodel refers to the measure of the relative importance of each predictor
variable in predicting survival outcomes. This measure is obtained by calculating the decrease in the model’s
performance when a particular predictor variable is randomly permuted while holding all other variables
constant. The greater the decrease in performance, the more influential the variable is. At a given time,
a VIMP of zero or negative values shows that the predictor does not contribute to predicting the response
variable [41].

The RSF model holds several advantages over traditional survival models like the Cox proportional hazards
model. RSF excels in handling non-proportional hazards, capturing non-linear relationships and interac-
tions naturally, managing high-dimensional data without requiring feature selection, exhibiting robustness
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to outliers, automating variable selection, accommodating missing data without imputation, and demonstrat-
ing competitive predictive accuracy, especially in scenarios with complex or non-linear predictor-survival
relationships. The choice between survival models depends on the dataset characteristics, assumptions, and
analysis goals, with RSF proving valuable in situations where traditional model assumptions may be violated
or when a flexible, data-driven approach is desired.

2.5 Statistical software

All statistical analyses were performed with R software (version 2023.03.0+386) with packages readxl, tidy-
verse, gridExtra, mlbench, MASS, pROC, arm, broom, car, BSDA, ggpubr, reshape2, survival, ranger, gg-
plot2, dplyr, ggfortify, survminer, and contsurvplot.
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Chapter 3

Data

This study aims to analyze the influence of clinical, histologic and Magnetic Resonance Imaging (MRI)
biomarkers on the evaluation of the biochemical relapse of patients with a prostate tumour operated by radical
prostatectomy.

The radiology department of the Hospital da Luz, Lisbon, collected MRI data of patients with PCa operated
by radical prostatectomy available for the development of this thesis.

3.1 Variables

The Response Variable for this study is BR which is a categorical variable that states whether BR occurred
or not (Yes or No).

A total of 22 variables were provided for the study.

Age at MRI - Age of the Individual, in years, at the moment he underwent the MRI.

Prostate Volume (gr) - Volume of the Prostate, in grams.

PSA at MRI (ng/ml) - PSA amount, in ng/ml, at the moment of the MRI.

Index lesion size (mm) - The size of the index lesion, in mm, which refers to the size of the lesion in a
patient that have the highest cancer suspicion score according to the initial multiparametric magnetic
resonance imaging (MP-MRI) [42].

Capsular contact length TLC (mm) - The capsular contact length is defined as the amount of prostate tu-
mour that is in contact with the prostatic capsule, in mm [43].
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PI-RADS V2 - Prostate Imaging Reporting Data System (PI-RADS) is a structured reporting scheme for
multiparametric prostate MRI in the evaluation of suspected prostate cancer. The second version of
this reporting scheme was used in the present study[44]. A score from 1 to 5 is assigned to each lesion,
indicating the likelihood of clinically significant cancer:

Table 3.1: PI-RADS scale

PI-RADS level clinical significance
1 very low
2 low
3 intermediate
4 high
5 very high

According to table 3.1, PI-RADS first level represents cancer is highly unlikely to be present. On the
contrary, PI-RADS fifth level, shows cancer is highly likely to be present.

Smooth capsular bulging - Binary variable that represents whether there is a protuberance of the prostate
margin continuous with the tumour (yes), or not (no).

Capsular disruption - Binary variable that represents if the prostate capsule has been disrupt (yes), or not
(no).

Unsharp margin - Binary variable that represents if the margin (the edge or border of the tissue removed
in cancer surgery) was clean (no), or not (yes), which means that cancer cells were found at the edge
of the tissue.

Irregular contour - Binary variable that indicates if the prostate was considered to be abnormal (yes), or
not (no), during a digital rectal exam.

Black striation periprostatic fat - Binary variable that shows if a black adipose tissue with deformities
surrounding the prostate exists (yes), or not (no).

Retoprostatic angle obliteration - Binary variable that indicates if a loss of fatty space between prostate
and rectum occurred (yes), or not (no).

Measurable ECE - Binary variable that indicates if there is a presence of the tumor outside of the prostate
capsule on the MRI (yes), or not (no).

ECE in prostatectomy specimen gold standard - Binary variable that shows if there is a presence of tumor
cells in the periprostatic tissue, outside the prostate gland (yes), or not (no).
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Gleason score - Grading system with two Gleason grades that were assign to the most and second most
predominant pattern in the patient’s biopsy (from 1 to 5, where 1 indicates normality in the prostate’s
tissue and 5 a cell so mutated that barely reassembles normal cells). These two grades are added
together to create the Gleason score that ranges normally from 6 to 10, six meaning the lowest grade
of cancer [45], as it is possible to see in table 3.2.

Table 3.2: Gleason score and Grade Grouping explanation

Risk Group Grade Group Gleason Score
low 1 < 7

intermediate 2
3

7 (3+4)
7 (4+3)

high 4
5

8
9-10

Gleason score (binary value) - Binary value that represents whether the patient has a Gleason score with a
Grade Group of 2 or bellow (Gleason score (binary value) = 0), or a Grade Group scoring from 3 to 5
(Gleason score (binary value) = 1).

MRI Date - The date in which the patient underwent the MRI.

Date of Birth - The patient’s date of Birth.

Surgery Date - The date where Radical prostatectomy was performed, in order to remove the cancer.

Recurrence date or last follow-up appointment - Date representing the last follow-up appointment (whether
Biochemical occurrence did not occur), or Recurrence (if it did in fact occur).

PSA - Continuous variable that represents Prostate-specific-antigen (PSA) found in each patient’s blood at
the moment of the last appointment.
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3.2 Exclusion Criteria

This study included, initially, 228 participants, all of whom were patients diagnosed with PCa between 2013
and the start of 2021.

Patients who did not display data about BR (57 patients in total) were removed from the study. Some of the
reasons for the lack of data from the patients can be that a patient changed hospitals, passed away, or a simple
input error by the doctor.

For this study, only patients who were cancer free for a year after RP were considered. That excluded 20
more patients from the study, narrowing the total to 151, as seen in figure 3.1.

Figure 3.1: Number of patients in the study: (A) 228 patients without the application of the exclusion criteria. (B) 171 patients after
the removal of 57 patients without data of BR. (C) 151 patients after the removal of 20 patients that were not cancer free for at least
a year.
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Chapter 4

Results

4.1 Exploratory Analysis

In this chapter, the results of the exploratory data analysis are presented. The distribution and relationships
among the variables are explained and a summary of the patterns and trends observed in the data are also
presented. These findings provide important insights that guide the development of the research hypotheses
and inform subsequent analyses. Overall, the exploratory analysis serves as a foundation for the remainder
of this thesis.

In order to answer the research question there is a need to understand the available data first, so table 4.1 was
created.
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Table 4.1: Characteristics of patients by Biochemical Recurrence in prostatectomy specimen (sample size = 151)

Variables BR
(nº of patients = 32)

No BR
(nº of patients = 119) p-value

Continuous Variables
Age at MRI (years) 61.29± 5.72(55.58, 67.01) 61.25± 6.63(54.62, 67.88) 0.641
Prostate Volume (gr) 35.69± 11.97(23.72, 47.66) 44.67± 20.45(24.22, 65.13) 0.011
PSA at MRI (ng/ml) 7.16± 3.47(3.69, 10.63) 6.49± 3.34(3.15, 9.84) 0.189
Index lesion size (mm) 17.16± 6.57(10.59, 23.73) 13.18± 5.06(8.12, 18.25) 0.000
Capsular contact length TLC (mm) 16.59± 10.72(5.88, 27.31) 10.54± 7.52(3.02, 18.06) 0.001
Categorical Variables
PI-RADS V2 3 1 (3.125%) 8 (6.72%) 0.000

4 8 (25.00%) 76 (63.87%)
5 23 (71.875%) 35 (29.41%)

Smooth capsular bulging No 7 (21.88%) 65 (54.62%) 0.002
Yes 25 (78.13%) 54 (45.38%)

Capsular disruption No 10 (31.25%) 73 (61.34%) 0.005
Yes 22 (68.75%) 46 (38.66%)

Unsharp margin No 11 (34.38%) 69 (57.98%) 0.03
Yes 21 (65.63%) 50 (42.02%)

Irregular contour No 10 (31.25%) 80 (67.23%) 0.001
Yes 22 (68.75%) 39 (32.77%)

Black striation peripro-
static fat

No 21 (65.63%) 97 (81.51%) 0.091

Yes 11 (34.38%) 22 (18.49%)
Retoprostatic angle oblit-
eration

No 27 (84.38%) 115 (96.64%) 0.021

Yes 5 (15.63%) 4 (3.36%)
Measurable ECE No 24 (75.00%) 107 (89.92%) 0.055

Yes 8 (25.00%) 12 (1.01%)
ECE gold standard No 18 (56.25%) 92 (77.31%) 0.031

Yes 14 (43.75%) 27 (22.69%)
Gleason score No 22 (68.75%) 85 (71.43%) 0.939

Yes 10 (31.25%) 34 (28.57%)

Table 4.1 contains four columns (Variables, Biochemical Recurrence, No Biochemical Recurrence and p-
value), and is divided by two sections (Continuous Variables and Categorical Variables).

The Variables column holds all the variables that were used. This study is comprised of 5 continuous vari-
ables, 10 categorical variables and 1 categorical response variable as previously mentioned.
The Continuous variables are represented by the average ± the standard deviation and the Categorical
variables are represented by the frequency of each of their categories (in percentage).
The BR and the No BR columns separate this results in two groups: patients where biochemical recurrence
occurred and the contrary, respectively, showing the mean ± the standard deviation for continuous variables
and and the frequency for categorical variables.
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The p-value column represents the p-value for the test of comparison of means between those with biochem-
ical recurrence and those without biochemical recurrence.

For all the continuous variables the normality was rejected (via the Shapiro-Wilk normality test) so the
Wilcoxon test was used (the non-parametric equivalent of the paired t-test).
In the case of the categorical variables, two different types of tests were used, the Chi-square test and Fisher’s
exact test. Fisher’s exact test is used when at least one cell in the contingency table has an expected frequency
less than 5. Otherwise, the chi-square test is used. For this reason, Fisher’s exact test was only used for the
PI-RADS V2 and Retoprostatic angle obliteration variables.

The test of Independence between the biochemical recurrence variable and some of the variables had a p-
values greater than 0.05, meaning that the Independence hypothesis was rejected. There was insufficient
evidence to suggest that they were not independent of the response variable, indicating a lack of relationship
between those variables and the occurrence of BR.

The Dependent variables to BR are:

• Age at MRI

• PSA at MRI

• Black striation periprostatic fat

• Measurable ECE

• Gleason Score
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4.1.1 Continuous Variables

The age at MRI did not exhibit a significant difference between patients with or without biochemical recur-
rence (61.29 years vs 61.25 years, respectively), nor did the PSA at MRI (7.16 ng/ml vs 6.49 ng/ml) as can
be checked in the p-values recorded in table 4.1.

Figure 4.1: Box-plots of patients with or without biochemical recurrence by: (A) Age at MRI in years and (B) PSA at MRI in ng/ml

In Figure 4.1, the box plots in (A) depict the distribution of age at MRI for patients with and without bio-
chemical recurrence. The median age for patients with Biochemical recurrence (BR) is 60.25 years, while
for non-BR patients is 61.9 years. Three outliers are presented in the non-BR group (41.2, 45.4, and 45.5
years).
The box plots in (B) depict the distribution of PSA at MRI for patients with and without biochemical recur-
rence (BR). The non-BR group has a median PSA at MRI of 5.7 ng/ml, while the BR group has a median
of 6.455 ng/ml. Both groups have outliers, with the non-BR group having 7 outliers ranging from 12.50 to
21.20, and the BR group having 3 outliers at 13.3, 14.0, and 18.0.
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In contrast to the variables shown in Figure 4.1, the index lesion size, prostate volume, and capsular contact
length display significant differences between patients who experienced biochemical recurrence (BR) and
those who did not, as seen in table 4.1. The respective values for the mean of the variables are 17.16 mm
index lesion size for BR patients compared to 13.18 mm for non-BR patients, 35.69 grams of prostate volume
for BR patients compared to 44.67 grams for non-BR patients, and 16.59 mm of capsular contact length for
BR patients compared to 10.54 mm for non-BR patients.

Figure 4.2: Box-plots of patients with or without biochemical recurrence by: (A) Index lesion size in millimeters, (B) Prostate
Volume in grams and (C) Capsular contact length TLC in millimeters

In figure 4.2, box plots in (A) represent the index lesion size for patients who did and did not experience BR.
The non-BR group has more outliers, ranging from 24 to 30 mm (a total of 7 outliers), while the BR group
has 2 outliers (32 and 39 mm). The median, quartiles, upper and lower limits of the index lesion size are also
different between the two groups.
Box plots in (B) belong to the Prostate volume, in grams, of patients where BR did or did not occur. The
non-BR group has outliers ranging from 89 to 122 gr (nine in total), while the BR group has just one outlier
(86 grams). The two box plots show a difference in median, upper limit and the third quartil, but have similar
lower limits and first quartiles.
The Box plots in (C) belong to the Capsular contact length for patients that BR did occur or not. Both of the
groups show outliers, four outliers for the non-BR group (32 mm three times and 35 mm) and two outliers
for the BR group (33 mm and 57 mm). The median and quartiles appear to differ.

It is important to emphasize that this analysis is primarily visual in nature. It relies on visual observations and
interpretations to examine the data and draw conclusions. Statistical analysis or formal tests are not employed
in this visual analysis approach.
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4.1.2 Categorical Variables

Black striation periprostatic fat, Measurable ECE and Gleason score did not show significant differences
between patients where BR had occurred and the non-BR group, as seen in table 4.1.

Figure 4.3: Bar plots grouped by BR occurrence of (A) Black striation periprostatic fat, (B) Measurable ECE and (C) Gleason score.

In figure 4.3 there are three different bar plots. In (A) it is possible to see the frequency of patients with and
without Black striation periprostatic fat, grouped by the occurrence,or not, of BR. In the BR group 97 patients
did not have this fat versus the 22 that did have. In the non-BR group 21 did not have it versus 11.
(B) corresponds to the frequency of patients with Measurable ECE, grouped by the occurrence, or not, of
BR. In the BR group 107 patients did not have an ECE that was Measurable versus the 12 that had. In the
non-BR group 24 did not have it versus 8 that did.
(C) corresponds to the frequency of patients with Gleason score higher then 2, grouped by the occurrence,or
not, of BR. In the BR group 85 patients did not have a Gleason score with grade higher then 2 versus the 34
that had. In the non-BR group 22 did not have it versus 10 that did.
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ECE gold standard, Smooth capsular bulging, Capsular disruption, Unsharp margin and Irregular contour are
variables where there is a significant difference between patients where BR had occurred and patients where
it did not, as seen on table 4.1.

Figure 4.4: Bar plots grouped by BR occurrence of (A) ECE gold standard, (B) Smooth capsular bulging, (C) Capsular disruption,
(D) Unsharp margin and (E) Irregular contour.

In Figure 4.4 there are 5 different bar-plots. In (A), the frequency of patients with a presence of tumor cells
in the periprostatic tissue, outside the prostate gland, grouped by the occurrence,or not, of BR. In the BR
group 18 patients did not display the presence of this tumor cells versus 14 that did. In the non-BR group, 97
patients did not display them versus the 27 that did.
(B) represents the frequency of patients with and without a smooth capsular bulging grouped by BR. The BR
group displayed 7 patients without a smooth capsular bulging versus 25 that did. In the non-BR group, 65
patients did not have smooth capsular bulging and 54 did have it.
(C) corresponds to the frequency of patients with and without a disrupted capsule, grouped by BR. The BR
group has 10 patients with no capsular disruption and 22 with it. The non-BR group as 73 patients with no
capsular disruption versus 46 with it.
(D) expresses the frequency of patients with a unsharp margin, or not, of the tissue removed in the cancer
surgery, grouped by BR. In the BR group 11 patients did not have the unsharp margin versus 21 who did. In
the non-BR group 69 did not have a unsharp margin and 50 did.
(E) corresponds to the frequency of patients with and without a irregular contour of the prostate during a
digital rectal exam, grouped by BR. The BR group has 10 patients without an irregular contour and 22 with.
The non-BR group displays 80 patients without a irregular contour and 39 with.
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PI-Rads V2 and Retoprostatic angle obliteration are also variables where there is a significant difference
between patients where BR had occurred and patients where it did not, also seen in table 4.1.

Figure 4.5: Bar plots grouped by BR occurrence of (A) PI-Rads V2 level and (B) Retoprostatic angle obliteration.

In Figure 4.5 2 bar-plots exist. Bar-plot (A) is the frequency of patients cataloged with 3 different levels of
PI-rads, grouped by BR. In the BR group 1 patient is level 3, 8 are level 4 and 23 are level 5. For the non-Br
group there are 8 patients level 3, 76 level 4 and 35 level 5.
(B) represents the frequency of patients with and without a loss of fatty space between prostate and rectum,
grouped by BR. The BR group of patients were 27 for the non Retoprostatic angle obliteration and 5 for it.
For the non-BR group there were 115 patients with a Retoprostatic angle obliteration, and 4 who did not have
it.
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4.2 Logistic Regression

In this sub-chapter, the results of the logistic regression analysis are presented, conducted to explore the
relationship between each predictor variables and the binary outcome variable.

4.2.1 Univariate Logistic Regression

Table 4.2: Results from univariate Logistic regression

Variables Coefficients SE OR (95% CI) p-value

Continuous Variables
Age at MRI (years) 0.001 0.031 1.001 (0.942, 1.066) 0.974
Prostate Volume (gr) -0.036 0.016 0.964 (0.932, 0.992) 0.023
PSA at MRI (ng/ml) 0.055 0.055 1.056 (0.943 , 1.176) 0.323
Index lesion size (mm) 0.115 0.035 1.122 (1.05, 1.207) 0.001
Capsular contact length TLC (mm) 0.079 0.025 1.083 (1.034, 1.141) 0.002
Categorical Variables
PI-RADS V2 3 Reference

4 -0.172 1.124 0.842 (0.128, 16.64) 0.879
5 1.66 1.094 5.257 (0.879, 100.885) 0.129

Smooth capsular bulging No Reference
Yes 1.458 0.466 4.299 (1.806 , 11.474) 0.002

Capsular disruption No Reference
Yes 1.25 0.425 3.491 (1.552 , 8.336) 0.004

Unsharp margin No Reference
Yes 0.969 0.416 2.635 (1.186 , 6.133) 0.02

Irregular contour No Reference
Yes 1.507 0.428 4.513 (1.994 , 10.844) 0

Black striation peripro-
static fat

No Reference

Yes 0.837 0.441 2.31 (0.954 , 5.44) 0.058
Retoprostatic angle oblit-
eration

No Reference

Yes 1.672 0.704 5.324 (1.326 , 22.794) 0.018
Measurable ECE No Reference

Yes 1.089 0.509 2.972 (1.063 , 8.014) 0.032
ECE gold standard No Reference

Yes 0.975 0.418 2.65 (1.158 , 6.028) 0.02
Gleason score No Reference

Yes 0.128 0.432 1.136 (0.472 , 2.603) 0.767

Table 4.2 contains the results from univariate logistic regressions of of all variables under study. The table
is comprised of 5 columns (Variables, Coefficients, Standard Error, Odds ratio(95% CI)and p-value).
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The Variables column displays all the variables that were subjected to the uni-variate logistic regression.
The Coefficients column shows the estimated coefficients from the logistic regression model.
The Standard Error (SE) column gives a measure of uncertainty associated to the logistic regression coef-
ficient.
The Odds Ratio (OR) column displays the OR (and its confidence interval of 95%) that associates each
variable to the risk of BR.
The p-value column represents the p-value of the Wald test, for individual independence significance, of
each variable to the response variable.

All variables are statistically significant in explaining the existence of BR, except for Age at MRI, PSA at
MRI, PI-RADS v2, Black striation periprostatic fat and Gleason score.
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4.2.2 Multiple Logistic Regression

To adjust the Multiple Logistic Regression (MLR) model various factors were considered.

The variables that were rejected in univariate logistic regression were not considered for this model as well
as 2 other variables: Capsular contact length TLC andMeasurable ECE.

Capsular contact length TLC has a high correlation with Index lesion size (r = 0.72), and between the 2 vari-
ables the former has a higher collinearity between all the other variables. Measurable ECE was independent
of BR, as seen on table 4.1 (p− value = 0.55), so it was also removed.

Table 4.3: Results from multiple Logistic regression with all the variables

Variables Coefficients SE OR (95% CI) p-value VIF

Intercept -1.721 0.910 0.179 (0.030, 1.097) 0.058
Prostate Volume (gr) -0.037 0.018 0.964 (0.926, 0.995) 0.043 1.083
Index lesion size (mm) 0.073 0.045 1.076 (0.986, 1.178) 0.100 1.409
Smooth capsular bulging No Reference

Yes 0.944 0.573 2.570 (0.854, 8.284) 0.100 1.415
Capsular disruption No Reference

Yes 0.241 0.702 1.273 (0.316, 5.111) 0.731 2.415
Unsharp margin No Reference

Yes -0.556 0.677 0.574 (0.144, 2.109) 0.412 2.279
Irregular contour No Reference

Yes 0.718 0.657 2.050 (0.579, 7.865) 0.275 2.152
Retoprostatic angle oblit-
eration

No Reference

Yes 0.578 0.859 1.783 (0.328, 10.095) 0.501 1.354
ECE gold standard No Reference

Yes -0.218 0.565 0.804 (0.257, 2.388) 0.700 1.560

The following model was obtained:

logit(p) = −1.721 − 0.037 · Prostate V olume+ 0.073 · Index lesion size+

0.944 · Smooth capsular bulging + 0.241 · Capsular disruption−
0.556 · Unsharp margin+ 0.718 · Irregular contour + 0.578 ·
Retoprostatic angle obliteration − 0.218 · ECE gold standard,

(4.1)

where p is the probability of the patient having BR.

The provided logistic regression model represents a mathematical equation used for binary classification.

Certain assumptions that must be met in order to ensure accurate and reliable results.
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Linearity

Figure 4.6: Scatter plot between Index lesion size (left), and Prostate Volume (right), and the logit values

In figure 4.6, the smoothed scatter plots indicate that index lesion size and prostate volume are roughly linearly
associated with the time until BR in the logit scale. Improvements might be carried out in future research
by including other type of functions to describe the relation between each of the above predictors with the
outcome under consideration.

Influential values

Figure 4.7: Cook’s Distance of the adjusted MLR model

Potential influential points can be observed in figure 4.7, (with observation 7,19 and 79), but this alone is not
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sufficient information to make conclusions so a standardized residual plot was adjusted to the model:

Figure 4.8: Standardized residuals plot of the adjusted MLR model

There are no influential observations in our data as indicated by the standard residuals being less than or equal
to 3 [46].

Multicollinearity

To test for the absence of multicollinearity the calculation of the variance inflation factor (VIF) was imple-
mented:

Figure 4.9: VIF for the predictor variables in adjusted MLR model

VIFs are ranging from 1 to 2.5, indicating that there is no significant multicollinearity among the predictor
variables in the model. This is generally considered acceptable and suggests that the coefficients can be
reliably interpreted.
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All of the assumptions are confirmed, but it is also important to assess how good the fit of a model is. A
well-fitted model is expected to yield precise results by accurately approximating the output when presented
with new data.

To assess the overall fit of a logistic regression model, a binned residual plot was adjusted to the MLRmodel:

Figure 4.10: Binned residual plot for the adjusted MLR model

In figure 4.15, visually most values fall between the lines, so it is possible to say that the binned residual plot
does not show any major problem with the fit of the model.

As for the performance of the model, it can be accessed via a ROC curve plot:

Figure 4.11: ROC curve for the adjusted MLR model

Figure 4.11 contains the ROC curve for the adjusted MLR model and from it an AUC of 0.775 was obtained,
suggesting that the model has a moderate discriminatory power.

With all this, it is important to say that most variables were rejected and such a model would not be admissi-
ble. To try and create an admissible model, the Stepwise selection method was adjusted for the selection of
variables, and the following model was the result of that:
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Table 4.4: Results from multiple logistic regression after stepwise regression

Variables coefficients SE OR(95% IC) p-value VIF

Intercept -1.795 0.855 0.166 (0.031, 0.896) 0.0358
Prostate volume -0.039 0.017 0.961 (0.925, 0.991) 0.024 1.019
Index lesion size 0.089 0.040 1.093 (1.013, 1.187) 0.025 1.133
Smooth capsular bulging Yes 1.098 0.506 2.997 (1.147, 8.555) 0.030 1.116

logit(p) = −1.795− 0.039 · Prostate V olume+ 0.089 · Index lesion size+

1.098 · Smooth capsular bulging
(4.2)

The Stepwise model has only 3 variables, 2 continuous (Prostate volume and index lesion size) and 1 binary
(Smooth capsular bulging).

Has it was done in the first MLR, the assumptions must be met:

The linearity was already proven in figure 4.6.

Influential values

Figure 4.12: Cook’s Distance of the adjusted MLR model after stepwise selection method

Potential influential points can also be observed in figure 4.12, (with observation 56, 74 and 79), but this
alone is also not sufficient information to make conclusions so a standardized residual plot was adjusted to
the stepwise model:
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Figure 4.13: Standardized residuals plot of the adjusted MLR model after stepwise selection method

There are no influential observations in this model, as indicated by the standard residuals being less than or
equal to 3 as expected[46].

VIF

The calculation of the variance inflation factor (VIF) was also implemented:

Figure 4.14: VIF for the predictor variables adjusted to the MLR model after stepwise selection method

In figure 4.14, theVIFs round the values of 1, indicating also that there is no multicollinearity among the
predictor variables in the model.

As expected, all of the assumptions are also confirmed.
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A binned residual plot was adjusted to the stepwise model:

Figure 4.15: Binned residual plot for the adjusted MLR model after stepwise selection method

Visually most values also fall between the lines, so it is possible to say that the binned residual plot does not
show any major problem with the fit of the model.

The ROC curve to access the performance of the model:

Figure 4.16: ROC curve for the adjusted MLR model after stepwise selection method

The AUC of the Stepwise model suggests the same as the AUC of the first model, that the model has a
moderate discriminatory power.
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Comparison of the two models

The comparison of the two models shown above provides valuable insights into which model performs better
in predicting the outcome of interest, in the case of this study Biochemical recurrence.

When comparing two models using AIC or BIC, the model with the lower AIC or BIC value is considered
to be a better fit for the data.

Table 4.5: AIC and BIC values for both models

AIC BIC
MLR model 147.707 175.015

Stepwise model 140.143 152.212

The AIC as a difference of almost 8 (∆i = 7.564) showing a that the stepwise model is much stronger and a
BIC difference of more that 22, which makes sense since BIC penalizes models with more parameters.

To compare both AUCs, the Delong test was employed, as it can be utilized to demonstrate statistically
significant differences between theAUC values of two models.[47].

Figure 4.17: ROC curves for both of the models

The DeLongs test for the two ROC curves produced a p-value of 0.3637, which means that it cannot be
concluded that there is a significant difference in the AUCs of the two models.

In summary, based on the analysis conducted, the stepwise model is selected and retained as the final model.
Although there were no significant differences observed between the models AUCs, the evaluation of the
BIC and AIC indicated that the stepwise model performed better.
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4.3 Survival Analysis

This sub-chapter presents the results of the survival analysis, which examined the time-to-event data and the
associated factors.

The main findings of the study related to time-to-event outcomes will be presented. Specifically, the survival
table will be analysed, as well as a description and comparison of the survival curves. The Cox proportional
hazards model will be accessed in order to collect the hazard ratios and the associated p-values for each
predictors choose the best survival model.
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4.3.1 Kaplan-Meier

One of the most commonly used tools in survival analysis is the Kaplan-Meier estimator, which is used to
estimate the survival function of a group of individuals.

Table 4.6: Survival table

Time Survival (CI 95%) SE Cases at risk

433 0.993 (0.979, 1.000) 0.00717 139
452 0.986 (0.966, 1.000) 0.01014 137
455 0.978 (0.954, 1.000) 0.01239 136
491 0.971 (0.943, 0.999) 0.01431 133
611 0.963 (0.932, 0.995) 0.01623 123
687 0.955 (0.920, 0.991) 0.01802 118
688 0.947 (0.909, 0.986) 0.01963 117
697 0.939 (0.898, 0.981) 0.02109 116
704 0.930 (0.887, 0.975) 0.02243 115
706 0.922 (0.877, 0.970) 0.02367 114
709 0.914 (0.867, 0.964) 0.02485 112
744 0.906 (0.856, 0.958) 0.02600 109
810 0.897 (0.845, 0.952) 0.02717 104
899 0.887 (0.833, 0.945) 0.02848 95
959 0.878 (0.821, 0.938) 0.02976 92
1181 0.866 (0.806, 0.930) 0.03169 73
1199 0.854 (0.791, 0.922) 0.03345 72
1392 0.840 (0.774, 0.913) 0.03549 64
1394 0.827 (0.757, 0.904) 0.03735 63
1486 0.812 (0.738, 0.893) 0.03958 55
1607 0.796 (0.719, 0.883) 0.04179 52
1681 0.780 (0.699, 0.871) 0.04398 49
1744 0.762 (0.676, 0.859) 0.04655 43
1873 0.740 (0.648, 0.845) 0.05005 35
1894 0.718 (0.621, 0.830) 0.05333 33
1935 0.695 (0.592, 0.815) 0.05641 31
2009 0.670 (0.563, 0.798) 0.05960 28
2025 0.645 (0.534, 0.780) 0.06235 27
2096 0.616 (0.499, 0.760) 0.06605 22
2131 0.585 (0.463, 0.738) 0.06955 20
2508 0.501 (0.342, 0.735) 0.09767 7
2593 0.401 (0.224, 0.717) 0.11895 5

The Survival table for the BR data is displayed in table 4.6. The table is composed of 4 columns: Time,
Survival (CI 95%), SE and Cases at Risk.
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The Time column refers to the length of time, in days, between the start of the study and the occurrence of
the event of interest (BR).

The Survival (CI 95%) column indicates the probability of survival, with a confidence interval of 95%, for
an individual to not experience biochemical recurrence at a given interval of time.

The SE (Standard Error) column refers to the measure of the variability or uncertainty associated with the
estimated survival probability at a given time.

The Cases at risk column represents the number of individuals who are still at risk of experiencing the event
of interest at a given time.

As time progresses it is possible to see the confidence interval widening, indicating greater uncertainty in the
estimate. It is important to recall that only patients who did not experience BR within the first 365 days after
RP were included in the study.

Figure 4.18: Plot of the Survival curve for the probability of a patient at a given time experiencing BR

In figure 4.18, the survival curve is a good way to visually access the computed data in table 4.6. The survival
probability starts at around 0.993 at 433 days and decreases to 0.401 at 2593 days.

The curve shows a steep drop in survival probability in the first few years, and then a more gradual decline
in later years, suggesting that the first 3 years post-treatment are a critical time period for monitoring patients
for biochemical recurrence.
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For a better understanding of each variable in terms of survival, Kaplan-Meier curves were computed to
analyse which predictor did in fact impact the survival of each patient as well as a log-rank test to access if
the survival distribution differs between the groups for each predictor.

(a) Kaplan-Meier Curves for Gleason score (b) Kaplan-Meier Curves for Unsharp Margin

Figure 4.19: Kaplan-Meier curves for the variables that are not statistically significant based on log-rank tests.

Of the 10 variables tested, Gleason score and Unsharp margin (figure 4.19) were the only two predictor
variables where the p-value were higher than 0.05, meaning that, for those 2 variables, the survival curves
for their groups were identical, so it can be concluded that having a Gleason score of grade 3 to 5 does not
significantly impact the survival of the patients. It can also be concluded that having a Unsharp margin also
does not significantly impact the survival of patients.

For the statistically significant variables, the opposite can be stated. In figure 4.20 are the remaining 8
variables and even without looking at the log-rank test, the differences between the curves are possible to see
visually. The fact that the curves mostly do not cross each other is a visual confirmation that these variables
have a different survival distribution between their groups.
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(a) Black striation periprostatic fat (b) Capsular Disruption (c) ECE gold standard

(d) PI-Rads v2 (e) Retoprostatic angle obliteration (f) Smooth capsular bulging

(g) Irregular contour (h) ECE

Figure 4.20: Kaplan-Meier curves for the variables that are statistically significant based on log-rank tests.
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4.3.2 Cox proportional hazards model

The Cox regression model was used to investigate the association between various covariates and the time-
to-event outcome. To access which variables are significant, univariate Cox regressions were applied to the
dataset.

Table 4.7: Results from univariable Cox regression

Variables Coefficients SE HR (95% CI) p-value

Continuous Variables
Age at MRI (years) 0.035 0.028 1.035 (0.980, 1.094) 0.217
Prostate volume (gr) -0.020 0.014 0.980 (0.953, 1.008) 0.165
PSA at MRI (ng/ml) 0.013 0.043 1.014 (0.932, 1.102) 0.753
Index lesion size (mm) 0.097 0.025 1.102 (1.050, 1.156) 0.000
Capsular contact lenght TLC (mm) 0.093 0.018 1.097 (1.06, 1.136) 0.000
Categorical Variables
Index lesion PI-Rads V2 3 Reference

4 -0.311 1.064 0.733 (0.091, 5.896) 0.770
5 1.258 1.024 3.518 (0.473, 26.168) 0.219

Unsharp margin No Reference
Yes 0.681 0.374 1.976 (0.949, 4.113) 0.069

Black striation peripro-
static fat

No Reference

Yes 0.876 0.373 2.401 (1.156, 4.987) 0.019
Measurable ECE No Reference

Yes 1.281 0.416 3.600 (1.594, 8.13) 0.002
Smooth capsular bulging No Reference

Yes 1.363 0.429 3.908 (1.686, 9.058) 0.001
Capsular disruption No Reference

Yes 1.253 0.389 3.502 (1.634, 7.502) 0.001
Irregular contour No Reference

Yes 1.362 0.386 3.904 (1.833, 8.315) 0.000
Retoprostatic angle oblit-
eration

No Reference

Yes 1.778 0.512 5.919 (2.169, 16.150) 0.001
ECE gold standard No Reference

Yes 0.910 0.359 2.484 (1.229, 5.017) 0.011
Gleason score No Reference

Yes 0.209 0.383 1.232 (0.582, 2.608) 0.586

Table 4.7 contains results from the uni-variate cox regression for each predictor variable and its comprised
of 5 columns:

The Variables column displays all the variables that were subjected to the uni-variate cox regression.
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The Coefficients column shows the estimated regression coefficients for each variable.

The Standard Error (SE) column gives a measure of uncertainty associated to the estimated regression
coefficient.

The Hazard Ratio (HR) column displays the HR (and its confidence interval of 95%) that quantifies the
association between the presence or absence of a specific variable and the hazard of Biochemical Recurrence..

The p-value column represents the p-value of the Wald test, for individual independence significance, of
each variable to the response variable.

Looking at the p-value column, it is possible to see that 6 variables were rejected: Age at MRI, Prostate
Volume, PSA at MRI, Index lesion PI-Rads V2, Unsharp margin and Gleason score, meaning that these
variables were not significantly associated with BR.

Despite these results, it was considered to keep Unsharp margin but as the variable was highly correlated
with capsular disruption (r = 0.69) and Irregular contour (r = 0.66) this idea was discarded.

For the construction of the Cox regressionmodel, the variableCapsular contact length TLCwas rejected for
multicollinearity (with lesion size, r = 0.72). Additionally, variables such as Black striation periprostatic
fat and Measurable ECE were not included in the model as they were found to be unrelated to BR, as
observed in Table 4.1.

Table 4.8: Results from Cox regression

Variables Coefficients SE HR (95% CI) p-value

Index lesion size 0.060 0.031 1.062 (0.999, 1.129) 0.054
Smooth capsular bulging 0.589 0.498 1.803 (0.679, 4.784) 0.237
Capsular disruption 0.562 0.487 1.755 (0.675, 4.559) 0.248
Irregular contour 0.620 0.475 1.859 (0.733, 4.713) 0.192
ECE gold standard -0.101 0.468 0.904 (0.361, 2.263) 0.830
Retoprostatic angle oblit-
eration

0.640 0.625 1.896 (0.557, 6.452) 0.306

Table 4.8 contains 5 columns. Each column represents the same as in table 4.7 but for multiple Cox regression
instead of uni-variable Cox regression.

Every single variable is rejected from the model, indicating that more variables should be removed.
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Figure 4.21: Survival curve for the Cox model

The validation of the Cox model is imperative for reliable model inference and interpretation.

One of the assumptions adjacent to the cox model is the proportional hazards (PH) assumption:

Table 4.9: Results from Schoenfeld residuals test for the Cox model

rho chisq p-value

Index lesion size 0.086 0.045 0.831
Smooth capsular bulging -0.111 1.406 0.236
Capsular disruption 0.151 0.287 0.592
Irregular contour -0.201 2.678 0.102
Retoprostatic angle oblit-
eration

0.133 0.025 0.875

ECE gold standard -0.253 3.776 0.052

GLOBAL 5.015 0.542

Rho corresponds to the scaled Schoenfeld residuals for each variable. Based on the above output, none of
the covariates have a statistically significant test result, and neither does the global test. As a result, it can be
conclude that the proportional hazards assumption holds.
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The Schoenfeld residuals are designed to be time-independent. However, if a plot of these residuals exhibits
a non-random pattern with respect to time, it suggests a breach of the PH assumption.

Figure 4.22: Schoenfeld residual for the Cox model

In Figure 4.28, the Schoenfeld residual plot for the Coxmodel is depicted. To provide a reference, a horizontal
line at y=0 (colored in red) has been included. The plot also showcases a solid line (colored in blue), which
represents a smoothing spline fit, and a grey area indicating a +/- 2-standard-error band around the fit.

Upon visual inspection, there appears to be no pattern between the Schoenfeld residuals and time, suggesting
that the proportional hazards assumption holds for each of the six variables in these Cox model.

One way to identify influential observations or outliers is to examine the deviance residuals graphically:

Figure 4.23: Deviance residuals for the Cox model

In Figure 4.23, the deviance residual plot for the Coxmodel is illustrated. A horizontal line at y=0 (highlighted
in red) is included as a reference point. The plot showcases a solid line (displayed in blue) that represents a
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smoothing spline fit. Additionally, a grey area is shown, indicating a +/- 2-standard-error band around the
fit.

AS the pattern of the data in figure 4.23 appears to be relatively symmetric around zero, it can be concluded
that there are no major outliers or influential observations that are affecting the model’s performance.

As a final test for the performance of the Cox model, a Cox-Snell residual plot was employed, as it is a
effective tool to assess the appropriateness of the proposed model.

Figure 4.24: Cox-Snell residuals for the Cox model

As the points fall roughly on the line, it can be concluded that the data was fitted with an appropriate model.

stepwise model

To reach the best model possible, the stepwise method was employed.

Table 4.10: Results from cox regression after stepwise method

Variables Coefficients SE HR (95% CI) p-value

Index lesion size 0.080 0.028 1.084 (1.027, 1.144) 0.004
Capsular disruption 0.760 0.451 2.139 (0.884, 5.174) 0.092
Irregular contour 0.729 0.455 2.073 (0.849, 5.061) 0.109

Table 4.10 contains the same variables as in table 4.8. Only left with 3 variables, this model rejects 2 of them
(Capsular disruption and Irregular contour).
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Figure 4.25: Survival curve for the Cox model after the stepwise method

The Cox model after the stepwise method should also be validated, firstly the proportional hazards (PH)
assumption:

Table 4.11: Results from Schoenfeld residuals test for the Cox model after the stepwise method

rho chisq p-value

Index lesion size 0.072 0.000 0.999
Capsular disruption 0.036 0.344 0.558
Irregular contour -0.297 2.780 0.096

GLOBAL 2.840 0.417

Rho corresponds to the scaled Schoenfeld residuals for each variable. Like on the cox model before the
stepwise method (table 4.9), none of the covariates or the global test show a statistically significant result.
Therefore, it can be concluded that the proportional hazards assumption holds.

Figure 4.26: Schoenfeld residual for the Cox model after the stepwise method
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In Figure 4.26, the Schoenfeld residual plot for the Coxmodel is depicted. To provide a reference, a horizontal
line at y=0 (colored in red) has been included. The plot also showcases a solid line (colored in blue), which
represents a smoothing spline fit, and a grey area indicating a +/- 2-standard-error band around the fit. For
the 3 variables left in the Cox model after the stepwise method, there appears to be no pattern between the
Schoenfeld residuals and time, therefor proportional hazards assumption holds.

Figure 4.27: Deviance residuals for the Cox model after the stepwise method

In Figure 4.27, the deviance residual plot for the Coxmodel is illustrated. A horizontal line at y=0 (highlighted
in red) is included as a reference point. The plot showcases a solid line (displayed in blue) that represents a
smoothing spline fit. Additionally, a grey area is shown, indicating a +/- 2-standard-error band around the
fit. To access for influential data points, the points in deviance residuals plot (figure 4.27) also are shown
to be relatively symmetric around zero. It can be concluded that there are no major outliers or influential
observations that are affecting the model’s performance.

Figure 4.28: Cox-Snell residuals after stepwise method

And finally, to access the performance of the model, the Cox-Snell residual plot was employed and as the
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points fall more or less on the line, it can be concluded that the data was also fitted with an appropriate model.

4.3.3 Random Survival Forest model

Random Survival Forest (RSF) model was selected as the final model in this thesis, has it can handle complex
relationships between predictors and survival, high-dimensional data, and missing/censored data without
specifying functional forms of predictors.

After applying the model to the data, 20 random curves were created along with a black curve that represents
the average for each of the patients:

Figure 4.29: 20 random survival curves and a black curve that represents the average, generated by RSF model

This model has a prediction error of 0.293 (1-Harrel’s C-index), this indicates that the RSF model has a
moderate predictive performance.
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Table 4.12: Importance of each variable for a Random Survival Forest Model

Variables Importance

Irregular contour 0.024
Index lesion PI-RADS V2 0.020
Smooth capsular bulging 0.020
Capsular disruption 0.012
Capsular contact length
TLC

0.009

Measurable ECE 0.009
Retoprostatic angle oblit-
eration

0.008

ECE gold standard 0.008
Prostate volume 0.004
Index lesion size 0.003

Based on the variable importance measures for the random survival forest model, the top predictors of the
outcome are Irregular contour, Index lesion PI-RADS V2, and Smooth capsular bulging, with importance
values of 0.0239, 0.0202, and 0.0196, respectively. Capsular disruption and Capsular contact length TLC
also showed some importance with values of 0.0117 and 0.0091, respectively. Other predictors such as
Measurable ECE, Retoprostatic angle obliteration, and Prostate volume also had some importance but to a
lesser extent. The Index lesion size had the lowest importance value among all the predictors. The variables
Age at MRI, PSA value at MRI, Unsharp margin, and Black striation periprostatic fat did not show significant
importance in predicting survival outcomes in the RSF model. It is important to note that the Standard error
was not estimated.
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4.3.4 Comparison between RSF and Cox model

Figure 4.30: Survival probability curves of the 3 models used in the study

In figure 4.30 3 survival curves for the 3 different models are displayed: Cox regression (red), Kaplan-Meier
(green) and Random Forest (blue).

It can be inferred that the Cox survival curve exhibits a more optimistic survival trend, whereas the Kaplan-
Meier curve shows the opposite. The random survival forest curve falls in between these two, suggesting a
moderate outlook in terms of survival probabilities.

Figure 4.31: Estimated Prediction Error Curves for the Cox model (red) and RSF model (blue) with Kaplan-Meier as reference
(green).

In figure 4.31, the estimated Prediction Error Curve (PEC)s obtained from the Cox model and the RSF model
can be seen. The RF prediction error curve consistently lies below the Cox curve, suggesting that the RF
model has a lower cumulative prediction error, indicating superior predictive performance. Therefore, based
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on the Prediction Error Curves, the RSF may be preferred over the Cox model for predicting the event out-
comes.

However, Harrell’s C-index values were calculated for both the Cox model and the RSF model, resulting in a
value of 0.771 for the Cox model and 0.717 for the RSF model. This suggests that the Cox model has a higher
discriminatory ability in predicting the event outcomes compared to the RSF model. The higher C-index for
the Cox model indicates better overall performance and a stronger ability to correctly rank the survival times
of individuals in terms of the event occurrence. Therefore, based on the C-index results, the Cox model may
be preferred over the RSF model for predicting the event outcomes.
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Chapter 5

Conclusions and Discussion

This study aimed to identify biomarkers for detecting relapses in patients with prostate tumors who underwent
radical prostatectomy. Multiple modeling approaches, including logistic regression, survival analysis (Cox
proportional hazardsmodel), and random forest modeling, were employed to analyze the relationship between
various variables and relapse outcomes.

The analysis of the logistic regression findings revealed that out of the initially considered variables, a total of
10 variables were found to be significant in the simple logistic regression analysis. However, after applying
a more rigorous multivariate approach, only three variables, prostate volume, index lesion size, and smooth
capsular bulging, remained significant predictors of biochemical recurrence.

Including these three variables in the final logistic regression model suggests their strong association with the
likelihood of relapse. The Prostate volume serves as an indicator of tumor size, which can have a direct impact
on disease progression and the probability of recurrence. Index lesion size has been consistently identified
as a crucial factor in prostate cancer prognosis and relapse prediction[48]. The larger the index lesion size,
the higher the risk of relapse post-surgery. Lastly, smooth capsular bulging, which refers to the extension of
the tumor beyond the prostate capsule, has also been associated with an increased risk of recurrence.

These findings align with previous research and provide valuable insights into the factors contributing to
relapse in prostate cancer patients [49][50]. They emphasize the importance of considering tumor character-
istics and their impact on disease progression when assessing relapse risk.

Furthermore, the survival curve analysis demonstrated a gradual decline in the survival probability over
time, highlighting an increased risk of relapse as the time since surgery extends. These results underscore the
importance of continued surveillance and appropriate interventions to mitigate the risk of relapse in patients
with prostate tumors. The Cox proportional hazards model complemented the logistic regression analysis by
considering the time-to-event nature of relapse outcomes.

Additionally, the random forest model yielded a moderate prediction error of 0.293 (1-Harrel’s C-index).
However, as stated in the results section regarding the rsf model, the Variable Importance (VIMP) of the rsf
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model did not have a estimated standard error, which could have been helpful in assessing the precision of
the estimates. In future approaches, this can be addressed by employing a subsampling approach to estimate
the standard error [51].

It is important to interpret the results of the logistic regression analysis alongside the survival analysis and
random forest modeling. Each approach contributes unique insights into the relationship between variables
and relapse outcomes, taking into account different statistical and analytical considerations.

The prediction error curves suggest that the Random Survival Forest (RSF) model performs better, as it
consistently has a lower cumulative prediction error compared to the Cox model. This indicates superior
predictive performance for the RSF model.

On the other hand, the Harrell’s C-index values favor the Cox model, as it demonstrates a higher discrimina-
tory ability and better overall performance in ranking survival times.

The findings of this study indicate that the predictive models, including logistic regression and Cox regres-
sion, yielded results that were not as favorable as anticipated. While some significant variables were identi-
fied, the overall performance of the models in predicting relapse in patients with prostate tumors post-radical
prostatectomy fell short of expectations. Several factors may have contributed to these less-than-optimal
outcomes.

On the clinical side of the issue, many factors could be responsible for these results like the heterogeneity of
the target population, the lack of additional predictors, the complexity of the disease or simply the size of the
sample [52].

There are several alternative models and analytical approaches that could have been considered for analyzing
the data in the study like Feature Selection Techniques [53], Neural networks [54] and Decision tree analysis
[55] to name a few.

In summary, the combination of logistic regression, survival analysis, and random forest modeling provided
valuable insights into the identification of biomarkers for relapse detection in patients with prostate tumors
post-radical prostatectomy. However, this works has to be interpreted as a first approach to this complex
problem. Future research on this issue shall be carried out to shed light on the intricacies of biochemical
recurrence and the time until relapse.

69



70



Bibliography

[1] Xiaonan Xue, Xianhong Xie, Marc Gunter, Thomas E Rohan, Sylvia Wassertheil-Smoller, Gloria YF
Ho, Dominic Cirillo, Herbert Yu, and Howard D Strickler. Testing the proportional hazards assumption
in case-cohort analysis. BMC Medical Research Methodology, 13:88, 12 2013.

[2] Janet M. Box-Steffensmeier and Bradford S. Jones. Event History Modeling- Diagnostic Methods for
the Event History Model. Cambridge University Press, 3 2004.

[3] M. Schumacher, E. Graf, and T. Gerds. How to assess prognostic models for survival data: A case study
in oncology. Methods of Information in Medicine, 42:564–571, 2 2003.

[4] Jacques Ferlay, Murielle Colombet, Isabelle Soerjomataram, DonaldM. Parkin, Marion Piñeros, Ariana
Znaor, and Freddie Bray. Cancer statistics for the year 2020: An overview. International Journal of
Cancer, 149:778–789, 8 2021.

[5] John C. Bailar and Heather L. Gornik. Cancer undefeated. New England Journal of Medicine,
336:1569–1574, 5 1997.

[6] Prashanth Rawla. Epidemiology of prostate cancer. World Journal of Oncology, 10:63–89, 2019.

[7] International Agency for Research on Cancer. Global cancer organization, 2020.

[8] Ann C. Klassen and Elizabeth A. Platz. What can geography tell us about prostate cancer? American
Journal of Preventive Medicine, 30:S7–S15, 2 2006.

[9] Allison S. Glass, K. Clint Cary, and Matthew R. Cooperberg. Risk-based prostate cancer screening:
Who and how? Current Urology Reports, 14:192–198, 6 2013.

[10] Gillian Murphy, Masoom Haider, Sangeet Ghai, and Boraiah Sreeharsha. The expanding role of mri in
prostate cancer. American Journal of Roentgenology, 201:1229–1238, 12 2013.

[11] John R. Prensner, Mark A. Rubin, John T. Wei, and Arul M. Chinnaiyan. Beyond psa: The next gener-
ation of prostate cancer biomarkers. Science Translational Medicine, 4, 3 2012.

[12] Esmée C.A. van der Sar, Veeru Kasivisvanathan, Mrishta Brizmohun, Alex Freeman, Shonit Punwani,
Rifat Hamoudi, and Mark Emberton. Management of radiologically indeterminate magnetic resonance
imaging signals in men at risk of prostate cancer. European Urology Focus, 5:62–68, 1 2019.

[13] Stephen J. Freedland, Elizabeth B. Humphreys, Leslie A. Mangold, Mario Eisenberger, Frederick J.
Dorey, Patrick C. Walsh, and Alan W. Partin. Risk of prostate cancer–specific mortality following
biochemical recurrence after radical prostatectomy. JAMA, 294:433, 7 2005.

71



[14] Sandro Sperandei. Understanding logistic regression analysis. Biochemia Medica, pages 12–18, 2014.

[15] Chao-Ying Joanne Peng and Tak-Shing Harry So. Logistic regression analysis and reporting: A primer.
Understanding Statistics, 1:31–70, 2 2002.

[16] S. A. Czepiel. Maximum likelihood estimation of logistic regression models: theory and implementa-
tion. 2002.

[17] R. Dennis Cook. Cook’s distance, 2011.

[18] Jill C. Stoltzfus. Logistic regression: A brief primer. Academic Emergency Medicine, 18:1099–1104,
10 2011.

[19] CFI Team. Variance inflation factor (vif), 6 2020.

[20] N. A. M. R. Senaviratna and T. M. J. A. Cooray. Diagnosing multicollinearity of logistic regression
model. Asian Journal of Probability and Statistics, pages 1–9, 10 2019.

[21] Patrícia Bermudez and Marília Antunes. Generalized linear models class notations. 2021.

[22] Kenneth P. Burnham and David R. Anderson. Multimodel inference. Sociological Methods Research,
33:261–304, 11 2004.

[23] V.A. Profillidis and G.N. Botzoris. Trend projection and time series methods. Modeling of Transport
Demand, pages 225–270, 2019.

[24] Julie Lorah and Andrew Womack. Value of sample size for computation of the bayesian information
criterion (bic) in multilevel modeling.

[25] Jessica Kasza. Stata tip 125: Binned residual plots for assessing the fit of regression models for binary
outcomes. Stata Journal, (199-2018-3586), 2015.

[26] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. pages 233–
240. ACM Press, 2006.

[27] Jane V. Carter, Jianmin Pan, Shesh N. Rai, and Susan Galandiuk. Roc-ing along: Evaluation and
interpretation of receiver operating characteristic curves. Surgery, 159:1638–1645, 6 2016.

[28] John Muschelli. Roc and auc with a binary predictor: a potentially misleading metric. Journal of
Classification, 37:696–708, 10 2020.

[29] Jayawant N. Mandrekar. Receiver operating characteristic curve in diagnostic test assessment. Journal
of Thoracic Oncology, 5:1315–1316, 9 2010.

[30] Olga V. Demler, Michael J. Pencina, and Ralph B. D’Agostino. Misuse of delong test to compare aucs
for nested models. Statistics in medicine, 31:2577, 10 2012.

[31] Liberato Camilleri. History of survival analysis. The Sunday Times of Malta, page 53, 3 2019.

[32] Cristina Rocha and Ana Luísa Papoila. Análise de Sobrevivência. Sociedade Portuguesa de Estatística,
10 2009.

[33] John P. Klein and Melvin L. Moeschberger. Censoring and truncation, 2003.

72



[34] AhmedBarakat, AainaMittal, David Ricketts, and Benedict ARogers. Understanding survival analysis:
actuarial life tables and the kaplan–meier plot. British Journal of Hospital Medicine, 80:642–646, 11
2019.

[35] Ilari Kuitunen, Ville T. Ponkilainen, MikkoM. Uimonen, Antti Eskelinen, and Aleksi Reito. Testing the
proportional hazards assumption in cox regression and dealing with possible non-proportionality in total
joint arthroplasty research: methodological perspectives and review. BMC Musculoskeletal Disorders,
22:489, 12 2021.

[36] Yishu Xue and Elizabeth D. Schifano. Diagnostics for the cox model. Communications for Statistical
Applications and Methods, 24:583–604, 11 2017.

[37] UCLA-Advanced Research Computing Statistical methods and Data Analytics. Applied survival anal-
ysis, chapter 6 | r textbook examples.

[38] Matthias Schmid, Marvin N. Wright, and Andreas Ziegler. On the use of harrell’s c for clinical risk
prediction via random survival forests. Expert Systems with Applications, 63:450–459, 11 2016.

[39] Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. Random survival
forests. The Annals of Applied Statistics, 2, 9 2008.

[40] Ulla B. Mogensen, Hemant Ishwaran, and Thomas A. Gerds. Evaluating random forests for survival
analysis using prediction error curves. Journal of statistical software, 50:1, 2012.

[41] Kaci L Pickett, Krithika Suresh, Kristen R Campbell, Scott Davis, and Elizabeth Juarez-Colunga. Ran-
dom survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker.
BMC Medical Research Methodology, 21:216, 10 2021.

[42] Rafael R. Tourinho-Barbosa, Jean de la Rosette, and Rafael Sanchez-Salas. Prostate cancer multifocal-
ity, the index lesion, and the microenvironment. Current Opinion in Urology, 28:499–505, 11 2018.

[43] Aslıhan Onay, Metin Vural, Ayse Armutlu, Sevda Ozel Yıldız, Murat Can Kiremit, Tarık Esen, and
Barıs Bakır. Evaluation of the most optimal multiparametric magnetic resonance imaging sequence for
determining pathological length of capsular contact. European Journal of Radiology, 112:192–199, 3
2019.

[44] Jeremy Jones and Marcin Czarniecki. Prostate imaging-reporting and data system (pi-rads), 3 2014.

[45] Prostate Cancer Foundation. Gleason score and grade group.

[46] James P. Stevens. Outliers and influential data points in regression analysis. Psychological Bulletin,
95:334–344, 3 1984.

[47] Michael J. Pencina, Ralph B. D’Agostino, Ralph B. D’Agostino, and Ramachandran S. Vasan. Evalu-
ating the added predictive ability of a new marker: from area under the roc curve to reclassification and
beyond. Statistics in medicine, 27:157–172, 1 2008.

[48] Anthony V. D’Amico. Biochemical outcome after radical prostatectomy, external beam radiation ther-
apy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA, 280:969, 9 1998.

[49] Stephen J. Freedland, Elizabeth B. Humphreys, Leslie A. Mangold, Mario Eisenberger, Frederick J.
Dorey, Patrick C. Walsh, and Alan W. Partin. Risk of prostate cancer–specific mortality following
biochemical recurrence after radical prostatectomy. JAMA, 294:433, 7 2005.

73



[50] Thomas Van den Broeck, Roderick C.N. van den Bergh, Nicolas Arfi, Tobias Gross, Lisa Moris,
Erik Briers, Marcus Cumberbatch, Maria De Santis, Derya Tilki, Stefano Fanti, Nicola Fossati, Silke
Gillessen, Jeremy P. Grummet, AnnM. Henry, Michael Lardas, Matthew Liew, Olivier Rouvière, Jakub
Pecanka, Malcolm D. Mason, Ivo G. Schoots, Theo H. van Der Kwast, Henk G. van Der Poel, Thomas
Wiegel, Peter-Paul M. Willemse, Yuhong Yuan, Thomas B. Lam, Philip Cornford, and Nicolas Mottet.
Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer:
A systematic review. European Urology, 75:967–987, 6 2019.

[51] Hemant Ishwaran and Min Lu. Standard errors and confidence intervals for variable importance in
random forest regression, classification, and survival. Statistics in Medicine, 38:558–582, 2 2019.

[52] John R. Prensner, Mark A. Rubin, John T. Wei, and Arul M. Chinnaiyan. Beyond psa: The next gener-
ation of prostate cancer biomarkers. Science Translational Medicine, 4, 3 2012.

[53] Ivan Jambor, Ugo Falagario, Parita Ratnani, Ileana Montoya Perez, Kadir Demir, Harri Merisaari,
Stanislaw Sobotka, George K. Haines, Alberto Martini, Alp Tuna Beksac, Sara Lewis, Tapio Pahikkala,
Peter Wiklund, Sujit Nair, and Ash Tewari. Prediction of biochemical recurrence in prostate cancer pa-
tients who underwent prostatectomy using routine clinical prostate multiparametric mri and decipher
genomic score. Journal of Magnetic Resonance Imaging, 51:1075–1085, 4 2020.

[54] Yalei Chen, Ian M. Loveless, Tiffany Nakai, Rehnuma Newaz, Firas F. Abdollah, Craig G. Rogers,
Oudai Hassan, Dhananjay Chitale, Kanika Arora, Sean R. Williamson, Nilesh S. Gupta, Benjamin A.
Rybicki, Sudha M. Sadasivan, and Albert M. Levin. Convolutional neural network quantification of
gleason pattern 4 and association with biochemical recurrence in intermediate-grade prostate tumors.
Modern Pathology, 36:100157, 7 2023.

[55] Nathan C. Wong, Cameron Lam, Lisa Patterson, and Bobby Shayegan. Use of machine learning to
predict early biochemical recurrence after robot-assisted prostatectomy. BJU International, 123:51–57,
1 2019.

74


	Introduction
	Methodology
	Logistic Regression Analysis
	Diagnostics of the logistic model
	Model Selection Methods
	Goodness-of-fit diagnostics for the Logistic Regression Model

	Survival Analysis
	Survival Data
	Survival and Hazard Function
	Life tables and survival curves

	Cox proportional hazards model
	Model Selection Methods
	Goodness-of-fit diagnostics for the Cox model - Proportional Hazard Assumption

	Random Survival Forest model
	Variable importance

	Statistical software

	Data
	Variables
	Exclusion Criteria

	Results
	Exploratory Analysis
	Continuous Variables
	Categorical Variables

	Logistic Regression
	Univariate Logistic Regression
	Multiple Logistic Regression

	Survival Analysis
	Kaplan-Meier
	Cox proportional hazards model
	Random Survival Forest model
	Comparison between RSF and Cox model


	Conclusions and Discussion

