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13th May 2022 
 
 
 
Dear Associate Editor Martin Drews, 
 
 
Please find enclosed our manuscript entitled “A novel expert-driven methodology to develop 

thermal suitability curves for cetaceans under a changing climate” which we consider suitable 

for publication as an original research paper to the Science of the Total Environment. 

 

We present a simple and novel method that addresses the impacts of climate change in 

cetacean species using a novel expert driven methodology to support species management. 

In a context of high uncertainty and lack of readily available data to access the impacts of 

climate change in large marine predator species such as cetaceans, new approaches are 

necessary to support managers and practitioners in the definition of conservation measures. 

 

In addition, obtaining enough data to quantify the full thermal range of species is difficult and, 

in many cases, experimentally derived thermal limits are used. These experiments cannot be 

undertaken with large marine predators. Therefore, our study presents an alternative 

approach which allows the integration of expert knowledge to determine species thermal range 

and quantify potential future range shifts in their distribution. 

 

We believe our paper is in line with the journal’s aims and scope since it provides a novel 

method that can be applied globally to assess the impacts of climate change in large marine 

predators. 

 
Thank you for considering our manuscript for publication in the Science of the Total 

Environment. 

 
 
Yours sincerely, 
 
Andreia Sousa  
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Over the last decades, global warming has contributed to changes in 75 

marine species composition, abundance and distribution, in response to 76 

changes in oceanographic conditions such as temperature, acidification, 77 

and deoxygenation. Experimentally derived thermal limits, which are 78 

known to be related to observed latitudinal ranges, have been used to 79 

assess variations in species distribution patterns. However, such 80 

experiments cannot be undertaken with large marine predators like 81 

cetaceans. An alternative approach is to elicit expert’s knowledge to 82 

derive species’ thermal suitability and assess their thermal responses, 83 

something that has never been tested before in these taxa. We developed 84 

and applied a methodology based on expert-derived thermal suitability 85 

curves and projected future responses for each species under different 86 

climate scenarios. We tested this approach with ten cetacean species 87 

currently present in the biogeographic area of Macaronesia (North 88 

Atlantic) under Representative Concentration Pathways 2.6, 4.5 and 8.5, 89 

until 2050. Overall, increases in annual thermal suitability were found for 90 

Balaenoptera edeni, Globicephala macrorhynchus, Mesoplodon 91 

densirostris, Physeter macrocephalus, Stenella frontalis, Tursiops 92 

truncatus and Ziphius cavirostris. Conversely, our results indicated a 93 

decline in thermal suitability for B. physalus, Delphinus delphis, and 94 

Grampus griseus. Our study reveals potential responses in species 95 

thermal suitability, for cetaceans and potentially other highly mobile and 96 
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large predators, and contributes to test this method’s applicability as a 97 

cost-efficient tool to support conservation managers and practitioners.  98 

 99 

Introduction 100 

 101 

Human-induced climate change is projected to strongly affect marine 102 

ecosystems mainly through increases in ocean temperature, acidification, 103 

and deoxygenation (Garcia-Soto et al., 2021; IPCC, 2019; Silvy et al., 104 

2020). These changes are known to affect marine species demography, 105 

abundance, distribution, and phenology patterns (Poloczanska et al., 106 

2016). 107 

Species distribution ranges and their boundaries are determined by 108 

thermal physiology and by the spatiotemporal distribution of climatic 109 

variables combined with other demographic, ecological, evolutionary, 110 

habitat-related and anthropogenic factors (Azzellino et al., 2008; Fullard 111 

et al., 2000; Khaliq et al., 2014; Lambert et al., 2014; Learmonth et al., 112 

2006). Many species have shown a poleward shift to higher latitudes as a 113 

result of tracking the temperatures that define their thermal preference 114 

(Becker et al., 2018; Lambert et al., 2011; van Weelden et al., 2021).  115 

 116 

For marine vertebrates like cetaceans (i.e., whales, dolphins, and 117 

porpoises), the impacts of changes in oceanographic patterns can be 118 
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direct or indirect. The former can include species tracking a specific range 119 

of water temperatures to avoid physiological stress; while the latter can 120 

include changes in prey availability resulting in changes in abundance, 121 

distribution, migration patterns, community structure and susceptibility to 122 

disease and contaminants (Learmonth et al., 2006; Nunny and 123 

Simmonds, 2019; van Weelden et al., 2021). 124 

One of the most documented drivers for observed and projected changes 125 

in cetaceans’ distribution is the rise in seawater temperature due to global 126 

warming (Becker et al., 2018; Chambault et al., 2018; Kaschner et al., 127 

2011; Learmonth et al., 2006; Salvadeo et al., 2010). However, the rate 128 

and magnitude of future environmental changes and species responses 129 

to those changes are still uncertain (Silber et al., 2017). In this context, 130 

understanding how climate change will impact cetaceans is challenging, 131 

particularly for conservation organizations mandated to identify and 132 

prioritize management actions (Nunny and Simmonds, 2019; Silber et al., 133 

2017).  134 

 135 

Different approaches have been used to provide guidance for 136 

conservation managers and practitioners and can be classified as trend-137 

based (correlative and mechanistic models) or trait-based (Foden et al., 138 

2019; Pacifici et al., 2015). Trait-based vulnerability assessment 139 

approaches relate to the association between species biological traits and 140 
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projections of relevant climate variables, typically involving scoring by 141 

expert-judgement or observations, and resulting in scores, categories or 142 

indices for species at risk. Albouy et al. (2020) used an index based on 143 

sensitivity and exposure to assess the global vulnerability of marine 144 

mammals to climate change. At a regional scale, index-based vulnerability 145 

assessments were carried out for marine mammal stocks in the Western 146 

North Atlantic, Gulf of Mexico, Caribbean, Pacific and Arctic regions 147 

(Lettrich et al., 2019); and for cetaceans in the Madeira Archipelago 148 

(Sousa et al., 2019) and the wider Macaronesian area (Sousa et al., 149 

2021). In contrast, trend-based approaches such as correlative models 150 

can be used to identify future climate suitable areas for species under 151 

different climate scenarios. Lambert et al. (2014) used a combination of 152 

habitat and thermal niche models to predict the distribution range of 153 

cetacean species in the eastern North Atlantic.  154 

Recently, the use of thermal vulnerability indices has increased (Clusella-155 

Trullas et al., 2021; Khaliq et al., 2014) and experimentally driven thermal 156 

tolerance limits present a good correspondence with the environmental 157 

temperatures at which individuals are observed to occur (Webb et al., 158 

2020). We define thermal suitability as the thermal niche of a species, i.e., 159 

the temperature range at which species occur, where other factors remain 160 

equal, such as predation, competition, or habitat heterogeneity. Thermal 161 
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suitability relates temperature to a species’ suitability range and can then 162 

be used to parameterise species’ thermal response curves. 163 

Experimentally driven thermal performance studies have been 164 

undertaken for invertebrates and fish species (e.g., Rendoll-Cárcamo et 165 

al., 2020; Underwood et al., 2012) but cannot be performed with 166 

cetaceans for ethical reasons (Frohoff and Bekoff, 2018). Thermal 167 

suitability has been estimated for some marine mammal populations by 168 

correlating sightings with water temperatures (e.g., Chavez-Rosales et al., 169 

2019). However, in regions with sparse sighting data, a novel approach is 170 

needed. One such novel approach is to use expert elicitation (Mukherjee 171 

et al., 2015) to define the thermal suitability of these species. 172 

In the present study, we evaluated the thermal response of cetaceans 173 

using a novel expert elicitation methodology. To that end, we used ten 174 

cetacean species from three archipelagos of Macaronesia (Azores, 175 

Canary Islands and Madeira) as a model system. Our goals were to: (1) 176 

define thermal suitability curves for the selected species; and (2) assess 177 

species thermal responses under three different climate change 178 

scenarios, namely Representative Concentration Pathways (RCPs) 2.6, 179 

4.5, and 8.5.  180 

 181 

 182 
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Methods 183 

 184 

Study area and selected species  185 

 186 

The biogeographic region of Macaronesia is located in the Eastern North 187 

Atlantic. We included in our study the archipelagos of Azores, Madeira 188 

and the Canary Islands (Figure 1). These archipelagos are considered 189 

one province within the Lusitanian ecoregion due to the relatively 190 

homogenous species composition, oceanographic characteristics, and 191 

specific ecosystems (Spalding et al., 2007). We do not include in our study 192 

the archipelago of Cape Verde as it has recently been shown to have a 193 

significantly different marine biota community structure and biogeographic 194 

relationships compared to the remaining archipelagos (Freitas, 2014; 195 

Freitas et al., 2019; Spalding et al., 2007).  196 

The Azores archipelago is located ~1300 km off the European mainland, 197 

and it comprises nine islands spread over about 600 km. The Madeira 198 

archipelago lies ~800 km off the European continent and 600 km off the 199 

West African coast and comprises two main islands (Madeira and Porto 200 

Santo). The Canary archipelago, located ~100 km off the West African 201 

mainland, is composed of eight populated islands. 202 
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The physical oceanographic features of this region include the Gulf 203 

Stream and associated bifurcations, the Azores Current (a southern 204 

branch of the Gulf Stream), the Portuguese and the Canary Currents, and 205 

regional dynamics (Barton, 2001; Caldeira and Reis, 2017). Islands 206 

obstruct the propagation of these currents and generate lee eddies, island 207 

wakes and upwelling features (Barbosa Aguiar et al., 2011; Caldeira and 208 

Reis, 2017; Sangrà et al., 2009; Zhou et al., 2000), which enhance ocean 209 

productivity around the archipelagos. This in turn drives the aggregation 210 

of higher trophic levels, including top marine predators such as cetaceans 211 

(Alves et al., 2018; Carrillo et al., 2010; Cartagena-Matos et al., 2021; 212 

González García et al., 2018; Herrera et al., 2021; McIvor et al., 2022; 213 

Silva et al., 2014; Tobeña et al., 2016). 214 
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 215 

Figure 1 – The biogeographic region of Macaronesia with the Azores, 216 

Canary Islands and Madeira archipelagos. 217 

Over 20 species of cetaceans are referenced for Macaronesia, including 218 

some resident species that are present year-round and others that are 219 

known seasonal visitors (Alves et al., 2018; Cartagena-Matos et al., 2021; 220 

Herrera et al., 2021; Silva et al., 2014). A list of cetacean species relevant 221 

for the region was selected through literature review and expert judgment, 222 

as described in Sousa et al. (2021). The ten selected cetacean species 223 

are listed in Table 1 (hereafter all species will be referred to by their 224 

common names). 225 
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 226 

Table 1 – Cetacean species selected for the development of thermal 227 

suitability curves, ordered alphabetically by the common name. 228 

 229 

Scientific name Common name 

Stenella frontalis Atlantic spotted dolphin 

Mesoplodon densirostris Blainville's beaked whale 

Balaenoptera edeni Bryde’s whale 

Tursiops truncatus common bottlenose dolphin 

Ziphius cavirostris Cuvier’s beaked whale 

Balaenoptera physalus fin whale 

Grampus griseus Risso’s dolphin 

Globicephala macrorhynchus short-finned pilot whale 

Delphinus delphis short-beaked common dolphin 

Physeter macrocephalus sperm whale 

 230 

Development of thermal suitability curves 231 

 232 

We developed thermal suitability curves for ten cetacean species (Table 233 

1) in Macaronesia using an expert elicitation approach. We used an 234 

approach based on Delphi technique principles that minimizes biases 235 

frequently encountered with expert judgement, such as groupthink 236 

(seeking consensus to avoid conflict) or the halo effect (considering 237 
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unrelated attributes in scoring; Kuhnert et al., 2010; Linstone & Turoff, 238 

1975; Mukherjee et al., 2015, 2016). While completely eliminating biases 239 

from an expert elicitation process is unlikely, we have sought to minimize 240 

and qualify the biases where present (Morgan et al., 2014; Mukherjee et 241 

al., 2018). 242 

Firstly, we defined a temperature range between 14 to 26 ºC, for all 243 

cetacean species considering the known temperature range occurring in 244 

Macaronesian waters (Martins et al., 2007). Experts were then asked to 245 

individually assign a suitability value to each temperature for each 246 

species, ranging from 0 (not suitable) to 1 (highly representative of the 247 

species preferred temperature range).  248 

To assess which was the most accurate scale for the construction of 249 

thermal suitability curves, experts scored six different combinations of 250 

temperature and suitability scales (labelled method 1 to 6) (Table 2). A 251 

Kruskal–Wallis test with Bonferroni post-hoc correction and Tukey’s 252 

pairwise comparison was applied to test for significant differences in the 253 

temperature/suitability scales, as implemented in the R agricolae package 254 

(Mendiburu, 2020). Given that no significant differences (p-value>0.05) 255 

were found between the methods 3, 5 and 6 (Figure 2) we selected the 256 

latter one to construct the thermal suitability curves due to its finer 257 

resolution scale. 258 
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Data quality scores were attributed by experts for each species and 259 

represent the extent of evidence available to support the construction of 260 

thermal suitability curves. Data quality ranged from 0 (no data), 1 (expert 261 

judgment only), 2 (limited data), and 3 (adequate data), as in Lettrich et 262 

al. (2019). 263 

 264 

 265 

 266 
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 267 

Table 2 – Six methods combining different thermal suitability and temperature scale. 268 

Thermal 

suitability 

scales 

TS1 0 0.5 1          

TS2 0 0.25 0.5 0.75 1        

TS3 0 0.17 0.33 0.5 0.67 0.83 1      

Temperature 

scale (ºC) 

T1 14-16 16-18 16-18 16-18 16-18 16-18 16-18      

T2 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 24-25 25-26 

Method 1 = TS1xT1; Method 2 = TS1xT2; Method 3 = TS2xT1; Method 4 = TS2xT2; Method 5 = TS3xT1; Method 6 = TS3xT2 

269 
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 270 

 271 

Figure 2 - Mean suitability scores attributed by experts using the six 272 

different methods (Table 2). Box represents the upper and lower quartiles, 273 

horizontal line inside each box indicates the median, whiskers reach 274 

maximum and minimum values. Common letters (a, b, ab) indicate means 275 

that are not significantly different (Tukey’s pairwise comparison at 276 

significance level =0.05). 277 

 278 

Species thermal responses 279 

 280 

The suitability/temperature relations provided by experts were used to 281 

build a local polynomial regression fitting (LOESS) with a smoothing 282 

parameter of 0.5, using the R function “loess”. 283 
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Historical (1956-2005) and projected (2006-2055) sea surface 284 

temperature data from the Climate Model Intercomparison Project 5 285 

(CMIP5) (in ºC, average of all models, with a spatial resolution of 1°x 1°) 286 

was obtained from the Earth Systems Research Laboratory (ESRL) web 287 

portal (ESRL, 2014). In ESRL, the seasonal output is available in three-288 

month periods as follows: October, November, December (OND); 289 

January, February, March (JFM); April, May, June (AMJ); July, August, 290 

September (JAS). Scenarios considering RCPs 2.6, 4.5 and 8.5, until 291 

2050, were used in this study. RCPs are scenarios that represent different 292 

greenhouse gas concentration trajectories and consider a range of 293 

radiative forcing which correspond to the production of 2.6, 4.5, 6, and 8.5 294 

W/m2 in the year 2100 and serve as a basis for climate projections (IPCC, 295 

2014). The short to mid-century timeframe (2006–2055) was chosen due 296 

to the effect of increasing uncertainties with extended timeframes, and the 297 

need to produce information to support conservation decisions and 298 

responses in the short-term. 299 

The LOESS models for the thermal suitability were projected on the study 300 

area to obtain spatially explicit thermal response maps for each species 301 

under different RCPs. Annual and seasonal historical and future 302 

temperatures (minimum, mean and maximum) were applied to the 303 

LOESS regressions to compute species thermal response curves. The 304 

difference between future and historical thermal suitability was then 305 
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calculated and plotted on thermal suitability maps for the selected 306 

cetacean species in Macaronesia under different RCPs (see S.M. 1 and 307 

S.M.2).  308 

 309 

Results 310 

 311 

Thermal suitability curves 312 
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 313 

Figure 3 - Species thermal suitability curves for: Atlantic spotted dolphin 314 

(Stenella frontalis) Data Quality (DQ)= 3; short-beaked common dolphin 315 
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(Delphinus delphis) DQ= 3; Bryde’s whale (Balaenoptera edeni) DQ = 3; 316 

fin whale (Balaenoptera physalus) DQ= 2; Risso’s dolphin (Grampus 317 

griseus) DQ= 2;  short-finned pilot whale (Globicephala macrorhynchus) 318 

DQ= 3; common bottlenose dolphin (Tursiops truncatus) DQ= 3; sperm 319 

whale (Physeter macrocephalus) DQ= 3; Blainville's beaked whale 320 

(Mesoplodon densirostris) DQ= 2; Cuvier’s beaked whale (Ziphius 321 

cavirostris) DQ= 2. Mean values are represented by the dots in the solid 322 

line and confidence intervals (standard deviation) are represented in the 323 

dashed line. Data quality values range from zero to three where 0 = No 324 

data; 1 = Expert judgment only; 2 = Limited data; 3 = Adequate data (from 325 

Lettrich et al., 2019). 326 

 327 

Suitability increases with temperature for the Bryde’s whale, short-finned 328 

pilot whale, Blainville's beaked whale, and sperm whale, reaching the 329 

most suitable temperature at approximately 22ºC (Figure 3). From 22 to 330 

24ºC there is a slight decrease in suitability, more pronounced for the 331 

sperm whale. According to the experts, this species showed higher 332 

suitability in colder temperatures with a larger standard deviation, when 333 

compared to other species in this group. 334 

 335 

The fin whale and Risso’s dolphin follow a Gaussian thermal suitability 336 

curve with the most suitable temperature at approximately 19ºC (Figure 337 
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3). The fin whale thermal suitability gradually declines from 20 to 26ºC. 338 

The thermal suitability curve of the Risso’s dolphin showed the lowest 339 

agreement among experts translated by the greater standard deviation, 340 

especially in the warmer half of the distribution, from 20 to 26ºC.  341 

 342 

The short-beaked common dolphin most suitable temperatures ranged 343 

from 14 to 18ºC, with the highest thermal suitability between 17 to 18ºC 344 

followed by a steep decrease (Figure 3). By contrast, the Atlantic spotted 345 

dolphin increased its thermal suitability towards warmer waters with the 346 

highest thermal suitability from 24 to 26ºC (Figure 3). The Cuvier’s beaked 347 

whale showed a regular increase in thermal suitability in warmer waters, 348 

with a high standard deviation and low expert agreement, together with a 349 

lower data quality reflecting a higher degree of uncertainty (Figure 3). 350 

Finally, the common bottlenose dolphin showed a very high thermal 351 

suitability across the whole temperature range with the highest value 352 

between 19 to 22ºC (Figure 3). 353 

Confidence in species thermal suitability curves, reflected in standard 354 

deviation and data quality scores, is lower for both species of beaked 355 

whales, the fin whale and the Risso’s dolphin, highlighting the limited data 356 

available for experts to define the curves. 357 

 358 

 359 
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Species thermal responses  360 

 361 

Overall, annual thermal suitability increases were found for the Bryde’s 362 

whale, short-finned pilot whale, Blainville's beaked whale, sperm whale, 363 

Atlantic spotted dolphin, common bottlenose dolphin and Cuvier’s beaked 364 

whale (Table 3). On the contrary, declines were found for the fin whale, 365 

short-beaked common dolphin, and Risso’s dolphin. One of the highest 366 

increases in thermal suitability was found for the Atlantic spotted dolphin 367 

and the lowest for the short-beaked common dolphin (Table 3 and Figure 368 

4).  369 

 370 

 371 

 372 

Table 3 – Changes in mean annual thermal suitability for cetacean 373 

species in Macaronesia (MAC), and in the respective archipelagos of 374 

Azores (Az), Canary Islands (Can), and Madeira (Mad) for RCPs 2.6, 4.5 375 

and 8.5 until 2050. Values indicate the difference between historical and 376 

future thermal suitability in a scale from 0 (not suitable) to 1 (highly 377 

representative of the species preferred temperature range). The colour 378 

scale gradient indicates an increase (green) or decrease (red) in thermal 379 

suitability. 380 
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Species/region 

Annual thermal suitability changes 

RCP 

2.6 4.5 8.5 

Bryde’s whale    

MAC 0.116 0.114 0.132 

Az 0.105 0.114 0.130 

Can 0.121 0.114 0.135 

Mad 0.123 0.113 0.131 

Fin whale    

MAC -0.041 -0.053 -0.061 

Az 0.082 0.060 0.070 

Can -0.126 -0.118 -0.140 

Mad -0.078 -0.100 -0.113 

Short-beaked common dolphin 

MAC -0.058 -0.060 -0.069 

Az -0.029 -0.043 -0.048 

Can -0.074 -0.069 -0.082 

Mad -0.071 -0.068 -0.078 

Risso’s dolphin    
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MAC -0.004 -0.016 -0.018 

Az 0.105 0.076 0.090 

Can -0.059 -0.060 -0.069 

Mad -0.058 -0.065 -0.074 

Short-finned pilot whale    

MAC 0.103 0.102 0.118 

Az 0.095 0.107 0.122 

Can 0.091 0.090 0.104 

Mad 0.122 0.110 0.127 

Blainville’s beaked whale    

MAC 0.088 0.090 0.103 

Az 0.072 0.087 0.098 

Can 0.076 0.077 0.089 

Mad 0.116 0.106 0.123 

Sperm whale    

MAC 0.061 0.057 0.066 

Az 0.073 0.072 0.083 

Can 0.056 0.050 0.060 

Mad 0.054 0.048 0.056 

Atlantic spotted dolphin    
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 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

MAC 0.116 0.113 0.130 

Az 0.105 0.114 0.130 

Can 0.098 0.097 0.113 

Mad 0.144 0.127 0.147 

Common bottlenose dolphin    

MAC 0.016 0.014 0.016 

Az 0.041 0.039 0.045 

Can -0.002 -0.002 -0.002 

Mad 0.010 0.004 0.005 

Cuvier’s beaked whale    

MAC 0.078 0.075 0.087 

Az 0.069 0.078 0.088 

Can 0.085 0.077 0.092 

Mad 0.079 0.070 0.082 
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The Bryde’s whale, the short-finned pilot whale and the Atlantic spotted 403 

dolphin showed the highest increase in thermal suitability under all climate 404 

scenarios, especially under RCP 8.5 (Table 3). The first species presents 405 

a similar increase in thermal suitability in warm waters in all archipelagos, 406 

reflected by the suitability curve (Figure 3). The increase in thermal 407 

suitability for the short-finned pilot whale was lower in the Canary Islands 408 

since, according to the experts, the species’ thermal suitability decreases 409 

slightly from 23 to 26ºC. The Atlantic spotted dolphin showed a higher 410 

increase in thermal suitability in Madeira and Azores than in the Canary 411 

Islands due to the increase in projected temperatures in future scenarios 412 

that appear to be more suitable for this species.  413 

The Blainville's beaked whale, sperm whale, Cuvier’s beaked whale and 414 

common bottlenose dolphin are the species exhibiting the lowest 415 

increases in thermal suitability under all climate scenarios. For the former 416 

species, our results suggest a lower increase in thermal suitability in the 417 

Canary Islands. The Cuvier’s beaked whale and sperm whale displayed 418 

a minor increase in thermal suitability in all archipelagos. 419 

The common bottlenose dolphin showed high thermal suitability across 420 

the whole temperature range (Figure 3) with minor increases in thermal 421 

suitability in the future for all archipelagos. 422 

The short-beaked common dolphin showed a decrease in thermal 423 

suitability related to their lower suitability values towards higher 424 
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temperatures. The fin whale and the Risso’s dolphin also decreased their 425 

thermal suitability in all archipelagos, except in the Azores where thermal 426 

suitability slightly increased in both species.427 
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 428 

Figure 4 – Example of historical (1956-2005) and future (2006-2055) thermal suitability maps (mean annual sea 429 

surface temperature) for RCP 8.5 for short-beaked common dolphin and Atlantic spotted dolphin. Numbers in 430 
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the upper left and in the lower left map indicate latitude and longitude, respectively. The thermal suitability scale 431 

on the right-hand side represents the lowest (=0) and highest thermal suitability (=1). Thermal suitability maps 432 

for the remaining species can be found in the supplementary materials (S.M.1 and S.M.2). 433 

 434 

Table 4 – Changes in mean seasonal thermal suitability in Autumn (OND), Winter (JFM), Spring (AMJ), and 435 

Summer (JAS) for cetacean species in Macaronesia (MAC) and respective archipelagos, Azores (Az), Canary 436 

Islands (Can) and Madeira (Mad) for RCP 2.6, 4.5 and 8.5 until 2050. The colour scale gradient indicates an 437 

increase (green) or decrease (red) in thermal suitability.  Values indicate the difference between historical and 438 

future thermal suitability in a scale from 0 (not suitable) to 1 (highly representative of the species preferred 439 

temperature range). 440 

Species/region 

Seasonal thermal suitability changes 

RCP 2.6 RCP 4.5 RCP 8.5 

Autumn/Winter Spring/Summer Autumn/Winter Spring/Summer Autumn/Winter Spring/Summer 
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OND JFM AMJ JAS OND JFM AMJ JAS OND JFM AMJ JAS 

Bryde’s whale 

MAC 0.118 0.090 0.101 0.095 0.118 0.085 0.101 0.078 0.127 0.099 0.117 0.079 

Az 0.110 0.059 0.074 0.110 0.116 0.054 0.087 0.086 0.124 0.061 0.098 0.085 

Can 0.106 0.108 0.104 0.078 0.106 0.102 0.099 0.070 0.117 0.121 0.117 0.073 

Mad 0.139 0.103 0.124 0.096 0.132 0.098 0.117 0.078 0.141 0.114 0.135 0.078 

Fin whale 

MAC -0.097 0.089 0.028 -0.124 -0.085 0.095 0.027 -0.115 -0.094 0.107 0.028 -0.117 

Az -0.018 0.112 0.117 -0.130 0.007 0.114 0.121 -0.124 0.003 0.130 0.138 -0.123 

Can -0.126 0.029 -0.082 -0.112 -0.121 0.058 -0.070 -0.106 -0.135 0.060 -0.086 -0.116 

Mad -0.147 0.126 0.049 -0.131 -0.141 0.115 0.028 -0.114 -0.151 0.132 0.033 -0.114 

Short-beaked common dolphin  
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MAC -0.078 -0.006 -0.031 -0.107 -0.074 -0.005 -0.032 -0.110 -0.081 -0.007 -0.038 -0.113 

Az -0.057 0.030 0.021 -0.095 -0.056 0.030 0.015 -0.111 -0.060 0.034 0.017 -0.110 

Can -0.090 -0.048 -0.062 -0.105 -0.084 -0.037 -0.059 -0.103 -0.094 -0.046 -0.070 -0.112 

Mad -0.087 0.000 -0.052 -0.120 -0.083 -0.006 -0.054 -0.116 -0.090 -0.009 -0.061 -0.116 

Risso’s dolphin  

MAC -0.041 0.092 0.039 -0.067 -0.028 0.102 0.036 -0.081 -0.032 0.114 0.040 -0.083 

Az -0.014 0.088 0.116 -0.049 0.010 0.083 0.134 -0.074 0.007 0.095 0.151 -0.073 

Can -0.045 0.033 -0.057 -0.075 -0.040 0.070 -0.050 -0.078 -0.045 0.072 -0.061 -0.087 

Mad -0.063 0.156 0.057 -0.078 -0.055 0.152 0.025 -0.090 -0.057 0.174 0.030 -0.089 

Short-finned pilot whale 

MAC 0.089 0.098 0.104 0.035 0.087 0.097 0.100 0.019 0.093 0.113 0.116 0.019 

Az 0.111 0.098 0.088 0.054 0.115 0.110 0.085 0.025 0.123 0.126 0.097 0.025 

Can 0.055 0.105 0.105 0.021 0.058 0.096 0.101 0.014 0.063 0.114 0.119 0.013 
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Mad 0.100 0.091 0.120 0.031 0.090 0.084 0.115 0.017 0.094 0.098 0.133 0.017 

Blainville’s beaked whale 

 

MAC 0.067 0.061 0.081 -0.006 0.065 0.055 0.082 -0.021 0.069 0.065 0.095 -0.021 

Az 0.102 0.035 0.041 0.017 0.101 0.033 0.047 -0.017 0.108 0.038 0.054 -0.017 

Can 0.018 0.089 0.103 -0.017 0.025 0.077 0.102 -0.021 0.026 0.092 0.118 -0.024 

Mad 0.081 0.059 0.098 -0.019 0.069 0.056 0.097 -0.023 0.072 0.066 0.111 -0.023 

Sperm whale  

MAC 0.058 0.070 0.063 0.029 0.060 0.071 0.061 0.007 0.065 0.081 0.071 0.006 

Az 0.055 0.065 0.071 0.051 0.062 0.066 0.075 0.017 0.065 0.076 0.086 0.017 

Can 0.052 0.061 0.045 0.011 0.054 0.065 0.045 0.001 0.059 0.075 0.052 -0.002 

Mad 0.066 0.085 0.074 0.025 0.065 0.081 0.064 0.002 0.070 0.094 0.074 0.003 
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Atlantic spotted dolphin  

MAC 0.102 0.110 0.121 0.054 0.099 0.100 0.120 0.044 0.106 0.116 0.139 0.045 

Az 0.129 0.101 0.108 0.068 0.129 0.095 0.112 0.050 0.138 0.108 0.128 0.050 

Can 0.068 0.117 0.123 0.044 0.070 0.102 0.121 0.040 0.076 0.123 0.141 0.043 

Mad 0.110 0.114 0.131 0.052 0.098 0.103 0.128 0.042 0.103 0.119 0.148 0.042 

Common bottlenose dolphin  

MAC 0.007 0.027 0.022 0.001 0.009 0.028 0.023 -0.003 0.009 0.032 0.026 -0.003 

Az 0.020 0.010 0.022 0.002 0.027 0.007 0.031 -0.002 0.028 0.008 0.034 -0.002 

Can 0.003 0.030 0.006 -0.001 0.002 0.035 0.008 -0.004 0.003 0.040 0.008 -0.006 

Mad -0.002 0.042 0.038 0.003 -0.002 0.043 0.031 -0.002 -0.002 0.050 0.036 -0.001 

Cuvier’s beaked whale  

MAC 0.085 0.051 0.061 0.070 0.086 0.049 0.062 0.058 0.093 0.058 0.072 0.059 

Az 0.075 0.020 0.032 0.084 0.079 0.020 0.041 0.065 0.084 0.023 0.047 0.064 
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Can 0.080 0.074 0.066 0.058 0.080 0.069 0.064 0.053 0.089 0.082 0.075 0.056 

Mad 0.099 0.058 0.086 0.068 0.098 0.059 0.081 0.055 0.105 0.069 0.093 0.055 

441 
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Seasonal projections for the Bryde’s whale indicate an increase in thermal 442 

suitability in all seasons (Table 4), with the highest values in autumn and 443 

spring. In winter, the lowest increase in suitability was recorded in Azores. 444 

The fin whale showed a decreasing trend in thermal suitability in summer 445 

and autumn. The thermal suitability of fin whale increases in winter and 446 

spring with the notable exception of spring in the Canary Islands. In winter 447 

and spring, the fin whale showed an increase in thermal suitability except 448 

for the Canary Islands in spring.  449 

 450 

The Risso’s dolphin thermal suitability decreases in summer and autumn 451 

and increases in winter and spring (except in spring in the Canary 452 

Islands).  453 

The thermal suitability of short-finned pilot whale increases in all seasons 454 

and archipelagos with lower gains in the summer.  455 

The sperm whale suitability increases slightly in all seasons and 456 

archipelagos. A similar pattern was observed for the Cuvier’s beaked 457 

whale while for the Blainville’s beaked whale, the increase in thermal 458 

suitability was detected in all seasons except in summer, where a slight 459 

decrease was found. 460 

The short-beaked common dolphin showed a decrease in thermal 461 

suitability especially in summer and autumn, except in Azores, where 462 

there was a slight increase in winter and spring. 463 
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Results for the Atlantic spotted dolphin revealed an increase in thermal 464 

suitability in all seasons, although lower in summer. In autumn, this 465 

species showed the smallest suitability increase in the Canary Islands and 466 

the highest in the Azores. For the common bottlenose dolphin minor 467 

changes in thermal suitability were obtained across all seasons and 468 

scenarios. 469 
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Discussion 470 

 471 

The use of expert elicitation to define species’ temperature suitability 472 

curves and responses under different climate scenarios provided a novel 473 

approach to assess species projected thermal suitability changes. In 474 

addition, it contributes to support decision-making processes in a context 475 

of high uncertainty combined with the urgency of guiding conservation and 476 

management actions towards vulnerable species, such as cetaceans, in 477 

an increasingly impacted world (Alves et al., 2022a; Avila et al., 2018). 478 

Our results suggest that climate change is likely to decrease the thermal 479 

suitability of three out of ten cetacean species analysed in Macaronesia, 480 

with all remaining seven species showing thermal suitability increases in 481 

the future. In general, species for which thermal suitability increases in the 482 

future may experience range expansions, while species for which thermal 483 

suitability decreases may experience distributional shifts within 484 

Macaronesia (see S.M.1 and S.M.2).  485 

Confidence in thermal suitability curves, derived by the standard deviation 486 

and data quality scores, reflect the limited knowledge for these species in 487 

Macaronesia. In addition, knowledge varies according to the different 488 

archipelagos due to the different research focus of the studied species. 489 

For example, more information is available for the Risso’s dolphin in the 490 

Azores than in Madeira or the Canary Islands, while for beaked whales, 491 
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despite overall limited knowledge for Macaronesia, most information is 492 

available for the Canary Islands. 493 

The increase in suitability for the Bryde’s whale, a tropical and subtropical 494 

species (Kato and Perrin, 2018) was projected for Madeira, Canary 495 

Islands and for the Azores, except for the winter months in Azores where 496 

water temperatures are colder. Our results support the known limit 497 

distribution range of this species in the region with its upper limit latitude 498 

in the Azores (Steiner et al., 2008). Bryde’s whale is amongst the most 499 

sighted species in Madeira (Alves et al., 2018) and the most sighted 500 

rorqual species in the Canary Islands (Herrera et al., 2021); while in 501 

Azores, despite exceptional years in which whales were observed in 502 

consecutive months, only occasional sightings have been recorded 503 

(Azevedo et al., 2021). Habitat preferences for the Madeira archipelago 504 

support the relevance of warm surface waters (specifically between 20ºC 505 

to 24ºC) as well as low surface chlorophyll concentration to shape the 506 

species’ distribution (Fernandez et al., 2021). In Madeira, several 507 

individuals are known to exhibit long-term site fidelity, with a maximum 508 

recapture interval of 12 years, and at least seven individuals were seen 509 

both in Madeira and the Canaries (Ferreira et al., 2021). Together with the 510 

fact that this species is commonly sighted accompanied by calves and 511 

feeding in both archipelagos highlights the ecological importance of this 512 
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area for Bryde's whale (Alves et al., 2010; Ferreira et al., 2021). Bryde’s 513 

whale may potentially be tracking warm waters that are increasing 514 

latitudinally and that may be more productive, therefore extending their 515 

distribution range (González Garcia, 2019). 516 

Similarly, the short-finned pilot whale, which is also a tropical to 517 

subtropical species (Olson, 2009), is projected to increase its suitability in 518 

the future. The increase in suitability is lower for the Canary Islands due 519 

to current temperatures being already very suitable for the species. In 520 

Macaronesia, pilot whales are commonly sighted, especially in Madeira 521 

and the Canary Islands (Alves et al., 2019; Herrera et al., 2021; Silva et 522 

al., 2014) where island-associated animals are described (Alves et al., 523 

2015, 2013; Servidio et al., 2019). This species shows varying degrees of 524 

site fidelity and year-round occupancy in the different archipelagos, which 525 

support an ecological connectivity network in Macaronesia (Alves et al., 526 

2019). In Madeira, the short-finned pilot whales were found to prefer 527 

warmer waters (over 18ºC) and low/moderate chlorophyll values 528 

(Fernandez et al., 2021). In the West Atlantic, it is suggested that this 529 

species’ latitudinal distribution may be limited to regions targeting steep 530 

bathymetric gradients in order to foster an effective foraging strategy 531 

(Thorne et al., 2017). Core foraging regions for this species in Hawai’i and 532 

in the Macaronesian archipelagos were also associated with intermediate 533 
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slope waters (Abecassis et al., 2015; Fernandez et al., 2021; Servidio, 534 

2014), in which potential climate change effects are unknown but may 535 

cause the displacement of animals.  536 

Sperm whales are present year-round in all archipelagos and are mostly 537 

sighted in Azores (Clarke, 1956; Silva et al., 2014; van der Linde and 538 

Eriksson, 2020), but also in Madeira (Alves et al., 2018) and in the Canary 539 

Islands (Carrillo et al., 2010; Fais et al., 2016; Herrera et al., 2021). Sperm 540 

whales show a high thermal suitability coincident with their wide 541 

temperature range. In Azores and Madeira, habitat suitability preferences 542 

seem to be linked to sea surface temperature with a peak around 23ºC  543 

(Fernandez et al., 2021, 2018).  544 

The Blainville’s beaked whale showed an increase in thermal suitability 545 

with a low confidence and data quality due to the limited information for 546 

this species. Few island-associated populations have been described 547 

worldwide, covering the Hawai’i, Bahamas, and the Macaronesian 548 

archipelagos of Madeira and the Canaries (Badenas et al., 2022; 549 

Claridge, 2006; Dinis et al., 2017; McSweeney et al., 2007; Reyes Suárez, 550 

2018). Abecassis et al. (2015) associated the species’ movements with 551 

specific topographic and oceanographic variables such as bathymetry, 552 

temperature at depth, and a high density of midwater micronekton, that 553 

are known to influence these animals’ distribution, which mainly relate with 554 
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temperature at depth. Blainville’s beaked whale in Madeira was found to 555 

have a restricted ecological niche with preference for warm waters and 556 

steep relief areas close to major canyons (Fernandez et al., 2021). In the 557 

Canary Islands, Blainville’s beaked whales approach the seafloor to feed 558 

and have a preferred distribution around 1500 m depth contour (Arranz et 559 

al., 2014).  560 

Cuvier’s beaked whales occur in all archipelagos year-round, but most 561 

information is only available for the Canary Islands where the species 562 

shows a high level of residency in some islands such as El Hierro, 563 

Lanzarote and Fuerteventura (Arranz et al., 2014; Fernández et al., 2013). 564 

The species shows an increasing suitability towards warmer temperatures 565 

which explains the projected increase in thermal suitability in October, 566 

November and December in the future.  567 

Risso’s dolphins are present in all the archipelagos, however with 568 

differences in abundance and distribution patterns. Individuals are most 569 

sighted in the Azores and the Canary Islands (Hartman et al., 2008; 570 

Sarabia-Hierro and Rodríguez-González, 2019) and only occasionally in 571 

Madeira (Alves et al., 2018). Most of the information available on their 572 

spatial-temporal distribution comes from the Azores, where the species 573 

shows a high degree of site fidelity at least in Pico Island (Hartman et al., 574 

2014). In the Canary Islands, mostly in the eastern islands, the species is 575 
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known to occur, but little information is available (Sarabia-Hierro and 576 

Rodríguez-González, 2019). Risso’s are mostly observed in temperate 577 

waters from mid-latitude areas (Jefferson et al., 2014). Consequently, the 578 

decrease in thermal suitability might be related to their preference for 579 

colder waters. Nevertheless, it is also known that they also occur in 580 

tropical areas, such as the Maldives (Jefferson et al., 2014), suggesting 581 

that the species might adapt to changes in the thermal habitat.  582 

Common bottlenose dolphins are a cosmopolitan species occurring in all 583 

Macaronesian archipelagos year-round and known to have a wide range 584 

of suitable temperatures (Dinis et al., 2021; Wells and Scott, 2009). The 585 

common bottlenose dolphin habitat in the region has been recently 586 

characterized by a preference for waters close to coast (<1,000 m), with 587 

almost no seasonal variation (Correia et al., 2021; Dinis et al., 2016; 588 

Fernandez et al., 2021; Silva et al., 2014). 589 

The short-beaked common dolphin is a temperate water species in the 590 

Atlantic (Perrin, 2009) with a preference for colder waters in Macaronesia. 591 

It shows a seasonal presence in Madeira mainly during winter and spring 592 

(from December to June, (Alves et al., 2018; Fernandez et al., 2021), in 593 

the Canary Islands from December to May (Carrillo et al., 2010; Herrera 594 

et al., 2021), and a year-round presence in the Azores (Silva et al., 2014). 595 

In the region of Macaronesia, the distribution of common dolphins has 596 
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been found to be influenced by depth and associated with lower sea 597 

surface temperatures (Correia et al., 2021; Fernandez et al., 2021). Our 598 

study projected a decrease in thermal suitability in the future, with 599 

increasing temperatures for Macaronesia. Similarly, for the Northeast 600 

Atlantic, Lambert et al. (2011) found a potential northward range 601 

expansion of common dolphin distribution as temperatures increase over 602 

time. 603 

The Atlantic spotted dolphin also has a seasonal presence in Madeira and 604 

the Azores, mainly occurring from May to October (Alves et al., 2018; 605 

Fernandez et al., 2021; Silva et al., 2014). Our results show an increase 606 

in thermal suitability in the Azores and in Madeira from October to March 607 

which may suggest a future extension of their presence in autumn and 608 

winter months. In the Canary Islands the species occurs throughout the 609 

year with relative fewer sightings in the summer months (June to August; 610 

Herrera et al., 2021). Atlantic spotted dolphins appear to have a strong 611 

relation with warm water temperatures, potentially linked to the distribution 612 

of their preferred prey. This may be a good indicator species for climate 613 

driven changes in Macaronesia (Saavedra et al., 2018). 614 

In the Azores, the fin whale has been recorded in winter, spring and 615 

summer (Romagosa et al., 2020; Silva et al., 2014) while in Madeira it has 616 

been sighted mostly in summer and autumn (Fernandez et al., 2021). 617 
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Presence of fin whales in the Canary Islands has been recorded in spring 618 

and summer (Carrillo et al., 2010). In Madeira and Azores, the fin whale 619 

ecological niche was shaped by low water temperature at 100 m depth 620 

(<18ºC), while for Madeira the preference for high chlorophyl levels was 621 

identified as a limiting factor (Fernandez et al., 2021). Compared to 622 

Madeira, the extended presence of fin whales in the Azores may be 623 

explained by the complex topography and higher number of long-lived 624 

eddies occurring in the Azores which modulate and increase oceanic 625 

productivity in the archipelago (Fernandez et al., 2021). 626 

Species occurrence patterns relate to a combination of physical and 627 

biological features which show that different environmental variables 628 

besides temperature can influence species movements and distribution 629 

(Forcada, 2009). In addition, species can occur in waters within core 630 

temperatures of their thermal niche and select, in that range, preferred 631 

habitat characteristics regardless of temperature (Correia et al., 2021; 632 

Lambert et al., 2011). Our method focuses exclusively on species thermal 633 

suitability which may prove to be most relevant for taxa with a clear 634 

relation with temperature. Increasing knowledge on species habitat 635 

preferences can therefore contribute to identify the most relevant 636 

environmental variables and guide the future applicability of the thermal 637 

suitability method to specific species. Also, we developed thermal 638 
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suitability curves for populations in the Macaronesia region, targeting the 639 

scale at which conservation and management actions take place (Alves, 640 

et al., 2022b). However, it should be noted that the temperature range of 641 

these species is wider when compared to the populations assessed in our 642 

study area.    643 

The method developed in our study can serve as a simple and easy to 644 

apply tool that offers a rapid assessment targeted for decision-makers. 645 

This approach can provide an indication of potential thermal suitability 646 

changes and can complement other methodologies such as mechanistic 647 

modelling or vulnerability indexes towards a more comprehensive 648 

understanding of climate change impacts. We acknowledge that species’ 649 

habitat preferences are dependent on a set of environmental variables 650 

and their interaction with complex ocean dynamics, and that considering 651 

one absolute environmental variable (sea surface temperature) is a 652 

simple but limited approach to project how species will respond to a 653 

changing climate.  654 

One of the traits of marine mammals is endothermy, which offers them a 655 

broader temperature range tolerance and may increase species resilience 656 

to increasing water temperatures. Despite species being less likely to be 657 

affected physiologically, their responses are more challenging to predict 658 

when compared to fish and zooplankton/invertebrates that follow isotherm 659 
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lines (Learmonth et al., 2006; Silber et al., 2017). Furthermore, biological 660 

traits such as long lifespan, low birth rate, and long generation time 661 

provide limited opportunity for rapid evolutionary adaptation, which makes 662 

reliance on other characteristics such as behavioural responses a 663 

relevant ability for species adaptation to climate change (Learmonth et al., 664 

2006; Lettrich et al., 2019; Silber et al., 2017). In addition, other ecological 665 

traits contributing to species sensitivity to climate change such as 666 

behaviour, life history or genetic diversity can contribute to species 667 

adaptive capacity and resilience to climate (Clusella-Trullas et al., 2021; 668 

Silber et al., 2017). However, the ability to assess how species will 669 

respond, either through evolutionary changes and phenotypic plasticity or 670 

by tracking suitable temperatures, is unknown. 671 

The present approach also does not consider the cumulative effects of 672 

other environmental threats such as the impact of maritime transport, 673 

nautical tourism or military exercises on species survival. Furthermore, 674 

changes in human behaviour and economic activities resulting from 675 

climate driven shifts can also have considerable effects on cetacean 676 

species (Alter et al., 2010). For example, species may be affected by the 677 

acoustic disturbance, habitat disruption or collisions caused by the 678 

construction of energy infrastructure built in an effort to reduce fossil fuel 679 

consumption and increase the focus on renewable energy (Alter et al., 680 
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2010). The development of wave energy and offshore wind farms in 681 

Macaronesia are currently under discussion (Calado et al., 2021) and may 682 

affect cetaceans if these construction areas overlap with species’ 683 

distribution areas. In Macaronesia, except for ship collisions from ferries 684 

in the Canary Islands (Carrillo and Ritter, 2010), no major direct local 685 

impacts have currently been identified. However, other pressures that 686 

affect cetacean species and that should be monitored in the region include 687 

the input of contaminants and anthropogenic sound, marine litter and 688 

disturbance from whale watching activities (e.g., Arranz et al., 2021; 689 

Cardoso & Caldeira, 2021; Montoto-Martínez et al., 2021; Sambolino et 690 

al., 2022). 691 

Additionally, we used the annual and seasonal mean sea surface 692 

temperature to derive species historical and future thermal suitability. 693 

However, species responses to extreme conditions such as marine 694 

heatwaves may be larger than expected (Cheung and Frölicher, 2020), 695 

even if the principal driver of these events comes from long-term climate 696 

change (Collins et al., 2019; Laufkötter et al., 2020). Another source of 697 

uncertainty comes from the lack of downscaled climate models that offer 698 

regional-scale climate projections (Christensen et al., 2007; Tomé, 2013). 699 

 700 

Finally, future research should focus on using sightings data to validate 701 

expert-based curves and to monitor species with standardized protocols 702 
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across all archipelagos of Macaronesia. This would increase the 703 

knowledge base on oceanographic and climate processes as well as on 704 

species ecology and their relationship with the environment. Moreover, as 705 

more recent coupled climate models' experiments under the Climate 706 

Model Intercomparison Project 6 (CMIP6) (Eyring et al., 2016) become 707 

available, these should also be used in future research. 708 

 709 

Conclusions 710 

 711 

The results highlight the potential future thermal responses of cetaceans 712 

in Macaronesia and implications for species’ distribution changes.  713 

Challenges in obtaining experimentally driven thermal limits or in situ 714 

measures of environmental temperature associated with species 715 

sightings limit our use of these methods, particularly in large marine 716 

predators such as cetaceans. 717 

Our approach allowed for the development of thermal suitability curves 718 

and responses to be rapidly derived for cetaceans using expert elicitation 719 

in support of decision-making under climate change. These results can 720 

prepare managers and conservationists with potential future outcomes 721 

and can serve as inputs to broader habitat modelling exercises.  Further 722 

application and validation of this approach can be conducted in other 723 
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areas or applied at a basin-wide or global scale while increasing the poll 724 

of experts involved in the design of the thermal suitability curves. 725 

Research that helps to further understand the main environmental 726 

variables influencing the current distribution of cetacean species in 727 

Macaronesia, as well as projected future distribution changes, is welcome 728 

to develop a greater understanding of climate-driven impacts. 729 
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