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Resumo

A doenca de Parkinson é uma doencga neurodegenerativa que afeta o sistema nervoso
central, e € mais prevalente em homens adultos, raramente ocorrendo em idades inferio-
res aos 50 anos. Apesar da causa desta doenga ser desconhecida, a continua investigacao
sobre os seus mecanismos tem permitido algum progresso no tratamento dos sintomas,
e levado a identificacdo de diversos fatores ambientais e genéticos de risco aumentado.
Sabemos agora que esta doenga causa a degeneragdo progressiva de neurdnios especificos
responsdveis pela regulacdo da dopamina no cérebro, um neurotransmissor importante en-
volvido em fungdes motoras e de memoria. Este processo degenerativo leva 4 emergéncia
dos sintomas tradicionalmente associados a doenga de Parkinson. O acrénimo TRAP ¢é
uma abreviatura usada recorrentemente na literatura para descrever os sintomas: Tremor
em repouso, Rigidez, Akinesia ou lentiddo de movimentos, também designada Bradyki-
nesia, e instabilidade Postural. Apesar de estes serem os sintomas mais frequentemente
associados a doenca de Parkinson, outros sintomas menos conhecidos incluem o ’free-
zing’ of gait, que consiste em pequenas hesitagdes durante a fase inicial ou o decorrer
da marcha, e uma série de sintomas neuropsiquidtricos que incluem depressdo, ansie-
dade e deméncia, e ainda outros sintomas ndo motores tais como disttirbios de sono e
gastrointestinais. Apesar de ndo existir uma cura para esta doenga, existem tratamentos
recomendados para a amenizagdo dos sintomas motores. Entre estes, 0 mais comum € o
uso de medicamentos a base de levodopa, que permitem o alivio rdpido do tremor e rigi-
dez. No entanto, o uso destes tratamentos a longo prazo, pode levar a outras complicacdes
motoras, caracterizadas pelo aparecimento de movimentos bruscos involuntarios (dyski-
nesia). A intensidade destas complicacdes estd relacionada com o desgaste da medicacdo
apdés o consumo, levando a flutuacdes ao longo do dia que foram categorizadas como
estados "ON’ e "OFF’, descrevendo se a medicacdo estd a ter efeito ou ja desgastou res-
petivamente. Atendendo a estas flutuagdes, e a natureza degenerativa da doenca que leva
a uma progressao de sintomas ao longo do tempo, a monitorizacdo constante do estado
da doenca € extremamente importante para informar a acdo clinica, e permitir ajustes
continuos as abordagens para tratamento.

Atualmente, este acompanhamento € maioritariamente baseado em avaliagdes clinicas
periddicas durante as quais os profissionais de satide usam diversos exercicios, escalas e
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questiondrios para aferir o estadio da doenga e quantificar os diversos sintomas motores
e ndo motores. Entre estes, a Escala Universal para a Doenca de Parkinson, especifica-
mente a versdo revista pela Sociedade de Distirbios do Movimento (MDS-UPDRS), é
a abordagem mais usada para a avaliacdo de sintomas. Esta escala encontra se dividida
em 4 partes, sendo que as partes 1 e 2 constituidas por 13 itens cada abordam o impacto
dos sintomas na vida didria dos pacientes, enquanto as ultimas duas partes, constituidas
por 33 itens cada, focam-se na quantificacdo dos sintomas motores, requerendo o desem-
penho de vérios exercicios por parte do paciente sobre observacdo clinica. A avaliacdo
clinica através deste questiondrio € ainda frequentemente acompanhada de outras escalas
como a "Unified Dyskinesia Rating Scale’ ou a "Non-Motor symptom Scale’. Apesar de
valiosas para a monitoriza¢do e acompanhamento da doencga de Parkinson, estas escalas
partilham alguns defeitos inerentes a este tipo de avaliacdo. Para além da subjetividade
destas avaliagdes, que leva a variabilidade entre avaliagdo do mesmo paciente por profissi-
onais de satde diferentes, a maior desvantagem do uso destas escalas € o requerimento de
deslocacdes por parte dos pacientes a clinicas ou hospitais para este efeito, que atendendo
as complicagdes motoras causadas pela doenga representam um fardo para o paciente e
cuidadores. Adicionalmente, estas avaliacdes periddicas ndo capturam as flutuacdes de
sintomas ao entre periodos de avaliacdo, informacao clinicamente relevantes que muitas
vezes acaba por ser transmitida apenas através de relatos dos pacientes.

Ao longo das tultimas décadas, o aparecimento de sensores inerciais pouco intrusi-
vos e de reduzido custo, representou uma mudanga de paradigma na literatura relacio-
nada com a monitorizacao da doenca de Parkinson. Surgiram multiplos estudos e tra-
balhos relacionados com a quantificacdo dos diversos sintomas motores, COmo uma ma-
neira de colmatar os defeitos das avaliacdes tradicionais para este efeito. Assim, o uso
destes sensores vestiveis popularizou-se para a classificacao de estados ‘ON’ e ‘OFF’,
a quantificacdo de tremores de repouso e rigidez, a detecdo de episddios de ‘freezing’
durante a marcha entre outras abordagens para a monitorizacdo da doencga através dos
seus sintomas. Para além destas abordagens, o estudo de algoritmos de aprendizagem
automadtica para a quantificacdo e monitorizagdao da doenca também produziu resultados
promissores, tendo sido estudados todo o tipo de modelos e varidveis para a estimacao
automatica de, por exemplo, itens das diferentes escalas para a avaliacdo da doenca de
Parkinson, ou métricas que com estas se correlacionam. Ainda assim, e apesar dos resul-
tados promissores, os métodos tradicionais continuam a ser favorecidos para a avaliacao
clinica devido a uma falta de consenso e foco nas metodologias para a recolha e tra-
tamento de dados, que levam a que muitas destas abordagens necessitem de validacao
adicional, ou ndo sejam usaveis para uso fora do laboratério, no ‘mundo real’. Recente-
mente, o foco na marcha e derivacao de suas caracteristicas através deste tipo de sensores
demonstrou que estas propriedades da marcha, como a velocidade, ritmo e variabilidade,
tém potencial como marcadores relacionados com a progressao da doenga de Parkinson.
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Especificamente, varios autores demonstraram ndo s6 a possibilidade de extrair estas e
outras caracteristicas como o nimero e largura de passos, mas também a correlagdo signi-
ficativa entre a inibi¢do destas caracteristicas e estadios mais avancados da doenca. Estes
factores combinados com a relativa simplicidade de identificar periodos de marcha au-
tomaticamente representam uma oportunidade para uma monitoriza¢ao verdadeiramente
continua e objectiva da doenga de Parkinson.

O estado da arte da literatura relacionada com este topico comegou recentemente a
usar técnicas de ‘deep learning’ para este efeito, prevendo automaticamente a pontuacao
agregada da parte 3 do MDS-UPDRS para monitoriza¢ao da progressao da doenca usando
dados recolhidos durante a marcha, e outras atividades. Os autores destes estudos, de-
monstraram uma metodologia para a predi¢do desta métrica com significado clinico esta-
belecido, que t€ém a vantagem de ser facilmente interpretaveis por profissionais de saude
e pacientes, e com margens de erro relativamente baixas. No entanto, e como € recorrente
na literatura relacionada, estas abordagens diferem significativamente em metodologia
em termos de protocolos de recolha e processamento de dados, assim como nos modelos
usados. Isto leva uma vez mais a necessidade de validacao destes resultados, e a oportu-
nidade de usar diferentes abordagens e modelos para o mesmo efeito, de modo a perceber
o impacto das diferentes abordagens e aferir a possibilidade de melhorar os resultados.

Este trabalho pretende testar diversas varidveis relativas a recolha e processamento de
dados para a monitorizacdo da progressao da doencga através desta métrica da parte 3 do
MDS-UPDRS. Para esse efeito, foram testados 4 modelos de aprendizagem usando dados
de sensores montados nas costas e no punho de 74 pacientes, e diferentes conjuntos e de
features e métodos para a sua extraccdo do sinal recolhido por estes acelerémetros. Apds
uma descri¢c@o da literatura relacionada e dos dados recolhidos, este trabalho apresenta
uma comparagdo dos modelos testados com o atual estado da arte, e uma breve discussao
do efeito das diferentes varidveis no resultado. Apesar de os modelos testados ndo te-
rem alcancado a performance atingida pelos modelos de ‘deep learning’ usados no estado
da arte, os resultados demonstram que estes modelos sdo vidveis para a estimacdo desta
métrica, existindo algumas possibilidades para a melhoria do seu desempenho. Para além
disso, a discussao do efeito de cada varidvel testada resultou na identificacdo de um con-
junto de possibilidades para trabalho futuro, que constituem trabalho importante para a
monitoriza¢do objetiva da doenga, e devem ser testadas antes de descartar estes modelos
para o estadiamento objetivo da doenca de Parkinson.

Palavras-chave: Doenca de Parkinson; Marcha; Machine Learning






Abstract

Current practices for monitoring disease stage and progression in Parkinson’s Disease
still rely on periodic clinical visitations that can be cumbersome and highly stressful for
patients and caretakers. Furthermore, the current gold standard for these evaluations is
still reliant on observations made by trained clinicians using clinical scales that, in spite
of their repeatedly verified validity, are subject to fluctuations due to intra or inter-rater
variability. Over the last decade, technological developments in sensors for data collection
and data science algorithms have enabled systems and tools for health and tele-medicine
applications, along with a battery of research into the objective and continuous moni-
toring of Parkinson’s Disease. Among such research, gait and it’s characteristics have
emerged as reliable markers for the progression of PD. As such, studies leveraging these
characteristics for the objective monitoring of the disease have become a common trend
in the related literature. A limiting factor in several of these studies is the use of scores
and outcomes that, in spite of their high correlation to established clinical scales, are dif-
ferent to those usually used by clinicians, making them harder to interpret and adopt for
clinical use. To bridge this gap, several studies have attempted to classify or estimate spe-
cific parts of the MDS-UPDRS, the most clinically used scale for the assessment of PD.
Recently, the automatic estimation of scores for part 3 of the MDS-UPDRS, which fo-
cuses the severity of motor symptoms, have leveraged the use of deep learning techniques
for this purpose, with promising results. This work presents a comparison of traditional
feature engineered models against those current state of the art deep learning approaches
for the prediction of this score. Furthermore, an analysis on different approaches to data
collection, feature extraction and model parametrization was also performed, to assess the
effect of these different variables on the estimation task. Finally, an analysis of the best
configurations of machine learning pipelines for this purpose was also performed to direct
further studies. While the optimal models in this study failed to match the performance
of those state of the art approaches, the identified limitations and recommendations for
future research form a solid foundation for future work on this topic.

Keywords: Parkinson’s Disease; Gait; Machine Learning
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Chapter 1

Introduction

Parkinson’s Disease (PD) is a neurodegenerative disease of the central nervous system.
The cause of PD itself remains uncertain, but genetic factors like the presence of specific
mutations, and environmental factors such as exposure to toxins or heavy metals, have
been linked to increased susceptibility. Its prevalence is also higher in older adults, rarely
occurring earlier than the age of 50, and slightly increased for men. Despite its unknown
cause, the effects of the disease on the nervous system have been largely studied. The
degeneration of dopaminergic neurons results in a loss of dopamine, a neurotransmitter
involved in functions like movement and memory. This process leads to the loss of a sig-
nificant percentage of these specific neurons before the most notable symptoms start man-
ifesting [[1]. PD symptoms are usually split into motor and non-motor categories. Motor
symptoms include the three cardinal symptoms: tremor, slow limb movement (bradyki-
nesia), and postural or limb rigidity, along with gait impairments that mostly manifest as
lower walking stability, symmetry, and episodes of freezing of gait (FoG) [2]. Besides
these, non-motor and non-dopaminergic symptoms can manifest at different stages of the
disease, ranging from neuropsychiatric symptoms like depression, anxiety, and demen-
tia, to sleep or gastrointestinal disorders, among others [3]. Although a cure for PD is
far from becoming a reality, a battery of pharmacological and surgical interventions have
been developed throughout the years in an attempt to ameliorate its symptoms. Different
therapies are usually used in conjunction to address the needs of each patient, given the
stage of their disease. Of these, the most commonly prescribed drugs are levodopa based
pharmaceuticals, given their capacity to rapidly alleviate tremor, akinesia, and rigidity.
Even though this seems like a favorable outcome, long term levodopa treatments lead
to additional motor complications, characterized by involuntary convoluted movements
(dyskinesia). The varying intensity of this side effect, along with the medication’s wear
off, leads to fluctuations in motor function throughout the day. These have been labeled
as "ON’ and 'OFF’ stages, describing whether the medication has worn *OFF’ or is still
in effect CON”) [4], [S)]. Given our current inability to cure PD, the rapid and objective
assessment of symptoms to enable an informed, swift intervention becomes a critical task.
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Traditionally, the evaluation process required a visit to the clinic, but the popularization
and improvement of wearable devices have shifted the way parkinsonian symptoms are
assessed. The ability to keep track of patients’ condition while they perform their activ-
ities of daily living (ADL) paints a clearer picture of their health. While monitoring of
all symptoms is an essential task, gait performance and specific gait-related disabilities
have been strongly correlated with the progression of the disease [4]. Some of these ap-
proaches are further discussed in the following sections of this report, with an increased
focus on the assessment of disease state based on data collection systems.

1.1 Motivation

Over the last decade, a lot of research has arised focusing on objective monitoring of PD
symptom severity using inertial data. While some works address individual symptom:s,
like tremor [6] and bradykinesia [/], others have attempted more general approaches that
assess global motor impairments in PwP [8] [9]. Even though a lot of different methods
and techniques have been suggested, a truly remote and clinically compliant system for
continuous monitoring of disease progression has yet to be widely accepted and deployed.
Some of the limitations that have contributed to this standstill over time are:

* The estimation of ‘mobility’ or ‘disease’ scores that show some degree of correla-
tion with clinically used scales, but lack validation and transparency in their meth-
ods.

* The use of data collection systems that are cumbersome for the patient, restricting
at-home evaluation.

* The blackbox nature of some ML techniques more recently used for this purpose.

* A lack of consensus on data collection and signal processing methods for continu-
ous symptom monitoring.

1.2 Research Objectives

While some of the limitations described in the previous section are difficult to overcome,
previous work has shown that there are several open challenges that could aid research
towards true remote monitoring of PD. As such, the following research objectives were
set in order to bridge the gap towards remote, continuous monitoring of symptom severity
in PD:

(1) Develop a reproducible pipeline for data collection, processing, and MDS-UPDRS
IIT estimation, and compare its’ results with current state of the art approaches
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(ii)) Compare different machine learning models and data collection and processing
variables for the purpose of MDS-UPDRS III estimation

(ii1) To assess the contribution and possible clinical significance of features extracted
from inertial data for MDS-UPDRS III estimation and disease monitoring

1.3 Document Structure

This document is structured as follows:

Chapter 2 — Concepts and Background

Chapter 3 — Related Work

Chapter 4 - Methods

Chapter 5 - Results

Chapter 6 - Discussion

Chapter 7 - Conclusion
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Chapter 2

Concepts and Background

This chapter is an introduction to Parkinson’s Disease (PD) and the fundamental con-
cepts of machine learning required for an understanding of current and developing meth-
ods for the continuous assessment of disease stage and monitoring of symptom fluctua-

tions.

2.1 Fundamentals of Parkinson’s Disease

Parkinson’s Disease is a neurodegenerative disease that affects the central nervous sys-
tem. Its prevalence is higher in adults older than 50, and slightly higher in men. While its
cause remains uncertain, the pathophysiology of PD has been widely studied and linked to
the continuous degeneration of dopaminergic neurons in the substantia nigra. This causes
a lower uptake of dopamine in the basal ganglia, a group of structures that is responsible,
in part, for the communication between the brain and muscles through the neurotransmit-
ter dopamine. As these neurons decay and dopamine levels drop motor dysfunctions may
start manifesting, leading to complex motor symptoms that are commonly associated with
the disease. The most evident symptoms usually manifest long after this process starts,
highlighting the importance of early-onset detection and monitoring in order to plan clin-
ical interventions and minimize the impact on the patients’ quality of life.

While they are more commonly associated with the disease, motor manifestations are
not the only consequences of its progression. Nonmotor symptoms often emerge along-
side motor symptoms and can vary widely, ranging from several forms of sleep disorders
to other neuropsychiatric symptoms like depression or anxiety, and even constipation,
sexual dysfunction, or pain. Although these often manifest alongside motor symptoms,
they are most common in later disease stages and may not present themselves at all for
some patients. This lead to a focus on motor symptoms for the purposes of initial di-
agnosis, namely the four cardinal symptoms often abreviated as TRAP: Tremor at rest,
rigidyty, akinesia and postural instability. These and other common motor symptoms are
described in the following paragraphs, along with some notes on their assessment and
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treatment.

Bradykinesia

Bradykinesia is one of the fundamental symptoms of PD and must be present alongside
tremor or rigidity in order for a diagnosis to be considered. It refers to a slowness of move-
ments that stems from difficulties in planning, initiating and executing motor tasks. In the
early stages of the disease, bradykinesia will mostly manifest as lethargic movements and
reduced reaction times, impairing fine motor tasks like writing or buttoning a shirt. Its
effect on facial and neck muscles can also lead to loss of facial expression, drooling and
impaired speech. As with other symptoms of PD bradykinesia can be affected by the pa-
tients emotional state meaning excited patients may be able to briefly move or react faster
than normal. External stimuli have also been found to affect bradykinesia, a phenomenon
that has been exploited by researchers through the use of audiovisual [10] and haptic [[11]
cues in an attempt to ameliorate gait impairments. Assessment of this symptom is usually
done at the clinic, by asking patients to perform rapid and repetitive movements while
observing their slowness and decrementing amplitude. [12]

Tremor

Tremor is one of the most widely recognizable symptoms of PD. It can manifest in dif-
ferent ways, and is broadly classified in 2 categories. The most prevalent type of tremor
is resting tremor, specifically in the 4-6Hz frequency band, which occurs during periods
of relaxation and is mainly present unilaterally in the patients’ hands, although it can also
manifest in the lips, jaw and legs. Inversely, action tremors are those that manifest dur-
ing the patients’ motor functions, whether while holding a pose or performing a specific
task. In both cases, assessment is usually made during routine clinical visits through the
clinicians observation of the patient’s state during resting and standardized activities.

Rigidity

Rigidity manifests as an increased resistance during passive movement of the limbs and
neck, usually associated with pain and the “cogwheel” phenomenon. Rigidity associated
shoulder pains are one of the most frequent manifestations for onset PD. It is usually
assessed by clinicians by passively moving the patients’ limbs.

Gait and Postural Instability

Postural instability is one of the later manifestations of PD. It is affected by other
parkinsonian symptoms, and usually associated with gait instability and falls, although
it is not the only factor for these side effects. Assessment is usually done through the pull
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test, in which clinicians perform a quick pull backwards on the patients shoulders while
observing their reaction.

Freezing

Although it’s not the most common symptom in PD, freezing is considered one of the
most disabling symptoms for patients. Freezing more commonly manifests in the legs
during gait, but it may also affect the patients’ arms and eyelids. The more common
episodes of freezing of gait (FoG) can manifest as hesitation during gait initiation, the
characteristic shuffling walk, and sudden pauses during walks in specific situations, which
can lead to falls. Freezing usually manifests in the later stages of the disease and is usually
assessed at the clinical during standardized walk tests.

Treatment induced motor complications

While bradykinesia and other motor symptoms usually respond to levodopa based med-
ication, long term usage of these drugs can lead to other motor complications. The fluc-
tuations induced by this long term usage are described as ON and OFF states, describing
periods where the medication is effectively ameliorating symptoms or failing to do so.
This long term usage may also lead to involuntary abnormal movements, denominated
as dyskinesia.[13] The assessment of these fluctuations to enable clinical intervention is
a challenge due to the punctual nature of traditional clinical assessment, requiring other
approaches like the use of patient diaries, which have their inherent flaws, to track fluctu-
ations over long periods of time.

2.2 Clinical assessment of PD

Currently, the progression of many symptoms in PD is monitored through visual assess-
ment during periodic clinical visits, usually guided by one of many clinical scales. These
are based on patient filled questionnaires or clinician-led interviews and can address one
or more symptoms with varying specificity. One such scale, the current hallmark for as-
sessment in both clinical and academic settings, is the Unified Parkinson’s Disease Rating
Scale. Specifically, the version revised by the Movement Disorder Society, which is now
commonly referred to as the MDS-UPDRS. This version is split into four parts, each ad-
dressing different aspects of the disease. Parts 1 and 2 comprise 13 items each, addressing
Non-Motor and Motor Experiences of Daily Living respectively. These give some insight
into how the symptoms affect the patient during their ADL. On the other hand, Parts
3 and 4, respectively titled Motor Examination and Motor Complications, comprise 33
items each in an attempt to measure the severity of these symptoms. These parts of the
scale are usually assessed through the performance and observation of three tasks: sit
to stand (S2S) where the patient is asked to repeatedly stand up from a sittting position,
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leg agility where the patients repeatedly and alternatingly stomps their feet from a sitting
position, and the gait task, which usually consists on up to three straight line 10 meter
walks. The last item of Part 3 is the Hoehn and Yahr staging scale [[14], which categorizes
five stages of progression in PD, according to the progress of the motor disability. Assess-
ments made using the MDS-UPDRS can also be complemented by the use of many other
scales, like the Unified Dyskinesia Rating Scale, which focuses motor complications that
arise from extended treatment, or the Non-Motor Symptom Scale, which comprises a 30
item interview to thoroughly evaluate NMS [[15]. Although they’re still valuable in im-
proving the disease’s evaluation, scales like these share some major problems with the
MDS-UPDRS and traditional assessment in general.

Shortcomings in current evaluation methods can be attributed to different factors. For
starters, the periodic nature of traditional approaches is a major barrier for the assessment
of symptom fluctuations, and although the use of patient journals has been studied as a
solution, the responsibility it puts on patients to accurately log and measure these events is
a major fault. Other concerns relate to the subjective nature of visual assessment, which,
even when performed by trained professionals, can fail in identifying subtle changes or
lead to intra and inter-rater variability [16] [17]. The ongoing shift towards ubiquitous
computing, has allowed researchers to address these problems, by developing applications
for the continuous monitoring of symptoms, to extract objective and ecologically valid
metrics. Specifically, the increasing availability of wearable sensors has a lot of potential
to precisely measure motor features both in, and out of the lab, making them a valuable

tool for the evaluation of symptom progression.

2.3 Machine Learning Fundamentals

Machine learning algorithms have become a valuable tool for scientists and clinicians
for the assessment, detection, and monitoring of several diseases. From computer vi-
sion algorithms that can detect anomalies in medical imaging to detection systems for
medically significant events like falls or worsening symptoms, these tools are now seeing
widespread research and deployment towards a more objective and informed clinical mon-
itoring. This section intends to describe some of the fundamentals of machine learning
techniques as an introduction to the following chapters describing specific applications
for the assessment and monitoring of PD.

2.3.1 Machine Learning Models

The amount of fields that have adopted and contributed to ML research has grown
rapidly over the last decade. To keep this summary within the scope of the project, this
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subsection will mostly focus models and approaches that have been used in clinical re-
search, with a focus on those that are more common in research relating to the objective
monitoring of PD. These can be categorized according to the way they ’learn’ from data
and the tasks they were designed to accomplish.

Supervised Learning

Models that fall under this category are usually used in problems that require the esti-
mation of a target value, from a vector of features that corresponds to a single observation
of a large dataset. These can be further categorized according to the type of value that this
target variable assumes. If the value to be estimated is continuous, like the price of a stock
for example, they are referred to as regression problems whereas if it is binary or discrete,
usually corresponding to classes or labels, it is considered a classification problem. In
spite of this distinction, these models function largely the same. They learn from pairs of
feature vectors and corresponding known target values, their performance is then gauged
by estimating values for some left out samples for which the target value is also known,
and if it falls within an acceptable scope for a given application they can be used to make
predictions from new, unseen data. [[18]]

The Random Forest (RF) algorithm, originally described by Leo Breiman in 2001
[19]], has become a popular option among models using supervised learning across several
fields of research due to it’s relative simplicity in training and tuning [20]. In it’s simplest
form, and as the name suggests, RF models are trained by randomly splitting the training
data into several subsets, a process called Bootstrap Aggregation, and training decision
trees using randomly selected features from each subset to make several predictions of
the target variable. For classification problems, these predictions from each tree are then
used in a majority vote to get the final prediction from the ensemble, while in regression
problems each predicted value is averaged into a final result. In PD related research, RF
have been tested for several different challenges like the detection of PD in onset patients
through gait analysis[21], or the prediction of FoG events in affected patients[22].

Among supervised learning approaches, and besides tree based models, Support Vec-
tor Machines (SVM) are also commonly used in literature pertaining to the objective
monitoring of PD. Originally described by 1991 by Cortes and Vapnik [23] for binary
classification, SVM’s are based on the concept of Support Vectors that describe an Hy-
perplane that linearly splits an n-dimensional space in two, each ’side’ representing one
class of the classification data. This model was then built upon by the original authors and
others since, enabling the definition of non-linear boundaries through the use of different
kernel functions, multi-class classification by splitting the task into several binary classi-
fication tasks, and even accommodating regression tasks by adjusting the error function
that determines the optimal vectors[20]. In PD related research, SVMs have been exten-
sively used, for example to discern parkinsonian tremor from essential tremors [24] and to
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quantify the severity of motor symptoms like tremor, bradykinesia, and dyskinesia [25].

Unsupervised Learning

Unsupervised learning models are those that require no labeled data. Instead of lever-
aging these labels or target values to make predictions, these models are usually used to
find structure in large datasets, by clustering data points or finding associations between
features that would be hard to identify otherwise [26]. As an example, while a super-
vised model trained to classify pictures of cats and dogs would require a labeled dataset
consisting of several pictures and their corresponding class, an unsupervised model for
the same purpose would be able to identify patterns in the data that can split it into two
groups, without any notion of what they represent. While not as common as their super-
vised counterparts, such models have seen some use in PD related research. Clustering
has been used to diagnose PD with great accuracy, by finding patterns in voice recordings
of healthy subjects and PwPD [27]. Another study from 2017 used data from surveys on
the severity of several motor and non motor symptoms of PD to discern several sub-types
of the disease according to the expression and severity of these symptoms [28].

Reinforcement Learning

Reinforcement learning can be summarized as the training of autonomous agents to
take actions, based on the context of their environment, in order to maximise a set re-
ward or goal [29]. This type of model is often associated to it’s use in the video games
industry or the development of autonomous vehicles, however, there has been extensive
research for their use in the medical field. A recent example is the work of Kim et al.
who developed a pharmacological recommendation model for the treatment of symptoms
experienced by PwPD at various stages and states of the disease, achieving a higher reduc-
tion in symptom severity when compared to the recommendations made by clinicians[30]].
While it has proven useful in numerous scenarios, this category of ML models has a much
narrower scope for application than those previously mentioned, and given the (relatively)
small amount of research on the use of such models in the medical field, falls outside the
scope of this brief introduction.

Neural Networks

Neural networks are a special case when it comes to machine learning models. They
can be designed to perform all of the aforementioned tasks, however, they do so in a
very different way. These models usually consists on a collection of 'neurons’ which are
linked by layers. Each 'neuron’ of each layer is a unit that applies some function to the
data that is received from other layers, and transmits the result of this operation to the
following layer. The firs and last layers are known as input and output layers respectively,
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while all others in between are commonly known as the hidden layers. This is a very
general definition, but it encompasses most of the architectures of NN that are currently
used, the differences arise according to the desired application of each model. The type of
functions performed by each 'neuron’, the weight’ of each connection and the amounts
of layers in a model are all part of these differences, and their variations form what is
commonly called the model’s architecture. Given the versatility of these models, numer-
ous architectures have emerged over the years to respond to the necessities of different
fields of research. Recently, research using these models has produced novel methods for
the objective monitoring of PD using established clinical scales. Specifically, the work
of Rehman et al. describes the use of a Convolutional Neural Network for this purpose
using motion data collected during gait [9]], while Hssayeni et al. similarly predicted the
same score using a different ensemble model composed of three Long Term Short Mem-
ory (LSTM) neural networks and trained on motion data collected during different tasks
[8]. While the low level characteristics of the models used in these studies fall outside
of the scope of this introduction, their contributions are further discussed in the ’Related
Work’ chapter.

2.3.2 Knowledge as Features

As the name suggests, in ML features are distinctive characteristics or aspects of data
that encode information that is relevant for a given task. The process of identifying,
extracting and selecting relevant features for any machine learning problem is known as
feature engineering [31]].

Feature engineering is one of the first steps when designing a machine learning pipeline.
While this process is highly sensitive to the type of data and models being used, it usu-
ally starts with an exploratory analysis of the data relying on domain-specific knowledge,
data processing techniques and intuition in order to extract and select variables that en-
code relevant information for the task at hand. While the extraction process is highly
reliant on the type of data being used, feature selection methods have been the object of
intense research over the years, as it is considered one of the most important steps for ML
pipeline.

Feature Selection

Feature selection in machine learning pipelines is mostly used to decrease the redun-
dancy, and thus size, of the feature space, and to increase it’s relevance or descriptive
power for a given task. These goals can be achieved through several approaches, the most
basic of which is using domain-specific knowledge to select features that are known to
be highly relevant to the task at hand. Returning to the previous examples, someone like
a clinician could point to features like age, weight and family history as the most rele-
vant for predicting incidence of a disease, which would allow for the remaining features
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to be discarded, improving model performance, and decreasing the computational power
required to train it [32]. There are also algorithmic methods to achieve these goals which
have been an intense area of research in the field, and can be grouped into three categories

Filters

Filter based methods are those that reduce the feature space by ranking them according
to some metric of relevance, and selecting a user specified number of the most relevant
features. These methods can be useful regardless of the chosen model, and have the ad-
vantage of being significantly less computationally expensive than other methods, which
makes them a popular option for use with larger datasets. The number of features to select
is set by the user, which makes the testing of varying feature spaces an important step to
optimize the results.

The metrics used for feature ranking often rely on some statistical or probabilistic
features of the used features, like the correlation between features and target variables,
or the mutual information of the feature set, however other more complex methods have
become widely used for this purpose. Relief based methods for example, are built upon
the work of Kira and Rendell, who suggested a feature ranking algorithm that attributes
weights to each feature by iterating over all of the training instances in the dataset, and for
a given feature, iteratively update it’s weight according to the distance between the feature
values of a given instance, and it’s nearest neighbour instances that have the same class
(nearest hit), and a different class (nearest miss) [33) [34]. As this description implies,
the algorithm originally contemplated only binary classification, but it has since been
extended by several authors to address this, and other issues, originating an entire family
of feature selection algorithms, among which one of the most popular is RelieF, which
finds k neighbours instead of only two in order to accomodate problems other than binary
classification, and deal with noisy, incomplete datasets. The popularity of this family of
algoriths is mostly based on their capabilities of detecting feature dependencies, while
maintaining a relatively high performance for larger datasets and feature spaces [33]]

Wrappers

Wrapper based feature selection leverages the results of any given model to build the
feature space iteratively. These methods are often more exhaustive than filters, which
leads to a massive and sometimes prohibitive increase in computational requirements,
particularly for larger feature sets [32]]. Popular examples that fall under this category are
Sequential Feature Selection, which consists on iteratively adding or removing features
from the feature space while observing the performance of models using these subsets,
and Recursive Feature Elimination, which hinges on the same concept of iteratively test-
ing feature subsets, but aims to increase the relevance of features being used instead of
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the model’s performance. Another example of a wrapper method, which illustrates the
worst case complexity of this approach, is Exhaustive Feature Selection, where all possi-
ble combinations of features are tested and compared to select the optimal subset.

Embedded methods

While wrappers and filters are considered additional steps to be used before model
training, embedded methods are those performed by some specific ML models during the
training phase. Some common examples are decision trees and random forests, which
have the ability to determine feature importance based on criteria like the Gini gain or the
model’s accuracy.

Overall, all of these methods have been extensively used and compared, with the
consensus among researchers being that each have their advantages and disadvantages,
often requiring purpose specific testing in order to determine the best method(s) for any
given application.

2.3.3 [Evaluating Model Performance

The final step of most ML pipleines is the validation of the model’s results. For super-
vised algorithms, this usually means using the trained models to evaluate some left out
samples in order to assess their performance on unseen data.

Model performance is usually evaluated by computing a distance metric between ac-
tual and predicted values. In classification problems this process often starts by quanti-
fying the number of true and false positives (TP/FP) and negatives (FP/FN) in order to
compute the following metrics:

TP+TN
TP+TN+ FP+ FN

Accuracy =

TP

Precision = j—'_P—}——_FP

TP

Recall = 755N

1o 2 x Precision x Recall _ 2+xTP
Precision + Recall 2xTP+FP+ FN
As for regression tasks, performance evaluation usually relies on simpler metrics like
the Mean Absolute Error or Mean Squared Error [20]:
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Figure 2.1: Illustration of data splits for two popular CV methods. The strategy on the
left (K-Fold) is unaffected by the origin of data, while Leave one Group Out ("Group’ is
used instead of ’Subject’ for abstraction) creates subsets of data that allow for subject-
independent analysis. (Adapted from: https://scikit-learn.org/stable/
auto_examples/model_selection/plot_cv_indices.html)
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As discussed, model performance is usually assessed using a set of samples that were
unseen by the models during training, usually referred to as the testing set and created
by splitting the dataset into two uneven sets. This simple method can adequately portray
the model’s performance, but in some cases, there may be a risk that the testing set is
significantly different or too similar to the training set, leading to misleading performance
levels that don’t generalize well to novel data that the model will be used for. The aim of
cross validation (CV) is to address this issue by splitting the data several times, performing
the training and testing tasks using the different originating subsets, and computing an
overall performance metric over all subsets. For this purpose, different strategies can be
adopted for defining the way a dataset is split.

K-Fold cross validation is a common method for cross validation, where the train/test
split procedure is repeated a number (k) of time, and each split (fold) is used to evaluate
the model’s performance, resulting in the cross validated performance metrics.

Another method, particularly common in clinical applications, is Leave One Subject
Out (LOSO) Cross Validation, wherein the models are tested with samples from each
of the patients on the dataset, and trained on the remaining samples, which allows for a
subject independent analysis of model performance.[36]
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Chapter 3

Related Work

The widespread availability of affordable, inertial measuring wearable devices has al-
lowed researchers to study the relationship between collected motion data, and the pres-
ence or status of several motor manifesting diseases. For PD specifically, it has enabled
research on the early diagnosis of the disease, objective monitoring of symptom progres-
sion and response to medication, and continuous remote assessment of symptom fluctua-
tions.

3.1 Objective Monitoring of PD using inertial sensors

Data driven approaches for monitoring motor manifestations in PD have seen great de-
velopments over the last decade. Although different types of data like voice recordings
[37] and typing patterns [38]] have been studied for monitoring and detection of PD, mo-
tion data specifically has emerged as the predominant option in related research, mainly
due to the wide availability, low cost, and versatility of data collected using body worn
monitors (BWM) that measure acceleration and/or angular velocity. These devices can
passively collect data during the patients’ clinical evaluations or activities of daily living
(ADL) on different parts of the body, enabling the extraction of a wide array of met-
rics and features of movement that can correlate with motor symptoms in PD, or upon
processing, clinical scales used for the assessment of the disease.

The DataPark project is one example of these emerging applications. The web plat-
form combines motion data collected with triaxial accelerometers at home or during clin-
ical evaluations with clinical results and annotations about the patients’ condition to gen-
erate personalized reports and visualizations of relevant clinical metrics like physical ac-
tivity or energy expenditure levels. Preliminary results revealed that clinicians benefited
from using the system, reporting a better understanding of the patients condition, and that
the patients themselves were more engaged with therapy when faced with these reports
for awareness and discussion of their condition [39].

Another widely deployed system that has arised from such research is the Parkinson’s

15
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Kinetigraph (PKG). The PKG is a wrist worn accelerometer that uses proprietary algo-
rithms to produce bradykinesia and dyskinesia scores [7], estimate time spent with tremor
[6]], and extract other clinically significant metrics. Bradykinesia and dyskinesia scores
(BKS/DKS) showed high correlation with the UPDRS III (BKS: p;0.0005—r=0.64) and
the Abnormal Involuntary Movement Scale (DKS: p<0.0001—r=0.80), while the com-
puted metric of percent time with tremor achieved 88.7% sensitivity and 89.5% selectiv-
ity for tremor detection. Despite the promising results and later validating studies that
showed beneficial outcomes for PD monitoring using this system [40], difficulties in de-
tecting symptoms in non-sensed limbs or finer tremors that manifest at the fingertips have
been pointed as limitations of the PKG. Furthermore, a review of the use of technology in
PD by the MDS also highlighted the lack of transparency and open analytical methods of
such systems as an open challenge for further validation [41]].

In order to address issues like sensor placement, several studies have suggested differ-
ent setups for data collection. A 2019 study demonstrated the use of a wrist worn device
with a finger mounted accelerometer for the classification of tremor related UPDRS items
with 99.24% certainty given a margin of error of one point, highlighting the potential of
this setup to assess finer resting tremors which often manifest at the fingertips[42]. Simi-
larly, Manzanera et al. used wrist, finger and toe mounted gyroscopes to assess bradyki-
nesia using SVM classifiers, estimating MDS-UPDRS scores for bradykinesia with er-
rors below inter-rater variability [43]]. While sensor placements in the upper limbs have
demonstrated high potential for the assessment of symptoms like bradykinesia and tremor,
data collected from the lower limbs can also provide information for the assessment of
PD.

Although cumbersome and difficult to use in free living settings, the use of body sen-
sor networks (BSN) can inform research on the contribution of various sensor placements
for the assessment of different manifestations of PD. Parisi et al. developed a method us-
ing three IMU, two mounted on the patient’s thighs and on in the chest, to automatically
classify the leg agility, sit to stand and gait tasks of the MDS-UPDRS. For each of the
tasks, spatio-temporal signal and derived features were extracted to train three classifiers
in order to determine the optimal combination of sensor placement, extracted features,
and used models. The k-Nearest Neighbors (kNN) classifier attained the best classifica-
tion results for all tasks, with an accuracy of 43% for the LA and S2S tasks and 63% for
the gait task. The authors note that despite the low accuracy, 94% of the cases presented
a classification lesser than 1, which is similar to inter-rater variability and according to
the authors “accurate” enough to mimic classification by trained professionals [44]. A
follow-up to this work was published focusing on characterization and automatic classifi-
cation of the gait task of the MDS-UPDRS using the same data collection system. In this
study, the authors estimated the same spatio-temporal gait parameters derived from heel
strike (HS) and toe off (TO) events to use as features for the selected classifiers. Once
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again, the best performing classifier was a KNN model which yielded 53% accuracy, and
an error lesser than 1 for 98% of the samples. In their analysis of the used features, the
authors noted a strong correlation between spectral power and gait impairments, which
could represent a good avenue to further extend the automatic assessment of PD from gait
data [45]).

While several methods for data collection and processing have been tested there is still
a lack of consensus on the optimal practices for symptom assessment in PD. However, a
common factor in recent research is the use of gait tasks for data collection and feature
extraction to enable the objective monitoring of the disease. The next section highlights
recent research using gait tasks for objective monitoring of PD, and the emergence of gait
as a biomarker for PD progression.

3.2 Gait as a biomarker for PD

Research on objective monitoring of PD is naturally progressing towards the passive
sensing of patients during their ADL in order to collect data that can provide information
on the patient’s state and severity of their symptoms. The monitoring of gait tasks has
emerged as a valuable option for this purpose due to a combination of several factors. The
possibility of automatically detecting gait instances, demonstrated by research on activity
classification, offers a way to achieve this objective that is unobtrusive and completely
passive, requiring no extra burden on the patient. Furthermore, gait disturbances are one
of the most common manifestations of PD, and while they are more prevalent in later
disease stages, studies have shown that subtle gait impairments can be observed from
disease onset [46]].

Over the years, several symptoms have been assessed through the use of gait tasks.
Naturally, one of the most common goals when collecting data during gait has been the
detection of FoG episodes. For this purpose, Tripotli et al. suggested a method using 6
IMU’s mounted on the patients trunk, wrists, and thighs to collect data for this purpose.
The authors computed the entropy of 1 second windows on each axis of each device to use
as features for several different classifiers, in order to assess the effect of sensor placement
on the classification task, and the optimal model for FoG detection. The Random Forest
(RF) model achieved the highest accuracy for all sensor configurations, and the highest
using data from all devices. Despite the promising results, several limitations of the study
require further research, like the low sample size (6 PwPD and FoG), the amount of ex-
tracted features for classification, and the cumbersome data collection setup that would
make it difficult do deploy this system in true free living conditions [47]. Recently, related
research has focused on detecting not only FoG, but also the periods that precede it with
the goal of developing systems for the automatic prevention of these episodes through the
use of rhythmic audio or visual cues. A recent 2020 study instrumented patients with a
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single accelerometer mounted on the lower back to collect gait data that included FoG
episodes, labeled by trained neurologists. The authors segmented the signal, and consid-
ered the segments preceding FoG episodes as pre-FoG segments for classification. For the
detection of pre-FoG instances, four models were developed in order to maximize accu-
racy, and minimize latency for the classification task. The optimal model achieved 77.9%
accuracy for detecting these pre-FoG periods, lower than the aformentioned study, but
using a single sensor, which is promising for future research pertaining to FoG prevention
in FL. Furthermore, the authors noted that the duration of the classified periods preceding
FoG, correlated strongly with the disease stage and duration [48]]. This correlation be-
tween gait characteristics and disease stage or progression, has been a widely discussed
topic in a lot of research pertaining to gait in PD.

In 2015, a study on the characteristics of gait in PD produced a set of algorithms for
the extraction of seventeen gait characteristics from older and young healthy adults using
a single accelerometer mounted on the patient’s lower back. Upon validation, the re-
searchers found that the extracted metrics were in agreement with laboratory references,
but noted the need for refinement of some of these algorithms for further applicability
[49]. These refinements were included on a follow up study in the following year, vali-
dating fourteen core gait characteristics that were also viably measured in PwPD. These
characteristics addressed step time, length and velocity, stance time and swing time, and
while their mean value demonstrated excellent agreement with reference laboratory mea-
sures, asymmetry and variability metrics only achieved poor agreement. The authors note
that this may be due to the intrinsic limitation of comparing these systems that measure
different properties, and were confident that the use of a single BWM mounted at the
lower back was a good option for measuring these metrics [S0]. The authors also con-
ducted a further study on the impact of PD and the environment where data was collected
for the extraction of these metrics. For this purpose, they collected data using the same
device and placement from healthy subjects and PwPD both in the lab, and in free living
conditions over a period of 7 days. Their findings suggested that gait performance was
worse for both groups in free living conditions, and that these exacerbated the difference
between groups compared to data collected at the lab. Furthermore, the authors observed
that the extracted gait characteristics changed with the length of the analysed walks, and
that the difference between both groups was more noticeable in longer walks [4]].

Research using these gait characteristics as a marker for PD has demonstrated poten-
tial for monitoring the disease in several ways. A 2019 study demonstrated their use for
discriminating PwPD from healthy subject, using these characteristics and machine learn-
ing models to determine the optimal configuration. The random forest model achieved the
highest classification accuracy, at 97,14% and the most relevant features for classification
were the mean values for step length, width and velocity, and the variability of step width
and length [S1]]. For this study however, the gait characteristics were extracted from data
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collected through instrumented floor mats, which are less error prone than those extracted
from accelerometry data. Furthermore, only k-fold cross validation was performed, which
may not be ideal to test the generalization power of the suggested models. Considering
these limitations, the authors point towards the use of accelerometers for extraction of the
gait characteristics and the validation of these results using external datasets as a possible
avenue for further research. Another study, recently published by Branquinho et al., de-
scribes the development and use of a custom built wearable for the collection, processing
and storage of gait characteristics in real time, during gait. These data was then compared
between healthy subjects and PwPD, finding significant discrepancies between groups for
asymmetry, variability, thythm and pace metrics, which is in agreement with the afore-
mentioned study. Additionally, the authors explored the correlation between disease pro-
gression and quality of life, measured by MDS-UPDRS III scores and the PDQ-39 scale
respectively, with the extracted characteristics. For both scales, the authors noted higher
values in the asymmetry and variability domains, and reduced values in the pace domain,
and significant correlations between disease progression and the computed metrics, once
again supporting gait as a marker for disease progression. In closing, the authors point to
the possibility of combining machine learning models with the developed method for the
automatic estimation of disease progression [52].

While the use of these gait characteristics has become a popular approach for moni-
toring PD, novel research has started to analyze signal processing metrics that could also
be of use for this purpose. In their 2019 paper, Rehman et al. analysed the contribution
of signal based features and gait characteristics for the classification of PD. Accelerom-
etry data was collected during an oval walk using a single accelerometer mounted in
the lower back, and the segmentation of the collected signals was enabled by data col-
lected from a GAITRite pressure sensing mat. 25 gait characteristics were computed
using the GAITRite data, based on previous work already discussed in this section, and
185 accelerometry signal features were extracted from the spectral density, regularity,
magnitude and complexity domains. Partial least square regression combined with dis-
criminatory analysis was then used to develop several models to discern between PwPD
and healthy control subjects. The findings revealed that the signal characteristics had bet-
ter discriminatory power than the spatiotemporal gait characteristics, with accuracies of
87.32% and 70.42%. The change in these values when both feature sets were used for
classification was negligible, but increased slightly with the addition of demographic re-
lated features [S3]]. This is in agreement with a longitudinal study published in the same
year, where a similar albeit smaller set of gait and signal characteristics were analysed for
their potential as markers for the progression of PD. The data for this study was similarly
obtained from a single sensor mounted on the lower back during a circular gait task, al-
though here, angular velocity was collected besides accelerometry data. By comparing
gait and signal characteristics between patients and healthy subjects over a period of 5
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years, the authors found that 5 of the 24 previously extracted characteristics were good
markers for progression in early PD, and 3 others were best fit to monitor progression in
later stages, with most of these 8 being signal features [54].

The findings in these studies support the use of gait data collected from accelerometers
as a valid option for the monitoring of PD. Current state of the art research has focused on
the use of gait to automatically stage PD, supported by the previously discussed literature
on gait and signal characteristics as a biomarker for the disease. The following section
contains a summary of relevant literature pertaining to the use of inertial data collected
during gait for this purpose.

3.3 Estimating disease stage from motion data

Although not completely novel, research relating to the estimation of scores for clin-
ically used scales has gained traction over the last few years as a way to monitor the
progression of PD in a more comprehensive way. The use of established clinical scales
opposed to research oriented metrics and scores lowers the barrier of entry for the use of
technology in PD, making it easier for clinicians and patients to understand and use the
outcomes of such systems for clinical intervention and monitoring.

The Hoehn and Yahr (HY) scale is used during regular MDS-UPDRS assessments to
stage the functional disability associated with PD. In a recent study, Mirelman et al dis-
cussed the possibility and contribution of several mobility features extracted form inertial
data during different gait tasks to discriminate a healthy cohort (HC) from PwPD, and
different stages of PD as measured by this scale. The authors compared the contribution
of sensor location, task complexity, and extracted feature domains in an attempt to deter-
mine the optimal configuration of these variables for monitoring of disease progression.
Sensitivity and specificity of the classification task between healthy subjects and patients
classified as HYI were the highest, at 83% and 80% respectively, and decreased signif-
icantly for later stages of the disease down to 74% and 69% for discriminating between
stages HYII and HY III. The findings reaffirmed the potential of more complex gait tasks
to highlight subtle motor dysfunctions, and revealed that while asymmetry related fea-
tures showed better discriminating power for earlier disease stages, the remaining feature
domains were not stage specific. As for sensor location, upper limb and trunk mounted
sensors performed better at discriminating earlier stages of the disease, but 40% of the
most relevant features were collected from sensors in the lower limbs, suggesting that
sensor placement should be adjusted to disease progression. Finally, the authors note that
further research is needed to validate these findings, and assess the effect of symptom fluc-
tuations and dominant side of symptom manifestations which were mostly unaccounted
for [155]].

Another emerging method to stage PD is the use of total scores of the entire MDS-
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UPDRS or sub parts of the scale. Specifically, MDS-UPDRS III scores have been em-
pirically demonstrated as a good metric for monitoring progression of PD [[17]. As such,
several studies have focused on the prediction of this score to monitor disease progression.

A recent example of this approach for the monitoring of PD progression is a 2021
study that leveraged a convolutional neural network (CNN) model trained using inertial
data collected from the lower back during gait to estimate MDS-UPDRS III scores. The
authors used the common sliding window method to segment these data into 5 second seg-
ments and compute signal vector magnitude to train the model and gridsearch to optimize
its hyperparameters, achieving a clinically significant mean absolute error (MAE) of 6.29
and strong correlation (r=0.82) between estimated and actual scores. While these results
are promising, the authors suggest that a comparison with traditional feature engineered
machine learning models could be an avenue for future work, towards the deployment of
such technologies for continuous monitoring of PD. Furthermore the longitudinal nature
of this project that used data collected from PwPD over 3 years implies that the model
may have learned some patient specific characteristics, which could harm generalization
[9]. A similar study published in the same year used data collected simulated activities of
daily living (ADL) from wrist and ankle worn inertial measuring units (IMU) to predict
this score, addressing some of the previously mentioned limiatations. The authors pro-
posed an ensemble of three deep learning models using hand crafted features, raw angular
velocity signal, and time-frequency data for UPDRS-III estimation. This method resulted
in an even lower MAE of 5.95 while maintaining strong correlation, even after Leave One
Subject Out cross validation to ensure generalizability of the developed model. In order
to compare the result of the proposed ensemble model with other common methods, the
authors used the same data to train a gradient tree boosting model that performed signifi-
cantly worse (MAE =7.85) [8]. The used features and low sample size (n=24 PwPD) may
have negatively effected these results, meaning that once again further work is required to
validate the use of traditional feature engineered models for estimation of MDS-UPDRS
1.

As discussed, the automatic staging of PD using established clinical scales is still an
emerging area of research. The high variability of data collection and processing pipelines
used for this purpose requires a comparison and validation of different variables in order
to establish a set of optimal practices towards this goal. The next section discusses some
open challenges for the objective monitoring of PD, along with possible approaches to-
wards convergence on established and validated methods for this purpose.

3.4 Discussion

The previous section has laid out the current state of the art on the objective monitor-
ing of PD, including some of it’s limitations, emerging approaches, and future research
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directions.

One of the most recurrently mentioned limitation in this field of research, is the lack of
consensus on data processing and machine learning pipelines for monitoring the disease’s
progression. While this has been a limiting factor for some time, a common factor has
emerged for the assessment and monitoring of PD’s motor manifestations. The use of
motion data collected during gait has gained popularity and been increasingly used by
research in this field. This convergence can be attributed to several factors, the most
important of which are the established relationship between disease progression and gait
impairment, and the relative ease of detecting gait in free-living for automatic and remote
monitoring of the disease [4/][S1]].

The processing and extraction of motion features from the wide array of data collec-
tion devices employed in research pertaining to continuous disease monitoring has also
been the aim of extensive research. For this purpose, the most popular approach in recent
research has been the collection of accelerometry and angular velocity data from wearable
devices mounted in varying positions, favouring unobtrusive data collection systems that
have potential for use in free-living conditions. While the extraction of gait characteristics
from such data has been studied and successfully employed for some studies, recent ef-
forts have shifted to the use of instrumented mats for the extraction of these characteristics
as a way to avoid error propagation in machine learning pipelines, and validate the char-
acteristics extracted from inertial data [S0] [S3]]. Conversely, recent studies have posed the
option of using features relating to the spectral, harmonic and magnitude characteristics
of collected signals to find correlations with disease stage. Most recently, research using
raw data to feed complex neural network based algorithms for disease monitoring has
become a common approach for this purpose, with some authors pointing to the need for
comparison between these, and traditional feature engineered machine learning models
[9].

As for the outcomes of these objective monitoring systems, the use of several re-
search specific scores and scales for this purpose has been extensively explored. However
in recent years, there has been a convergence towards the use of clinically established
scales or their subparts for direct disease stage estimation, leveraging the popularity and
widespread knowledge of these metrics among clinicians and patients dealing with PD to
produce results that directly relate to clinical practice and dismiss additional information
or training. [17][8/][S3].

In summary, past research has revealed that it is possible to estimate PD progression
using gait data collected with accelerometers. However, the relative efficacy and effect
of different approaches to data collection and processing, and machine learning pipeline
design still lack consensus and clear comparisons that could help inform future research
in this field. Towards this goal, this project aims to compare the effect of some of these
options, and establish some baseline data processing and machine learning practices for
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the estimation of disease progression using techniques based on the current literature, or
approaches suggested as future research directions in this field.






Chapter 4
Methods

The MDS-UPDRS III estimation task was performed using different approaches to data
collection, signal processing and using different machine learning pipelines. This chapter
describes which steps were taken towards this task along with the several variables for
each step, in order to enable a comparison between different design decisions and their
effect on the estimation of disease stage. An illustration of these steps and their sequence
is also included in Figure {. 1] to aid readability.

4.1 Research Questions

Attending to the previously discussed open challenges in research pertaining to the au-
tomatic staging of PD, the current work aims to answer the following research questions:

* How do traditional feature engineered machine learning models compare with state
of the art deep learning techniques for the estimation of disease stage in PD?

* How do factors like sliding window length, sensor placement, and model selection
affect this estimation task?

* How do the used features contribute for the estimation task?

For this purpose, a set of techniques and machine learning models were selected from
related literature for comparison. The following sections describe all the steps taken, from
data collection to MDS-UPDRS III estimation in order to study and compare the effect of
these different variables for the objective monitoring of PD.

4.2 Tools and Software

All data was collected using Axivity AX3 devices, a commercial version of the open
source logging accelerometer developed by the OpenMovement project at Newcastle Uni-
versity. These sensors have been validated [56, 57] and extensively used for research re-
lating to physical activity monitoring and motor impairment assessment. Fig. displays
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Figure 4.1: Sequence of steps taken towards MDS-UPDRS III estimation.
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Figure 4.2: Device placement and orientation.

the mounting configuration and orientation of the devices used at CNS, which collected
the data used in this study.

The collected data was extracted and converted from its original binary format using
both the omconvert library and the Open Movement Graphical User Interface (OMGUI).
A detailed description of the data collection process can be found in the next section. All
data processing was done using python (version 3), with the aid of the following libraries:

* Time Series Feature Extraction Library (TSFEL) for Time and Frequency domain
feature extraction [58]]

Sklearn for the built in machine learning models and cross validation methods [59]

Numpy, Scipy for data processing

XGboost for the implementation of the gradient boosted trees model [60]]

SKrebate for the implementation of the SURF and RelieF algorithms for feature
selection [[61]]

All tasks related to training, cross validation and hyper-parameter space search were
performed on a remote high performance cluster made available by the LASIGE research
group at FCUL. The availiability of this high performance hardware was essential for
the training of all models given the compounded computational cost of the grid search
procedure and LOSO CV scheme. The gradient boosted trees model specifically saw the
largest speedup through GPU acceleration which was not available for the implementation
used for the remaining models.


https://github.com/digitalinteraction/openmovement/wiki/OpenMovement
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4.3 Dataset Description

Data for this project was acquired from PD patients at the Campus Neurolégico Sénior,
a tertiary specialised movement disorders center in Portugal that employs the DataPark
platform for subjective and objective data collection and visualisation. This section de-
scribes all the steps taken for data collection and processing towards the resulting consol-
idated dataset.

4.3.1 Data Collection

The dataset used in this project originated from routine periodic evaluations of patients
at CNS conducted by trained physiotherapists. During these evaluations, patients are first
asked about their current state and symptoms during a clinical interview. Then, depending
on the patient’s specific disease and conditions, therapists use one or multiple assessment
tools like the MDS-UPDRS or the Mini-BESTest to understand how symptoms have pro-
gressed since the patient’s last assessment and observe their general condition. Finally,
the therapists may ask patient’s to perform some additional standardized tests like the
Timed Up and Go (TuG) test or the 10 meter walk test in order to observe the patient’s
performance and keep track of their condition. All of the information obtained from the
clinical interview, along with the results for the clinical scales, timestamps for each activ-
ity and therapists’ observations are then compiled using a custom built application for the
DataPark platform, creating a session file that is appended to the patient’s digital backlog.
Additionally, accelerometry data is recorded during each of these sessions using two AX3
accelerometers mounted at the patient’s lower back and wrist, set to record inertial data
at 100 Hz. The resulting data files are also uploaded to the DataPark platform to enable
the automatic generation of useful clinical visualization and extraction of other relevant
metrics to monitor the patient’s symptom progression. [39]

Due to its longitudinal nature and scope, the DataPark platform has collected large
amounts of data beyond the specific focus on gait in PD that was set for this project. As
such, a preliminary step for data selection was necessary to exclude unwanted or unrelated
data. The first step towards this data selection process was to exclude all patients who
had no PD diagnosis. To enable the feature extraction process and following machine
learning pipeline for MDS-UPRS III estimation, a complete MDS-UPDRS evaluation was
required for inclusion, along with the completion of at least one of the various 10 meter
walk exercises that are usually performed during the clinical evaluations. The remaining
reports and motion data files were then processed and prepared for feature extraction.

4.3.2 Data Processing

This section describes the steps taken towards processing the raw motion data for later
use in feature extraction. All steps are based on data processing techniques used in related
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Figure 4.3: Example of discarded data.

works and other accelerometry reliant research.

In order to isolate gait instances that are the focus of this work, the selected data files
were segmented using the annotated timestamps for the 10 meter walk exercises, which
consisted of three separate 10 meter walks, and adjusted when needed to account for
recordings made during daylight saving time. A visualization of each of the segmented
gait instances was then created in order to exclude session data that contained sensor fail-
ures and misalignment, or mismatched timestamps, as demonstrated in Figures§.3]and[4.4]
comparing discarded and expected data respectively. During this step, the Vector Mag-
nitude (VM) of the accelerometry signal was computed and appended to each segment
using the traditional euclidean vector norm formula:

VM = /2% + y? + 22

To avoid the possible temporal drift associated with the process, a resampling step was
performed after segmentation to ensure even sampling, as required for the extraction of
some of the used Time and Frequency domain features. Finally, all segments were filtered
using a fourth order, digital low pass Butterworth filter with a cut-off frequency of 20 Hz
in order to remove possible “machine noise”. [62]]

A final overview of the remaining data and it’s characteristics can be found in the next
subsection.

4.3.3 Summary of Data

The final subset of data used to train and optimize the machine learning models con-
tained 267 instances of gait from 104 evaluation sessions, collected from 74 different
patients.

Among these patients, 49 were male and 23 were female, while the gender for the
remaining 2 patients was not reported. The average patient age was 70.4 years with
13.12 standard deviation. The average weight was 71.76+13.89 Kg and the average height
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Figure 4.4: Examples of expected walk data.

was 166.49+9.26 cm. Finally, the average MDS-UPDRS III score was 40.92+14.31 and
2.57+0.97 for the H&Y scale. A visualization of the distribution of these scores can be
found in Figures {.5|and [4.6]

4.4 Machine Learning Pipeline

In order to optimize the estimation of MDS-UPDRS III scores a set of commonly used
machine learning models and features were selected. This section describes the developed
pipeline and accompanying design decisions towards the optimization of the disease stage
estimation task.

4.4.1 Feature Extraction

As discussed, signal features have become a common option in research pertaining to
the objective monitoring of PD 64]]. For this reason, and to ensure a thorough
analysis of the potential features for this purpose, a comprehensive set of features from
the statistical, temporal and spectral domains were computed from all accelerometry axes
and also from the VM. As is common in machine learning applications using time series
data, a sliding window technique was used to segment the signal into non-overlapping
windows from which the features were extracted. Different feature dataframes were then
created using 2.5 and 5 second windows, both of which previously used in the literature
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Statistical Domain

Spectral Domain

Temporal Domain

ECDF FFT mean coefficient Absolute energy
ECDF Percentile Fundamental frequency Area under the curve
ECDF Percentile Count Human range energy Autocorrelation
Histogram LPCC Centroid
Interquartile range MFCC Entropy
Kurtosis Max power spectrum Mean absolute diff
Max Maximum frequency Mean diff
Mean Median frequency Median absolute diff
Mean absolute deviation Power bandwidth Median diff
Median Spectral centroid Negative turning points
Median absolute deviation Spectral decrease Peak to peak distance
Min Spectral distance Positive turning points
Root mean square Spectral entropy Signal distance
Skewness Spectral kurtosis Slope
Standard deviation Spectral positive turning points Sum absolute diff
Variance Spectral roll-off Total energy

Spectral roll-on
Spectral skewness
Spectral slope
Spectral spread
Spectral variation
Wavelet absolute mean
Wavelet energy
Wavelet standard deviation
Wavelet entropy
Wavelet variance

Zero crossing rate
Neighbourhood peaks

Table 4.1: Extracted features by domain

[9], in order to assess the effect of window size on the estimation task. During this fea-
ture extraction process MDS-UPDRS III scores were also computed and appended to the
corresponding windows for both dataframes. An overview of the used features and their
domains can be found in table 4,11

4.4.2 Feature selection

Some of the selected machine learning models are sensible to feature sets that are re-
dundant, poorly correlated with the target variable, or non-descriptive. While some of
these models are less sensible to such problems given their capability to perform an in-
trinsic form of feature selection, all of them benefit from smaller feature sets to improve
computation time. For this reason the first step towards feature selection was to use a
variance filter to exclude features with low (<0.025%) or zero variance which lowered
the feature space by up to 89% for the 2.5 second window. While this reduction may
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seem drastic, it is to be expected because of the way TSFEL works, computing the same
feature several times for different frequencies for example which results in a large amount
of feature columns with hardly any variability, and thus, descriptive power.

A further feature selection step was performed using four different feature selection
methods that implement different strategies for feature ranking:

 f_regression which performs univariate linear regression tests returning F-statistic
and p-values.

* mutual_info which measures the degree of dependency between the variables
 RelieF which is briefly described in the second chapter

* SURF which works similarly to RelieF but with automatic selection of the optimal
number of neighbours

Each of these feature selection algorithms was used to rank and select the top 10/25/50
features to be used for the regression task using the linear regression algorithm, and with
the support vector based model. The complete feature subset was also used for these
models, in order to establish a baseline comparison with the remaining tree based models
that are less affected by the number of feature due to their capability to perform intrinsic
feature selection. A detailed list of the top ranking features for each of the best performing
models accross both sliding window lengths can be found in the results section, in Tables

3.4l and 5.5

4.4.3 Model Selection

The used machine learning models were selected attending to their prevalence in the
literature relating to the objective assessment of PD using inertial data.

For each model, a set of parameters were selected and used in a grid search procedure
to test all possible combinations. This procedure was then carried out for each sensor
placement and the combined sensors, and for the different sliding window lengths used
during feature extraction, in order to compare the effect of these variables for the esti-
mation task. Leave One Subject Out (LOSO) cross validation was used during the grid
search procedures in order to avoid overfitting and optimize the models for generizability.
Finally, the optimal models for each combination of these variables were saved and used
for the ensuing validation task. A list of the used models and corresponding parameter
space can be found in Table

4.4.4 Model scoring and validation

To validate the trained models, the original dataset was split into training and testing
subsets. The training subset comprised 90% of the data and was used during the grid-
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Model GridSearch Parameters
Random Forest Regressor {"criterion’: ['mse’,’ mae’], "n_estimators’: [250,500,1000], *max_features’:[0.333,0.666,1] }
XGBoost Regressor {’learning_rate’:[0.1], 'max_depth’: [3,6,9], 'num_parallel_tree’: [10,100,200], ’colsample_bynode’: [0.333,0.666,1]}
SVM Regressor {"kernel’:['rbf",’linear’], "gamma’:{ ‘scale’, ‘auto’ }, *C’:[0.1,1,10], epsilon’:[0.1,0.2,0.3]}
Linear Regression NA

Table 4.2: Per model grid search parameter space

search procedure to train the models using LOSO cross validation. The remaining 10%
of the data was then used as a validation set to test the model’s performance on unseen
data from patients whose data the model had already seen, providing information on the
models’ ability to estimate MDS-UPDRS III scores for patients that were already known
to these models. These steps yield two different scores for each of the optimal models
using the same Mean Absolute Error (MAE) evaluation metric: the average MAE for all
LOSO splits during training, and one MAE score for each validation step. For the purpose
of this study, this metric is defined as the mean absolute difference between real (y) and
estimated (y7) MDS-UPDRS III scores over the amount of samples used for estimation:

1 Tlsamples — 1

MAE(y, §) =

lyi — Uil -
Tsamples i—0

For the validation step using the held out data subset, the coefficient of determination
(r?) and Pearson’s correlation (p), along with the corresponding p-value (p), for estimated
and actual scores were also computed using the following formulae.

3
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Chapter 5

Results

This chapter lays out the results from all of the steps taken towards UPDRS-III es-
timation, including data processing, feature extraction and selection, and finally model
training and validation results. While some observations on these results may be made
throughout, the discussion of their contribution for the continuous monitoring of PD and
relevance for the defined research questions is left to the specific discussion chapter.

5.1 Optimal Configurations for UPDRS-III Estimation

The configuration with lowest prediction error on the left out 10% of data used data
from both devices processed using a 2.5 second sliding window and a Random Forest
model for prediction, achieving 4.26 MAE and strong correlation (p = 0.93) as illustrated
in Figure LOSO CV performance for this model was significantly lower, achieving a
MAE of 11.50.

The best performing configuration when performing LOSO CV was a Support Vec-
tor based model, using data from both sensors but a 5 second feature extraction window,
achieving a MAE of 9.99. While predictions using this model on the validation set were
less accurate than some of the other options at 7.94 MAE, it maintained significant corre-
lation on the left out set (p = 0.63) and achieved the best balance when considering both
of the validation schemes.

Tables |5.1]and |5.2 summarize the optimal results achieved by each model along with
the used data sources and sliding window length for the 10% left out and LOSO validation
tasks respectively.

Model | Device Placement | Win. Length | Ft. Selection | # Features | LOSO MAE | Test MAE Test p (p)
of combined 250 - 266 11.50 4.26 0.93(p<0.001)
xgboost trunk 500 - 229 11.67 4.39 0.78(p<0.001)
svm combined 500 SURF 25 9.99 7.95 0.63(p<0.001)
lin_reg combined 500 reliefF 25 10.21 8.98 0.63(p<0.001)

Table 5.1: Optimal configurations used by each model to achieve optimal MAE on the
left out 10% of data

37
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Figure 5.1: Overall optimal predictions on the 10% of left out data using a Random Forest
model on data collected from both sensors and a 2.5s sliding window.

Model | Device Placement | Win. Length | Ft. Selection | # Features | LOSO MAE | Test MAE Test p (p)
f combined 500 - 452 11.39 11.39 0.89(p<0.001)
xgboost trunk 250 - 133 11.49 5.74 0.88(p<0.001)
svm combined 500 SURF 25 9.99 7.95 0.63(p<0.001)
lin_reg combined 500 reliefF 25 10.21 8.98 0.62(p<0.001)

Table 5.2: Optimal configurations used by each model to achieve

LOSO CV

optimal MAE during
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5.1.1 Data Collection and Feature extraction variables

Both device placement and window length used during feature extraction had signifi-
cant impact on the performance of all models. The following subsections contain a sum-

mary and, when relevant, illustrations of the effect of these variables on the prediction
task.

Device Placement

For all of the selected models, the configurations that achieved the best results using

either of the validation schemes used data collected from the lower back or both sensors
combined.

Specifically, all of the non-tree based models performed better in both validation
schemes using data from both sensors, with the exception of the SVM based model using
a 2.5 second window, which compared to the other options using the same window length
achieved lower, albeit negligible, validation MAE using data from the wrist.

As for the tree based models, optimal validation MAE was attained by models using

both sensors with the 2.5 second sliding windows, and data from the lower back for the
same models using the 5 second window.

Figures [5.2] and [5.3] illustrate the intra and inter model comparison for both of the
validation schemes, using different window lengths.

Device Placement Comparison (2.5 Second Window)
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Figure 5.2: Effect of device placement on prediction outcomes using 2.5 second windows.
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Device Placement Comparison (5 Second Window)
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Figure 5.3: Effect of device placement on prediction outcomes using 5 second windows.

Sliding Window Length

Figures [5.4][5.5] and [5.6] compare the optimal performance of each model for the two
tested sliding window lengths using data from both sensors combined and each separately,
illustrating the MAE of predictions during LOSO CV and for the 10% of left out data.

While the fluctuations were relatively low during LOSO CV, most models performed
better using a 5 second window length, with the exception of the xgboost model. MAE
using the left out 10% of validation data fluctuated more considerably, but was also lowest
using 5 second windows for all models except RF.

5.1.2 Model Parameters

As for model parameters, Table[5.3]summarizes which values yielded best performance
during LOSO CV for each model, using a Grid Search procedure that exhaustively tested

all parameter combinations for each model, independently of the used device placements
and sliding window lengths.

The exhaustive nature of the grid search procedure makes this method of parameter
optimization computationally expensive. For this reason, and considering that the pro-
cedure was used for several models, the used parameter space for each model was not
as comprehensive as those used in some other works with a smaller scope and narrower

focus. However, the present results should still serve as a good starting point for model
tuning in future research.
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Window Length Comparison (Combined Sensors)
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Figure 5.4: Effect of window length on prediction error for both validation schemes using
data from both sensors.

Window Length Comparison (Trunk Sensor)
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Figure 5.5: Effect of window length on prediction error for both validation schemes using
data from the lower back sensor.

Model | Device Placement Optimal Parameters
f combined {"criterion’: "mae’, "'max_features’: 0.333, 'n_estimators’: 250}

xgboost trunk {"colsample_bynode’: 1, 'eta’: 0.1, 'importance_type’: ’total_gain’, ‘'max_depth’: 3, 'num_parallel_tree’: 100, "tree_method’: "gpu_hist’ }
svm combined {°C’: 10, ’epsilon’: 0.3, ’gamma’: auto’, ’kernel’: 'rbf’}

lin_reg combined -

Table 5.3: Optimal parameters used by models with the best LOSO CV performance.
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Window Length Comparison (Wrist Sensor)
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Figure 5.6: Effect of window length on prediction error for both validation schemes using
data from the wrist sensor.

5.1.3 Feature Selection

For the models that benefited from it, several feature selection methods were tested,
along with different numbers of features to select. The best performing linear regression
and SVM based models used the SURF and relieF feature selection methods respectively,
both selecting 25 as the optimal number of features. An analysis on the contribution
of these features along with those used by the remaining models can be found in the
following section.

5.2 Feature Contribution

5.2.1 Top Ranking Features

Finally, the top 20 contributing features used by each model in their optimal configura-
tion for each window length are listed in Tables[5.4and [5.5] While features from the tree
based models are listed according to their importance during the estimation task on the
10% of left out data, features for the remaining models that were selected by feature se-
lection algorithms are sorted according to their ranking during the feature selection task.
The listed feature names were prefixed with the device placement that originated the fea-
ture and a number in the range of 0 to 3 representing the x, y and z axis or VM. The used
sensor placement for each model is also included in the column headers.
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lin_reg (combined)

rf (trunk)

xgboost (trunk)
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trunk_O_Histogram_0

trunk_1_Histogram_4
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trunk_O_Histogram_1

trunk_0_Histogram_1
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trunk 0 LPCC 4

trunk_2_Wavelet energy_8
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trunk 0_LPCC_8

trunk 0 LPCC_8

trunk 2_Wavelet standard deviation 8

trunk 3_Area under the curve

trunk 0 LPCC_9

trunk 3 Mean

trunk _3_Histogram 9

trunk_0_LPCC_9

trunk_O_Spectral centroid

trunk_O_Spectral centroid

trunk_3_Histogram_9

trunk_1_Histogram_6

trunk_O_Spectral entropy

trunk_0_Spectral entropy

trunk 2 Wavelet standard deviation 7

trunk 2 Power bandwidth

trunk_0_Spectral slope

trunk_0_Spectral slope

trunk_1_Histogram_5

trunk_1_Histogram_5

trunk_1_Histogram_4

trunk _1_Histogram_4

trunk_1_Histogram_6

trunk_2_Wavelet energy_8

trunk_1_Human range energy

trunk 2 Interquartile range

trunk_2_Histogram_5

trunk_0_Spectral entropy

trunk_2_Wavelet energy_7

trunk 2 ECDF Percentile 0

trunk_1_Histogram_3

trunk_2_Histogram_4

trunk _2_Histogram_ 4

trunk 3 Mean

trunk_1_Median frequency

trunk_1_Human range energy

trunk 2 ECDF Percentile 0

trunk 2 Wavelet standard deviation 7

trunk_3_Spectral entropy

trunk_2_Root mean square

trunk 2 Min

trunk_2_Neighbourhood peaks

trunk_2_Wavelet energy_6

trunk_1 LPCC_10

Table 5.4: Top 20 features for models trained using 2.5 second windows

svm (combined)

lin_reg (combined)

rf (combined)

xgboost (trunk)

trunk_1_Histogram 4

trunk_3_Mean

trunk_1_Histogram 4

trunk_1_Histogram 4

trunk_3_Mean

trunk_3_Area under the curve

trunk_1_Median frequency

trunk_2_Wavelet energy_7

trunk_3_Area under the curve

trunk_1_Histogram 4

trunk_3_ECDF Percentile_0

trunk_2_Wavelet standard deviation_7

trunk_2_Mean absolute deviation

wrist_2_Median frequency

trunk _3_Histogram 9

trunk_3_ECDF Percentile_0

trunk_0_Spectral entropy

trunk_3_ECDF Percentile_0

trunk_3_Mean

trunk_1_ECDF Percentile_0

wrist_2_Median frequency

wrist_2_Fundamental frequency

trunk_2_Wavelet standard deviation_6

trunk_2_Wavelet variance_7

trunk_2_Wavelet energy 8

trunk_0_Spectral entropy

trunk_2_Wavelet energy_6

trunk_2_Wavelet energy_6

trunk_2_Wavelet standard deviation_8

trunk_1_Median

trunk_3_Area under the curve

trunk_3_Area under the curve

trunk _2_Interquartile range

trunk 2_Neighbourhood peaks

trunk_2_Wavelet energy_7

trunk_1_Median

trunk_2_Standard deviation

wrist 2 LPCC_9

trunk_1_ECDF Percentile_0

trunk_3_Mean

trunk_1_Median frequency

wrist 2 LPCC_4

trunk_2_Wavelet standard deviation_7

trunk_3_Histogram_9

trunk_3_ECDF Percentile_0

trunk_2_Wavelet energy 8

trunk_1_Median

trunk_1_Histogram_5

trunk_1_Median

trunk_2_Wavelet standard deviation_8

trunk_2_Wavelet energy 8

trunk_2_Area under the curve

trunk 3_Neighbourhood peaks

trunk 2_Mean absolute deviation

wrist_0_Interquartile range

trunk 2_Wavelet standard deviation_6

trunk_2_Wavelet energy_7

trunk_1_ECDF Percentile_0

trunk_2_Wavelet variance_7

trunk_2_Max power spectrum

trunk_2_Wavelet standard deviation_7

trunk_2_Power bandwidth

trunk_1_Spectral centroid

trunk_0_Spectral entropy

trunk_2_Median absolute deviation

trunk_3_Median

trunk_3_Spectral entropy

trunk_2_ECDF Percentile_0

trunk_2_Wavelet standard deviation_6

wrist_2_Zero crossing rate

trunk_1_Histogram_5

trunk_3_Neighbourhood peaks

trunk_2_Wavelet energy_6

wrist_0_Wavelet absolute mean_8

trunk_2_Wavelet variance_6

trunk_1_Mean absolute deviation

trunk_1_ECDF Percentile_0

wrist_0_Wavelet absolute mean_7

trunk_2_Max power spectrum

trunk_1_FFT mean coefficient_5

Table 5.5: Top 20 features for models trained using 5 second windows
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Model | Device Placement | Window Length | # Trunk | # Wrist
svm combined 500 19 1
lin_reg combined 500 13 7
rf combined 500 19 1
svm combined 250 10 0
lin_reg combined 250 10 0

Table 5.6: Comparison of feature counts extracted from either sensor for models trained
on the combined feature space

5.2.2 Features by Device Placement

Among the 8 top performing models across the two tested window lengths, no model
used data exclusively from the wrist, and only 3 models used data exclusively from the
trunk. As for the remaining models, the majority of top ranking features were extracted
from devices mounted on the lower back. Table summarizes the number of features
extracted from each sensor placement for the models that used both sensors. In some
cases, no wrist features were ranked among the top 20, which suggests that although
these were used for the estimation task, their contribution is minimal, which is line with
the minimal performance gain in these models when compared against their counterparts
using data exclusively from the lower back.

5.2.3 Features by Accelerometry Axis

Features from the antero-posetrior plane of movement (z axis) were the most prevalent
among the top 20 extracted from the trunk sensor, consisting of 50 out of the 140 features
considered for this analysis. The vertical plane of movement (x axis) produced the least
amount of features among those considered here, with only 22 ranking among the top
contributing features. Finally, the feature counts from the remaining y axis and VM were
32 and 27 respectively.

A similar analysis for features extracted from the wrist can be found in the wrist
specific subsection, given the relatively low representation of such features among the
best performing models.

5.2.4 Features by Domain

As previously stated, the feature space used for the estimation tasks consists of features
spanning statistical, temporal and spectral domains. Spectral domain features were the
most prevalent among these, making up almost half of the 140 considered features, with
temporal domain features coming in second by a small margin, and temporal features
last consisting of a quarter of this total. A comprehensive summary of these numbers
comparing the total and per model prevalence of features from these domains can be
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found in Table
Model | Placement | Window Length | Statistical | Spectral | Temporal

svm combined 500 9 9 2
linreg | combined 500 7 10 3
rf combined 500 8 11 1
xgboost trunk 500 9 8 3
svm combined 250 3 7 0
linreg | combined 250 3 7 0
rf trunk 250 11 8 1
xgboost trunk 250 11 7 2
Totals 61 67 12

Table 5.7: Feature Domains used by optimal models for each window length

5.2.5 Wrist Based Features

Given their lower prevalence among the top performing models, features extracted from
the wrist were largely disregarded in the previous subsections. This subsection contains an
analysis of the features used by the top performing model using exclusively wrist feature.

Among those trained exclusively using wrist data, the best performing model during
LOSO CV (MAE = 10.97) was an SVM trained using the 2,5 second window length
for feature extraction. This model used a feature space of 25 features selected through
the f statistic based feature ranking method. The selected features are listed in table 5.§]
according to the previously described nomenclature.

Out of the 25 selected features, none were extracted from the temporal domain, while
8 and 17 were extracted from the statistical and spectral domains respectively, which
were similarly predominant in models trained with data from the sensor located in the
lower back. Features from the z axis were the most predominant among these, making up
more than half of the subset, however it is difficult to draw conclusions from these results
attending to the limitations discussed in the specific subsection about device orientation.
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Features
wrist_0_ECDF Percentile_1
wrist_O_Interquartile range

wrist_0_Max
wrist_0_Mean absolute deviation
wrist_1_Median absolute diff
wrist_1_Spectral spread
wrist_2_Histogram 2
wrist_2_Histogram 4
wrist_2_Human range energy
wrist_2_ LPCC_0
wrist 2 LPCC_10
wrist 2 LPCC_3
wrist 2 LPCC_4
wrist 2 LPCC_5
wrist 2_ LPCC_6
wrist 2 LPCC_7
wrist 2_ LPCC_8
wrist_2_ LPCC_9
wrist. 2 MFCC_0
wrist 2 MFCC_3
wrist_2_Spectral centroid
wrist_2_Spectral slope
wrist_2_Wavelet absolute mean_8
wrist_3_Histogram_8
wrist_3_Human range energy

Table 5.8: List of features used by the best performing model using exlusively wrist data
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Chapter 6

Discussion

This chapter focuses on understanding the results beyond the reported values, and lever-
aging this knowledge to answer or discuss the posed research questions. Additionally, a
summary of the limitations encountered throughout this project and possible work direc-
tions towards the objective monitoring of progression in PD is also included.

6.1 Research Questions

6.1.1 Comparison with state of the art deep learning models

In this study, data collected from PwPD during gait tasks was collected with the aim of
automatically estimating motor symptom severity through the most clinically used scale
for this purpose: part 3 of the MDS-UPDRS.

Recently, research on this topic has emerged using deep learning approaches for the
estimation task. Specifically, the works of Hssayeni et al. [8]. and Rehman et al.[9]
were used as references for comparison with the tested models. However, there are some
methodological differences that are relevant for this discussion. These differences are
summarised in Table

As displayed in the table above, the tested models failed to achieve lower MAE scores
than either of the studies considered for this comparison, with the difference in MAE to
the best performing of these models being 4.44 points. Considering a possible maximum

Study [9] 8] Present Work
Sample Size 119 PwPD 24 PwPD + 8§ HC 74 PwPD
Monitored Activities Lab Gait Lab Simulated ADL Lab Gait
Device Location(s) Lower Back Wrist, Ankle Lower Back, Wrist
Data Type Accelerometry (VM) | Angular Velocity (All axis) | Accelerometry (All axis + VM)
Type of Study Longitudinal Cross Sectional Cross Sectional
Validation Longitudinal LOSOCV + 20% Left Out LOSOCV + 10% Left Out
Results MAE =6.29 MAE =5.95 MAE =9.99

Table 6.1: Comparison of methodologies and results between this, and other studies for
the automatic estimation of MDS-UPDRS III scores
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of 132 points for Part III of the MDS-UPDRS, or 72 points for the population in this
study, this difference may seem low, falling within the accumulated intra-rater variability
commonly found in regular evaluations. However, having established that lower scores
are possible, and attending to the reasonable results achieved by some of the tested con-
figurations, it is necessary to understand where this difference may come from in order to
direct further research.

While these studies share some commonalities, like the estimation of the same target
variable and the usage of inertial data, there are several differences in methodology that
can explain the difference in results. The longitudinal nature of [9] for example, is a fun-
damentally different approach for the estimation of the same scale. It poses the question
of whether it is possible for a model trained on data from a set of patients to predict motor
symptom severity for the same patients in a future point in time. This is significantly
different from using data of novel patients that were not included in the training process,
ie. LOSO CV, making it difficult to directly compare all approaches. In spite of this dif-
ference, both approaches are equally important, as the deployment of such a system in
the ’real world” would eventually require the estimation of scores in both scenarios, and
thus, the understanding of a model’s capabilities for either. To bridge this gap, it would
be interesting to know the LOSO CV MAE of the models used by Rehman et al. [9],
and as mentioned in the section dedicated to future work, to establish a standard for data
collection for this purpose that could enable more longitudinal research on the subject.

The use of angular velocity data and measurement of different activities by Hssayen
et al. [8] are another set of differences that muddle comparisons. While their study sug-
gests that data collected from such activities can provide relatively accurate estimations,
the detection of these tasks in free living conditions, would be more complex than gait
detection. This, along with the battery of research that has studied gait as a bio-marker
for disease progression in PD and the marginal performance difference between the works
of [9]] and [8] could arguably suggest that gait is a more fitting activity to monitor, facil-
itating the comparison and validation of research in this field towards the deployment of
this technology in free-living conditions.

Finally, and having discussed some of the shortcomings of the tested models when
compared to deep learning approaches, there are some arguments in favor of their usage.
The analysis of feature contribution for example, can give information on the relative
descriptive power of different sensor locations. The work of [8] for instance, uses data
from sensors mounted on the wrist and ankle, but due to the used models, it is harder
to quantify how much each of these contributed in the estimation task. The analysis
of the top contributing features, their domains, and the axis from which they were can
also be used in future work to guide further research on the objective monitoring of PD.
Finally, the relatively lower computational requirements and simplicity in implementing
and training these models allows for a more exhaustive analysis on the optimal parameters
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and variables for the optimization of the estimation task. Considering these factors, while
the tested models failed to match the performance of current state of the art deep learning
approaches, further research is required before completely discarding their usage for the
estimation of MDS-UPDRS III scores.

6.1.2 Effect of variables on the estimation task

Sliding window length

While fluctuations in LOSO MAE across the different sliding window lengths were
relatively low, the best results for all sensor placements were achieved using a 5 second
window. This window length was used in the works of Hssayeni et al. [8] and Rehman
et al. [9], which is a strong suggestion towards the benefits of using window lengths that
capture a larger amount of movement. As for the held out validation data, the MAE was
similarly lower using 5 second windows for the SVM and Linear regression models, but
not uniformly so for the tree based models. These latter models presented significantly
lower MAE in their optimal configurations, which may have been the product of models
overfitting on data from patients that were used in the training set, and exacerbated by
the decreased window lengths, as results for the same models using a larger window are
significantly closer to those achieved by the non-tree based models. In any case, these
results suggest that a larger window favors MDS-UPDRS III estimation, which is in line
with the window length used in recent research research on this topic.

Sensor Placement

The detection or measurement of tremor and bradykinesia using wrist worn devices
has been a common approach for monitoring motor impairment in PD [63} 164]. For this
purpose, measurements from the lower back have also been the object of several studies
focusing on the gait of PWPD, and supporting gait characteristics as biomarkers for it’s
progression [16, 50] . As such, it is reasonable to expect that features extracted from
data collected at these placements during gait could contribute for the estimation of motor
symptom severity.

The results in this study suggest that the usage of sensors mounted on the lower back
is more fitting for the estimation of MDS-UPDRS III scores, which is in agreement with
the data collection setup used in the work of Rehman et al. [9].

Contrastingly, features extracted from data collected at the wrist seemed to improve
the tested models’ performance only slightly or not at all. Furthermore, the use of data
exclusively from such sensor placement produced the worst results among all tested con-
figurations for most of the models. In spite of the different data types and activities mea-
sured by Hssayeni et al. [8], their work using data collected from the wrists and ankles
yielded better results than the methods used in this study. A plausible explanation for this
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may be that the degree of contribution of features extracted from each sensor placement
was not measured separately due to the black box nature of the used algorithms, mak-
ing it impossible to assess the contribution of either for the estimation task, meaning that
the performance of the model could be mostly based on data collected from the ankle
mounted sensors. However, given the extensive amount of research supporting the use of
data collected from wrist worn devices for the objective monitoring of different symptoms
in PD, it is unlikely that this is the case.

The findings of [ref] may partially explain the lower descriptive power of data col-
lected from the wrist. In their study, the authors concluded that features computed from
wrist data were more important for classification of HC vs. PwPD at H&Y Stage I, and
decayed in importance for pairwise classification of each stage and the next, becoming
significantly less relevant for discriminating stages II and III, which are the most domi-
nant among patients in the dataset used for the current work. Furthermore the limitations
described in the following section may have also negatively affected the results. As men-
tioned before, in spite of the results further research addressing these limitations is needed
before discarding the use of such data for the estimation of MDS-UPDRS III scores.

Model selection

One of the goals of this study was to understand whether traditional, feature engineered
models could estimate MDS-UPDRS III scores with comparable accuracy to deep learn-
ing based approaches described in current, state of the art research. As mentioned, among
the tested models and variables, even the optimal configuration failed to match the perfor-
mance of such models. However, the performance of the best model using among those
tested using LOSO CV, is only 4.44 points worse than the best performing of the deep
learning alternatives, which attending to the many differences between these studies and
some of the limitations discussed in the following section, suggests that traditional feature
engineered models may be viable for this task.

As mentioned in the Results section, the best performing model during LOSO CV
was an SVM based model trained using 5 second windows, and 25 features from both
used sensors selected through a relief based method. Considering only the optimal con-
figurations for all models, fluctuations in LOSO MAE were relatively low, with the worst
among these being a boosted trees model using 2.5 second windows and data collected
exclusively from the sensor mounted on the lower back, achieving 11.49 LOSO MAE.
Unexpectedly, the linear regression model held up to these results, outperforming both
tree based models in LOSO CV. Attending to the relatively small feature subset that was
considered optimal for the models using feature selection, this suggests that the larger fea-
ture space may be negatively affecting the performance of tree based models. This may
also explain the significantly lower MAE achieved by these models when testing on the
left out 10% of data, which is probably a product of these models overfitting on patient
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data. One possibility to confirm this hypothesis, would be to widen the parameter space
to favor smaller values for the parameters controlling the number of features selected at
each node for these models.

Ultimately, the relatively low variability among these models’ results along with their
reasonable performance for the estimation of MDS-UPDRS III scores are favorable argu-
ments for further research using these models, addressing the limitations of this study, and
expanding the search for optimal configurations of different variables towards this task.

6.1.3 Feature analysis

This subsection addresses some characteristics of the used feature spaces that could
inform future research. In the previous chapter, the top 20 features used by each of the
best performing models across both considered window lengths were reported, and briefly
discussed. This analysis covered 140 features: the top 20 for 6 of the 8 models, and the
10 selected during feature selection from the remaining 2. The following discussion is
mainly focused on these features, with references to the remaining feature space when
relevant.

Number of Features

As previously discussed, the best performing models during LOSO CV used relatively
small feature spaces, with only one of the top ten tested configurations using more than
25 features for the estimation task. Tree based models were expected to benefit from a
larger feature set, but performed worse on average, when compared to their counterparts
using smaller numbers of features. A wider search for optimal parameters and testing on
different feature subsets of different sizes should be prioritized in future work, as it could
drastically improve performance of these models, and in this process, possibly address
the overfitting found during testing on the left out 10% of data.

Features by Axis

As the analysis made in the results section revealed, features extracted from data collected
at the lower back were overwhelmingly more prevalent among the top features used by
each model. Features extracted from the vertical axis of this sensor were the least preva-
lent compared to the remaining axis and VM, which attending to the existing literature
on the study of gait characteristics in PwPD using similar data was unexpected . While
the reasons for this discrepancy are difficult to assess, gait and it’s characteristics have
been repeatedly validated as biomarkers for the progression of PD, and as such, it would
be interesting to test the usage of these characteristics as features or other approaches to
exploit this relationship between vertical acceleration and gait[4, |65].
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The most predominant features extracted from data collected at the lower back, were
those extracted from the antero-posterior plane of movement, followed by the medio-
lateral plane and finally the VM of the signal. While literature on gait assessment in PD
has extensively used this device placement, there is a lack of information on the relative
contribution of features or characteristics extracted from each axis of movement, making
it difficult to draw conclusions on the topic. There is however evidence of some cor-
relation between the severity of bradykinesia and features extracted from these axis of
movement, collected in similar manner, for the analysis of Prakinsonian gait [66]. This,
coupled with the previously mentioned results, make a compelling argument for the usage
of all axis of acceleration in future work using similar data collection setups.

As for features extracted from wrist worn devices, it is difficult to properly analyze
their contribution given the limitations discussed in both the previous and following sec-
tions. However, attending to the literature successfully using such data for the objective
monitoring of several symptoms in PD, future work should address these limitations be-
fore opting for using exclusively data collected from the lower back.

Feature Domains

Most of the top ranking features across the optimal models were from the statistical and
spectral domains, with those from the temporal domain making up only 12% of the total
number considered for this analysis. Between the first two, while features from the spec-
tral domain were slightly more prevalent, those from the statistical domain were over-
whelmingly present in the top three of features listed according to their importance or
ranking. Previous work on the use of signal features from motion data has extensively
documented the possibilities for objective monitoring through the use of features from
the spectral domain, with one of the most notable examples being tremor assessment. As
for features from the statistical domain, although not as widely documented, several stud-
ies have included them for this purpose, although sometimes categorizing them differently
(63, 53]. Finally, although features from the temporal domain were significantly under-
represented among the top performing models, their use has also been documented in the
literature. As such, and given the relatively low computational cost of having a slightly
larger feature space, these features should still be investigated in future works, possibly
even along others, like the phase plot features from the complexity domain described in
the work of Dunne-Willows et al. [67]].

Top Ranking Features

The top 3 most prevalent features among these, occurring more than 10 times each across
this total, and consistently ranking among the top 5, could inform future research towards
this estimation task. The following paragraphs provide an overview of these top ranking
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features, and, when possible, a brief discussion on the possible reason for their contribu-
tion.

With 27 occurrences, the most prevalent feature among the best performing models
was a simple amplitude histogram of each signal window. This feature is computed by
establishing a number of bins (10 by default) and using the value of each bin as a separate
feature. Specifically, the fifth bin of the vertical acceleration was consistently ranked
high across models, which may be related to the previously discussed value of vertical
acceleration for gait assessment in PD.

The second and third most prevalent features were tied with 13 occurrences; however,
features based on the Empirical Cumulative Distribution Function (ECDF) of the signal
ranked higher, on average, than the wavelet based features. Specifically, the lowest ECDF
percentiles extracted from the VM of trunk data were both higher ranking and more preva-
lent than wavelet energy. In spite of the difference in objective and methodology, ECDF
derived features have repeatedly been used in activity classification studies [68], support-
ing their correlation with mobility features . This, along with the findings of Hammerla
et al. [69] and the present results, support the use of ECDF based features in future work
for the estimation of motor severity scores in PD.

As mentioned, the wavelet energy feature was equally as prevalent as the ECDF per-
centile. This specific feature computes the energy in each scale of the Continuous Wavelet
Transform, although other CWT derived features were also present among the top rank-
ing subset. The extensive literature on the usage of WT derived features from motion data
collected in different setups [/0] along with the high prevalence of these features among
the most prevalent in this study are also good indicators for their usage in future work.

6.2 Limitations

As demonstrated, the tested methods for disease stage prediction were not as successful
as current, state of the art deep learning models. While this may be due to some limitations
intrinsic to the tested models, some external factors may have negatively affected the
results.

6.2.1 Data Limitations

As previously stated, the dataset used for this project is the product of an ongoing
collaboration between LASIGE at FCUL and the CNS. Given the large scope of this
collaboration, and thus the volume of data produced, it is to be expected that not all data
is adequate for the specific purposes of the present project. While some data selection
methods were employed in order to address this issue, several factors may have negatively
affected performance.
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Device Alignment

While a protocol was established for data collection at the CNS, the large volume of
data correct sensor alignment can not always be guaranteed. This misalignment is most
obvious in data segments where a component of gravitational acceleration is added to one
of the other axes due to sensor tilt, causing the anteroposterior and lateral accelaration
data to have non zero mean as expected, and the gravity vector to have an average value
different from the expected -1g [4]. However, this isn’t the only case where misalign-
ment may negatively effect the results. Musculoskeletal anomalies involving the hands of
PwPD, can cause contractions and involuntary movements that may lead to unintentional
rotations of a subject’s wrists or palms along the vertical axis [71], resulting in skewed
data that is imperceptible when visualizing accelerometry data.

The collection of orientation data using gyroscopes along the used accelerometer data,
could enable the normalization of the accelerometery referentials, alleviating or com-
pletely eliminating this issue. While many modern IMU like the AX6 are capable of
recording both of these data types simultaneously, the collection of an additional data
stream poses other challenges for the continuous monitoring of PD progression. One ma-
jor issue is the power consumption of gyroscopes, which can be an order of magnitude
higher than accelerometers [[64]], limiting the recording time of these devices, or adding a
burden for patients who would have to recharge their devices more frequently.

While some strategies could be employed to address this limitation, like using a sig-
nificantly lower sampling rate for the gyroscope data, further work is required in order to
find the optimal balance between higher battery usage and possible contributions of this
data to improve the estimation tasks.

Walk initiation and ending

Gait initiation requires postural adjustements that are otherwise absent during the gait
cycle. For PwPD, this phenomenon is even more prominent, with some patients exhibiting
the previously mentioned FoG episodes [72]. Similarly, the final steps towards ending
the gait cycle may exhibit differences in gait characteristics when compared to those of
a regular, prolonged walk. Both of these phenomena may have negatively affected the
results reported in this study. Due to the defined data collection protocol, and lack of a
ground truth in the form of, for example, a video recording of each patients’ walk, it is
nearly impossible to exclude these periods to focus only on steady gait, without discarding
a significant amount of data. While discarding the first and final windows of each gait
instance for each patient was considered, this would result in the loss of more than 10%
of all windows with 2.5 second length, and a significantly higher percentage for 5 second
windows.

In the future, longer periods of gait can be favored over intermittent short walks to
leave a bigger margin for the exclusion of these stages. Another option towards mini-
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mizing this problem could be the definition of data collection protocols that somehow
account for or register the initiation and ending stages of a walk. This data could then be
leveraged to feed other approaches for the objective monitoring of PD, like FoG detection
as demonstrated in [ref], allowing for a more holistic monitoring of motor symptoms in
PD.

MDS-UPDRS III representation and personalization

The dataset used in this study consisted of data collected from 74 patients. While
this number of patients is significant for preliminary results, a larger sample size could
improve the estimation task and further validate the present findings. Beyond the volume
of data used to train the models, a wider range of MDS-UPDRS III scores could also
improve the results, by including a wider variety of walking patterns that in a smaller
sample size could be considered outliers, and negatively affect performance. Furthermore,
the inclusion of a healthy cohort in the dataset could provide a baseline for the models to
recognize healthy gait, exacerbating the difference between data from healthy and affected
subjects and once again improving model performance.

6.2.2 Computational resources

The amount of variables considered in this study resulted in a fairly computationally
expensive pipeline. While the data processing and feature extraction tasks were relatively
simple to compute and save for further usage, model training and tuning, along with the
chosen validation schemes required significant computational resources. In spite of the
significant speed up enabled by the usage of a high performance cluster, more computa-
tional power and time would enable a wider search over the several variables considered,
which could drastically improve model performance.

6.3 Future Work

Future research on the estimation of MDS-UPDRS III scores from gait data should con-
tinue to explore and assess the validity of different combinations of models, parameters,
features and other variables towards the optimization of the estimation task. The previous
section laid out most of the limitations of this study, which have a lot in common with
research on the objective monitoring of PD.

Specifically, future work should strive to include more data, possibly including a HC,
and spanning a wider range of disease stages and motor symptom severity. Furthermore, a
validation of the used methods is required, and should be done by addressing some of the
discussed limitations by including angular data from the used sensors and larger periods
of gait to assess. The expansion of the search space when it comes to feature subsets
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and parameter optimization is also a recommended avenue for further work that could
significantly improve performance. Finally, a similar study including gait data collected
in free ling conditions should also be prioritized, as data collected under these conditions
presents particular challenges and difference which have to be considered towards the
deployment of any objective monitoring system for use in the 'real world.
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Chapter 7

Conclusion

This study compared the performance of several feature engineered machine learning
models trained using gait data against state of the art, deep learning approaches for the
estimation of the MDS-UPDRS 1II, the most clinically used scale for motor assessment
of PwPD. Furthermore, an analysis on the contribution and effect of different models,
features and sensor locations of the collected data was also performed, providing a solid
foundation for further research on this topic. Future work for the estimation of this scale
using motion data should address the discussed limitations. Besides validating the cur-
rent results, including more data with longer walks and spanning a wider range of motor
symptom severity and possibly a HC, along with a more comprehensive search space for
the tested models’ parameters and used feature subsets could significantly improve model
performance. Furthermore, the study of data collected in free living settings for disease
staging through MDS-UPDRS III prediction should also be prioratized. The validation of
the feature engineered and deep learning models for the objective monitoring of the dis-
ease using such data is extremely important, as this is a fundamental requirement towards
the use of these approaches for objectively monitoring PD in the ’real world’.
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