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Significance

Identifying whether alien species 
follow similar spatiotemporal 
spread patterns as they disperse 
across the world could help 
guide transnational cooperation 
and national efforts for the 
prevention of biological 
invasions. Whether such 
cross-taxonomic patterns of 
spread exist remained hitherto 
unknown. Here, we show that 
these patterns exist and are 
characterized by the early 
presence of alien species in a few 
countries, playing central roles in 
the global trade network, 
followed by radiative spread into 
geographically close countries 
with similar climates. This 
supports a hierarchical type of 
spread, where some countries 
act as major dispersal hubs and 
determine global invasion 
routes. These findings help to 
identify high-risk countries as 
hubs of biological invasions.
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Our ability to predict the spread of alien species is largely based on knowledge of previ-
ous invasion dynamics of individual species. However, in view of the large and growing 
number of alien species, understanding universal spread patterns common among taxa 
but specific to regions would considerably improve our ability to predict future dynam-
ics of biological invasions. Here, using a comprehensive dataset of years of first record 
of alien species for four major biological groups (birds, nonmarine fishes, insects, and 
vascular plants), we applied a network approach to uncover frequent sequential patterns 
of first recordings of alien species across countries worldwide. Our analysis identified 
a few countries as consistent early recorders of alien species, with many subsequent 
records reported from countries in close geographic vicinity. These findings indicate that 
the spread network of alien species consists of two levels, a backbone of main disper-
sal hubs, driving intercontinental species movement, and subsequent intracontinental 
radiative spread in their vicinity. Geographical proximity and climatic similarity were 
significant predictors of same-species recording among countries. International trade 
was a significant predictor of the relative timing of species recordings, with countries 
having higher levels of trade flows consistently recording the species earlier. Targeting 
the countries that have emerged as hubs for the early spread of alien species may have 
substantial cascading effects on the global spread network of alien species, significantly 
reducing biological invasions. Furthermore, using these countries as early-warning sys-
tem of upcoming invasions may also boost national prevention and invasion prepar-
edness efforts.

alien species | globalization | invasion dynamics | network | spread routes

The expansion of transportation networks and the increasing movement of people and 
goods around the world are causing an unprecedented influx of alien species to regions 
outside of their native ranges (1–3). Many of these species established populations in these 
regions, thereby reshaping biogeography (4–6) and causing major negative impacts on 
biodiversity (7–8), economic activities (9), and human health (10–11). Reducing these 
impacts requires a comprehensive understanding of universal patterns of spread, which 
would be of crucial importance to improve our ability to predict the spread of alien 
species.

The spread of alien species is complex, often resulting from the interaction of human-me-
diated introductions and species’ own dispersal capabilities. Although much effort has 
been invested to improve our understanding of spreading dynamics, this has been mainly 
assessed for single or few species (e.g., refs. 12 and 13), often at limited (i.e., national or 
subnational) extents (e.g., ref. 14) or considering a limited set of regions of the world (e.g., 
refs. 15 and 16). In addition, the diversity of applied approaches renders a comparison of 
studies difficult. Thus, it remains unknown if the patterns of alien species spread are 
consistent across major taxonomic groups at large scales. Given the tight relationship 
between anthropogenic drivers and alien species introductions, it seems likely that some 
countries are frequently invaded first and serve as hubs for the spread to adjacent regions. 
Furthermore, spatiotemporal patterns of alien species spread may differ between taxonomic 
groups, resulting from differences in natural dispersal abilities or already colonized realms 
(e.g., fishes versus birds) or in how distinct human activities shape the patterns of species 
introductions (17–19). Knowing such general patterns of spread opens opportunities for 
targeted preventive alien species management.

Here, we use the by far most comprehensive database on the year of first recording of 
alien species in regions worldwide (1) to analyze the cross-taxonomic patterns of interre-
gional spread of alien species worldwide. This database has been analyzed already before 
in other studies, which, however, mostly focused on temporal developments of alien species 
accumulations, while here, we use first records to infer spatial dynamics of spread and to 
identify commonalities in spread dynamics across taxa. We focus on the four most data-
rich taxonomic groups (birds, nonmarine fish, insects, and vascular plants) and use 
sequence mining techniques (20) to identify frequent sequences of first records of alien 
species across countries of the world. We perform this assessment for the period from D
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1950 onward, which covers the unprecedented acceleration of 
alien species spread that lasts until today (1, 21, 22). Subsequently, 
we identify drivers of the sequential patterns of alien species 
spread. We focus on two complementary components of this phe-
nomenon: i) the proportion of the same species recorded between 
countries (= compositional similarity component) and ii) the rel-
ative timing of species recording in each country (= temporal 
component). Concerning the first component, our expectation is 
that countries which are geographically closer have strong trade 
relationships and are climatically similar will have more similar 
alien species assemblages, owing to easier interregional alien spe-
cies flows driven by human activities and postestablishment spread 
(15, 23–26). As for the second component, our expectation is that 
the spread of alien species will occur earlier in countries with 
higher human population sizes and higher levels of economic 
activities as a result of elevated magnitudes and earlier onsets of 
propagule and colonization pressures (27, 28).

Results

Spatiotemporal Patterns of Spread. The analysis is based on 
first records of 839 alien birds, 366 alien nonmarine fishes, 
3,702 alien insects, and 10,479 alien vascular plants in 53, 44, 
56, and 53 countries having 10 or more first records for each 
group, respectively (SI  Appendix, Fig.  S1 and Table S1). We 
calculated a metric assessing the proportion of species recorded 
first in one country and next in another from 1950 to the 
present, for all pairs of countries, which we call the proportion 
of sequential records or simply “S

��⃑ab
” consisting of the number 

of species recorded first in country a and next in country b 
divided by the minimum species number of a and b. The values 
of this metric range from 0 to 1, where higher values indicate 
a higher proportion of species observed first in country a and 
afterward in country b. On average, the highest proportion of 
sequential records of alien species among country pairs is found 
for nonmarine fishes (average S

��⃑ab
 = 0.19 ± 0.16 SD), followed 

by birds (0.18 ± 0.15), insects (0.13 ± 0.12), and vascular 
plants (0.11 ± 0.14). That is, alien fishes tend to be more evenly 
distributed compared with other taxa, while plants have more 
alien species with narrow ranges.

A network visualization of S
��⃑ab

 values shows the relatedness of 
countries according to the similarity of recorded alien species 
(Fig. 1). In these networks, countries (nodes) sharing more species 
are grouped closer together, whereas those with few or no species 
in common are shown further apart. Directed links of varying 
thickness represent the individual S

��⃑ab
 values. Strong links indicate 

that species recorded in one country (origin) are frequently 
recorded later in another (destination). Note that these links may 
deviate from the actual physical path taken by the species (i.e., 
they may spread directly from the origin to the destination country 
or through other countries).

For birds, countries are largely grouped by their geographic 
location, which is indicated by countries with the same symbols 
clustering together in Fig. 1. This means that, in general, alien 
birds tend to spread over short distances to adjacent countries. 
However, a few countries having more alien birds in common 
with other countries (i.e., having a higher total strength in the 
network) stick out (Fig. 1A and SI Appendix, Fig. S2A), namely 
the United States (USA), Spain (ESP), Portugal (PRT), the United 
Kingdom (GBR), the Dominican Republic (DOM), Germany 
(DEU), and France (FRA), which are mostly located at the center 
of the network, detached from the continent-level groupings 
(Fig. 1A and SI Appendix, Fig. S3). These countries can be 

considered as being global hubs of alien bird spread, sharing many 
species records among each other, and forming a backbone net-
work of strongly connected countries, which are tightly connected 
to the respective continental subnetworks, which were mostly 
determined by geographical proximity.

The analysis of sequential recordings provided additional 
insights into the dynamics of spread. By comparing the strength 
of outflowing link weights (“outstrength”) and inflowing link 
weights (“instrength”) of each country, we could identify countries 
recording new alien species earlier or later than other countries 
(Fig. 2). Countries found on the left side of the main diagonal 
line in Fig. 2 have a higher outstrength and record the species 
earlier, and those below the diagonal have a higher instrength and 
report them later in general. This analysis revealed that many 
species were recorded first in the USA and subsequently some-
where else (Fig. 2A). In addition, alien birds were frequently 
recorded first in Germany, New Zealand (NZL), the United 
Kingdom, and Australia (AUS). Conversely, Spain, Portugal, 
Cuba, and the Dominican Republic are identified as “sink” coun-
tries, i.e., species are generally recorded there later than in most 
other countries (Fig. 2A).

Similar to alien birds, the network of sequential recordings for 
nonmarine fishes shows two levels of clustering of countries: one 
largely according to their geographic and continental location and 
another at the center of the network formed by countries from 
distinct continents and forming the backbone network 
(Figs. 1B and 2B). Only Asian countries are spread throughout 
the network. The clustering according to continental regions again 
indicates the sharing of high proportions of same-species records 
among adjacent countries. A few major hubs form the central 
network of global fish spread including countries mainly located 
in East and Southeast Asia and North and South America such as 
Haiti (HTI), Vietnam (VNM), Japan (JPN), Philippines (PHL), 
and China (CHN) (SI Appendix, Fig. S2B). A few countries show 
a marked trend for recording species earlier, namely Japan, the 
USA, Philippines, and Thailand (THA), whereas countries where 
alien fishes are consistently recorded later include Haiti, Cambodia 
(KHM), and Tunisia (TUN) (Fig. 2B).

For insects, the network of sequential recordings is densely 
connected among European countries, and links are sparser to 
countries of other continents and between countries of other con-
tinents (Fig. 1C). In general, the arrangement of countries reflects 
their geographical proximity, which is particularly apparent for 
European countries (e.g., most Scandinavian, eastern European, 
and Mediterranean countries are shown close to each other). This 
indicates higher proportions of shared species records among 
neighbor countries. Italy (ITA) and France (FRA) emerge as cen-
tral hubs, sharing many species records with several other European 
countries (SI Appendix, Fig. S2C) while also being the countries 
where alien insects are generally recorded earlier (Fig. 2C). Some 
countries are also consistently identified as sinks, namely Albania 
(ALB) and Ukraine (UKR) (Fig. 2C); however, the total strength 
of these countries in the network is lower than that for Italy and 
France (SI Appendix, Fig. S2C), indicating a lower proportion of 
species shared with other countries. Outside Europe, only a few 
strong links emerge, for example, the USA followed by Canada 
(CAN), China (CHN) followed by Taiwan (TWN), and Chile 
followed by Argentina, which again highlights the geographic 
structure of the network (Fig. 1C).

Finally, the network of sequential recordings for vascular plants 
is densely connected among European countries, but less so with 
countries on other continents and within those (Fig. 1D), similar 
to what has been observed for insects. As for previous groups, the 
highest sharing of species takes place between geographically close D
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countries, leading to country groupings largely reminiscent of 
continents. Countries with higher proportions of alien plant spe-
cies in common with other countries are Belgium (BEL), Australia, 
and the United Kingdom (SI Appendix, Fig. S2D), which are also 
prominent early recorders of the species (Fig. 2D). However, while 
the abovementioned European countries have in common many 
early records of the same species with other European countries, 
alien plant species recorded in Australia have mostly been recorded 
later in countries on other continents, predominantly in Asia and 
Africa, including Singapore (SGP), Hong Kong (HKG), Egypt 
(EGY), South Africa (ZAF), or Reunion (REU) (Fig. 1D).

Sensitivity of Spread Patterns to Number of First Records per 
Country, Geographical Representativity, and Surveillance 
Capacity. These analyses are based on a reference set of well-
sampled countries, each having a minimum of 10 first records 
for each taxonomic group (SI  Appendix, Table S1). To assess 
the impact of using other thresholds of minimum number of 
records per country, we calculated S

��⃑ab
 values along a gradient 

of thresholds, ranging from 1 to 20. We found that the values 
of total strength, outstrength, and instrength calculated with 
different thresholds were strongly positively correlated with 
those obtained for the reference set of countries for all taxonomic 

Fig. 1. Spread networks of alien (A) birds, (B) nonmarine fishes, (C) insects, and (D) vascular plants across countries of the world. Countries are represented 
as nodes, and the proportion of sequential records is given as directed weighted links. A thick link flowing from one country to another means that a high 
proportion of species recorded in the first country was later recorded in the second country regardless of the actual physical path taken by the species (e.g., 
directly between the two countries or through other countries). Countries with higher similarity in the identity of species recorded are grouped closer together. 
Node colors correspond to the sum of their link weights and correspond to node “strength” in the network, which indicates the proportion of species shared 
with other countries. A color at the right edge of the gradient indicates that a country has its species in common with many other countries (i.e., the maximum 
possible strength), while a color at the left edge indicates that the country has no species in common with other countries. Abbreviations of country names 
correspond to the ISO 3166-1 alpha-3 codes.
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groups (mean Pearson correlation coefficient ≥0.88; SI Appendix, 
Table S2), suggesting an overall robustness of identified patterns 
to variations in the minimum number of records per country. 
These patterns may also be sensitive to differences in the number 
of countries representing each continent. Therefore, we calculated 
S
��⃑ab

 values for 100 stratified random samples of countries, with 
each sample having a maximum of five countries per continent 
(Materials and Methods). For birds, nonmarine fishes, and vascular 
plants, the average total strength of countries in the replicated 
networks (SI Appendix, Fig. S4), as well as the average relative 
timings of species recording (SI  Appendix, Fig.  S5), showed 
only a few country-level deviations from those using data for all 
countries. This suggests the overall robustness of results based on 
all countries to geographical bias. For insects, a few more relevant 
changes occur, mainly affecting non-European countries. These 
include a substantial increase in species sharing for the USA and 
Argentina (ARG) (SI Appendix, Fig. S4C), as well as an increase in 
the earliness of relative timings of species recording for the USA 
(SI Appendix, Fig. S5C). The increase in species sharing for non-
European countries is unsurprising considering the dominance 

of European countries in the whole dataset and suggests caution 
in interpreting patterns for alien insects beyond this continent.

We also assessed potential effects of different levels of species 
recording effort in shaping the obtained patterns. This consisted 
of calculating S

��⃑ab
 values using only the subset of 25% best-known 

species, which can plausibly be considered easier to identify and 
thus less reliant on specialized resources to be recorded. To identify 
this set of species, we extracted the frequency of each species’ sci-
entific name in a large corpus of multilingual books published 
between 1950 and 2019 (Materials and Methods). For all four 
species groups, the patterns for the best-known species show 
noticeable differences for a few countries (for example, Albania 
reduced its position as a sink country for insects) (SI Appendix, 
Figs. S6–S8). One difference consistently verified across countries 
and taxa concerns the occurrence of higher compositional similar-
ities, as evidenced by warmer node colors in the networks 
(SI Appendix, Fig. S6) and corresponding higher total strength 
values (SI Appendix, Fig. S7). This increase likely means that the 
best-known species are generally more widespread across countries 
or are better recorded, as hypothesized. However, the overall 

Fig. 2. Relative timing of species recording for alien (A) birds, (B) nonmarine fishes, (C) insects, and (D) vascular plants. Scatterplots represent the relationship 
between the sum of countries’ outflowing link weights (outstrength), which indicates earlier recordings, and sum of inflowing link weights (instrength), denoting 
later recordings. Countries with outstrength exceeding instrength are found on the left side of the main diagonal line and record, on average, the species in 
earlier stages of spread. Conversely, countries with higher instrength values record, on average, the species later than other countries. Country colors correspond 
to the bivariate combination of x and y axes. Abbreviations of country names correspond to the ISO 3166-1 alpha-3 codes.
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structures of geographical clustering and relative timing of species 
recording among countries are largely similar to the ones obtained 
for all species. This similarity is supported by a strong correlation 
between the values of total strength, outstrength, and instrength 
of countries when using all species and the best-known species 
only (Pearson correlation coefficient >0.76; SI Appendix, Table S3),  
suggesting the robustness of identified patterns to differences in 
levels of surveillance capacity of countries.

Potential Human and Environmental Drivers. To test for 
significant associations between sequential recordings and 
geographical, political, and socioeconomic relationships of 
countries (SI Appendix, Table S4), we performed regression analyses 
accounting for the dyadic nature of the variables (Materials and 
Methods). Concerning the compositional similarity component 
of these sequences—which is given by the sum of link weights 
for each pair of countries—we found a significant (α = 0.05) 
negative relationship for geographical distance and for absolute 
difference in mean temperature and a positive relationship for 
the sum of trade flows in the 1990s and 2000s for all taxonomic 
groups (Fig.  3). For birds and nonmarine fishes, significant 

negative relationships were also identified for absolute differences 
in mean annual precipitation. Recent colonial relationships (i.e., 
if countries have had a common colonizer or colonial relationship 
after 1945) were nonsignificant across taxa. All models explained a 
substantial amount of variation in S

��⃑ab
 values (R2 ≥ 0.53) and had 

a reasonable level of out-of-sample predictive accuracy (fivefold 
relative absolute error (RAE) ≤ 0.68).

The significant negative relationship between geographic dis-
tance and compositional similarity is robust to variations of the 
threshold of minimum number of first records per country 
(SI Appendix, Fig. S9 and Dataset S1), being identified in all mod-
els across a gradient of thresholds and for the four taxonomic 
groups, regardless of the period of the trade data used. The negative 
relationship identified for temperature differences is also verified 
in all or the majority of replicate models, with the only exception 
occurring for insects when using trade data from the 1980s. The 
positive relationship for the sum of trade flows in the 1990s and 
2000s has also been frequently identified, although with a lower 
prevalence than the two previous predictors. The significant neg-
ative relationship for absolute differences in mean annual precip-
itation has been recurrently identified for birds, but less so for 

Fig. 3. Results of regression models testing for predictors of compositional similarity (i.e., the sum of S
��⃑ab

 values) between pairs of countries, for alien (A) birds,  
(B) nonmarine fishes, (C) insects, and (D) vascular plants. The dependent variable is logit transformed, and five variables describing pairwise relationships between 
countries were used as predictors. The coefficients and SE for each predictor are given for three models, each representing the sum of pairwise trade flows in 
a different period: 1981 to 1990 (purple), 1991 to 2000 (green), and 2001 to 2010 (yellow). Goodness of fit (R2) and out-of-sample predictive accuracy (relative 
absolute error; RAE) are given for each model.
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nonmarine fish, particularly in models using trade data from the 
1980s. Recent colonial relationships show the highest prevalence 
of nonsignificant relationships and of variations in the type of 
significant relationships, yet for birds a significant negative rela-
tionship has been identified for this predictor in more than half 
of the models, regardless of the period of the trade data used. 
Considering only the best-known species, the relationships for 
geographical distance, absolute temperature differences, and sum 
of trade flows during the 2000s are fully maintained, whereas the 
relationship between sum of trade flows in the 1990s and com-
positional similarity for nonmarine fishes becomes nonsignificant 
(SI Appendix, Fig. S10). Absolute differences in precipitation also 
become nonsignificant for nonmarine fishes and vascular plants 
in models using trade data for the 1990s and 2000s and significant 
in all models for birds and insects. Replicate regression analyses 
for randomly sampled subsets of countries show variation in the 
significance of variables and in the type of relationship. For birds, 
nonmarine fishes, and vascular plants, significant negative rela-
tionships between compositional similarity and absolute differ-
ences in temperature and geographical distance were the most 

robust, occurring in all or in the majority of replicate models 
(SI Appendix, Fig. S11 and Dataset S2). On the other hand, a 
negative relationship between geographical distance and compo-
sitional similarity was the only relationship consistently found in 
replicate models for insects. The significance of relationships for 
the sum of trade flows had a low consistency across taxa. Altogether, 
these results support our findings from the network analyses that 
geographically close countries and countries positioned in the 
same climatic zones (as expressed by their mean annual tempera-
ture) have a higher propensity to record the same species.

As for the temporal component, all four taxonomic groups 
showed a significant positive relationship with bilateral trade val-
ues for the three time periods represented by the predictors (i.e., 
1980s, 1990s, and 2000s; Fig. 4), implying that alien species are 
consistently recorded earlier in countries having higher trade flows 
(a depiction of these flows are provided in SI Appendix, Fig. S12). 
In addition, we found that alien birds, nonmarine fishes, and 
vascular plants are recorded significantly earlier in countries with 
a high GDP per capita, although depending on the period repre-
sented. No significant relationships were identified for the variable 

Fig. 4. Results of regression models testing for predictors of differences in the relative timing of species recording among countries (i.e. the S⇀
ab

 values), for alien 
(A) birds, (B) nonmarine fishes, (C) insects, and (D) vascular plants. The dependent variable was logit transformed, and three variables describing socioeconomic 
relationships between pairs of countries were used from 1981 to 1990 (purple), 1991 to 2000 (green), and 2001 to 2010 (yellow). Goodness of fit (R2) and out-
of-sample predictive accuracy (relative absolute error; RAE) are given for each model.D
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representing differences in human population size. All models 
explained a substantial amount of variation in S

��⃑ab
 values (R2 ≥ 

0.51) and had reasonable levels of out-of-sample predictive accu-
racy (fivefold relative absolute error ≤ 0.73).

These results are largely robust to variations in the threshold of 
minimum number of first records per country. The significant 
positive relationship for bilateral trade values is found in the 
majority of models along a gradient of thresholds for birds, insects, 
and vascular plants, regardless of the period assessed (SI Appendix, 
Fig. S13 and Dataset S1). For nonmarine fish, this relationship is 
also identified, although with high consistency only in models for 
the 2000s. On the other hand, the significant relationship between 
early species recording and high GDP is consistent across thresh-
olds only for vascular plants in the 1990s and 2000s. Differences 
in human population were dominantly nonsignificant for all taxa 
and time periods. The results obtained for the best-known species 
are also similar to the ones for all species, with a significant positive 
relationship with bilateral trade values being found in all models 
except the one representing this variable in the 1980s for nonma-
rine fishes (SI Appendix, Fig. S14). The significance of relation-
ships for GDP also changed slightly, with birds and vascular plants 
now having significant positive relationships for the three time 
periods. Replicate regression analyses for randomly sampled sub-
sets of countries further support the importance of trade as being 
the most robust predictor for sequential recordings, occurring in 
most replicate models for all species groups (SI Appendix, Fig. S15 
and Dataset S2). Relationships with other variables received very 
little support, including GDP per capita. Additional regression 
models were run including a predictor representing the capacity 
of countries to record alien species in their early stages of invasion, 
which identified a significant positive relationship with trade flows 
for all species groups and time periods, and nonsignificant rela-
tionships for all other variables except GDP per capita in the 1990s 
and 2000s for nonmarine fish (SI Appendix, Fig. S16). Altogether, 
these results support that alien species are consistently recorded 
earlier in countries having higher trade flows.

Discussion

Despite the publication of various studies on the global distribu-
tion of alien species (e.g., refs. 29 and 30), the dynamics of their 
spread remain surprisingly poorly known, although an under-
standing of general spread patterns is essential to predict the dis-
tribution of alien species and prevent their impacts (31). Using 
data for four major taxonomic groups, we here show that the initial 
stages of global spread of alien species tend to be concentrated in 
a recurrent set of countries and that subsequent spread mainly 
takes place in their geographical proximity. These patterns suggest 
a hub-and-spoke model (32), where species’ spread is driven by a 
few countries, facilitating spread to major hubs and to adjacent 
countries in geographic close proximity on the same continent. 
This interpretation is backed by the large number of documented 
cases of hub-and-spoke type of spread for individual species, 
including birds (13), insects (12), nonmarine fishes (33), and vas-
cular plants (34), and by the recent recognition that secondary 
species introductions (those originating from regions where species 
are nonnative) are very common in the global spread routes of 
alien species, the so-called bridgehead effect (16). Here, we show 
that this does not only apply to individual species, but indeed, 
such hub-and-spoke network structures can also be identified for 
major taxonomic groups using information on the spread for hun-
dreds of alien species. Statistical analyses support our conclusions 
that the observed patterns are largely driven by geographic distance 
at continental scale and anthropogenic factors such as trade 

imports. Our analyses also indicate that species sharing is generally 
higher among countries having similar macroclimatic conditions, 
supporting our initial expectation of recurrent postestablishment 
spread where environmental conditions are suitable to the species 
requirements. This finding adds to the body of work that identifies 
climatic similarity between regions as an important indicator of 
invasion risk (6, 15, 23–25).

The degree of distinction between a backbone network of major 
hubs and continental subnetworks differs between taxa and is 
most apparent for birds and fishes. For insects, indirect support 
for this type of spread is available as Italy and France have been 
identified previously as being countries of frequent first recordings 
of alien insects and subsequent spread within Europe (35). 
However, for alien insects and plants, the networks of sequential 
recordings are dominated by European countries, which is likely 
a consequence of data availability. Although both groups represent 
those with the highest numbers of first records in the database, a 
high proportion of first records is from Europe (57% for insects 
and 61% for plants), resulting in high proportions of species shar-
ing and strong links in the networks of sequential recordings for 
European countries. Even if many records exist for non-European 
countries, the unequal distribution hinders the identification of 
backbone networks as it was possible for birds and fishes. The 
influence of unequal sampling is also apparent at the continental 
level, where countries with particularly comprehensive data such 
as Belgium are also found in the center of well-connected coun-
tries and early recordings. Furthermore, the presented results are 
based on recordings, which are often delayed compared with 
actual introduction and incomplete, and do not necessarily reflect 
actual spread routes. Still, the generality of the results across anal-
yses supported by sensitivity analyses indicates that the observed 
findings are robust.

Our results show how countries relate in terms of the identity 
of alien species and the relative timing of their recording. Thus, 
our findings offer guidance on the prioritization of efforts aiming 
to minimize invasion risks at transnational scales. Assuming a 
dominant manifestation of hub-and-spoke species spread, efforts 
seeking to minimize invasion risks at the global and continental 
scales should prioritize spread prevention from countries identified 
to be at the top of the spread hierarchy – i.e., the spread hubs (e.g., 
Australia for vascular plants, the USA for birds, Japan and the 
USA for nonmarine fish, and Italy and France for insects). The 
identification of the measures required to enable this minimization 
is a complex task (31), which falls outside the scope of our work; 
however, it is apparent that coordinated global efforts reducing 
the probability of spread through major hubs can have substantial 
knock-on effects on alien species spread worldwide (36). The 
spread patterns may also indicate the invasion patterns that will 
prevail during the coming years, reflecting the unfolding of inva-
sions that have already been set in motion (37). For example, in 
the absence of better information, or of known changes in the 
invasion dynamics, there is no reason to expect that alien vascular 
plants previously recorded in Australia will stop dispersing along 
the Indo-Pacific region or that alien insects recorded in Italy or 
France will stop spreading to other European countries.

Materials and Methods

Data on First Observations of Alien Species. Data on the year of first report 
of alien species in regions worldwide were retrieved from the Alien Species First 
Record Database v2 (1, 38), which integrates previously scattered data on the 
year of first records of alien species in regions (e.g., countries and subnational 
units such as provinces or islands). This database is by far the most up-to-date 
and largest of its kind, holding over 60,000 first records of more than 22,000 
species from a total of 280 regions (1, 38).D
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This database includes records of established, nonestablished, eradicated, 
or extinct alien species in countries and subnational regions. As our aim is to 
analyze general patterns of species spread, we considered all types of records, 
i.e., regardless of the species’ invasion status. However, it is important to note 
that all records refer to the recording of species in the wild (i.e., individuals 
under human care or cultivation are not considered). In addition, recording 
rates for established alien species are expected to be more prevalent in the 
data as they represent more than 55% of all records for which establishment 
information is known.

We only used records for countries and autonomous subnational regions 
(e.g., Puerto Rico, Bermuda) (hereafter referred to as “countries” for simplicity) 
and excluded marine species to comply with the terrestrial-based delineation of 
the study units. Marine and nonmarine organisms were distinguished using the 
habitat information provided by the World Register of Marine Species (WoRMS; 
39). Species listed as “marine” in WoRMS were removed from our analysis. As 
information about the realm is missing for many species, we conducted a com-
plementary assessment for groups with a high proportion of aquatic species (fish, 
crustaceans, mollusks, bryozoa, and algae). Species with no records on WoRMS 
and identified in the literature as marine were also excluded. Finally, to reduce the 
sensitivity of the analysis to biases in recording dates, we reduced the temporal 
resolution of records from annual to quinquennial (i.e., 5-y periods). To increase 
the robustness of results, we only analyzed groups of species represented by a 
minimum of 20 countries, each country having at least 10 first records from 1950 
onward. Four taxonomic groups satisfied these criteria: birds, insects, nonmarine 
fishes, and vascular plants, totaling 2,763, 7,175, 1,443, and 27,761 first records, 
respectively.

Country-Level Descriptors. We calculated the closest distance between each pair 
of countries (in km) in R (40) using the country delineations in Natural Earth’s “Admin 
0” shapefile (version 5.1.1; https://www.naturalearthdata.com). Countrywide aver-
ages of temperature and total precipitation were calculated in GIS using the raster 
files “annual mean temperature” and “annual precipitation” supplied by WorldClim 
(https://www.worldclim.org/; version 2.1; 41) for the period 1970 to 2000. The vari-
ables on the socioeconomic characteristics of countries and their historical relations 
were extracted from the CEPII Gravity database v.202102 (http://www.cepii.fr/; 42). 
These variables were a) whether the countries have ever established a colonial rela-
tionship or were part of the same colonial empire since 1945 (coded as 1 if so or 0 if 
otherwise); b) the difference between the GDP per capita of the first and the second 
country in the pair (in US$); and c) the difference between the human population 
size of the first and the second country in the pair. Data on countries’ bilateral trade 
flows were extracted (in GBP and converted to US$) from the CEPII TradeHist database 
v.4 (http://www.cepii.fr/; 43). To account for changes in international trade patterns 
and socioeconomic status of countries over time, the average differences in GDP per 
capita and in human population size and average bilateral trade flows were calculated 
for three time periods: 1981 to 1990, 1991 to 2000, and 2001 to 2010. Data for 
previous decades were too incomplete to use.

Sequential Pattern Mining. To identify spatiotemporal patterns in first obser-
vations of alien species, we used sequential pattern mining (20). This technique 
takes the temporal order of events into account and has been applied to analyze 
sequences of frequently purchased products (44), sequences of medical pre-
scriptions (45), or spatiotemporal patterns of pollution levels (46). In sequential 
pattern mining, the interest of each sequence is provided by a “support measure.” 
This measure can reflect different criteria (e.g., sequence length and “profit”; 
20), but it generally refers to the frequency of occurrence of the sequence, i.e., 
a high support value implies that a specific sequence appears more frequently. 
Following this approach, we here assessed the support of each sequence formed 
by an ordered pair of countries sharing the same alien species occurrence. The 
support was measured in terms of the proportion of recordings of the sequence 
relative to the number of sequential events possible, as follows:

S⇀
ab

=

∑

�

⇀

ab

�

min
�

n(a), n(b)
� ,

where ��⃑ab is a sequence formed by an alien species recorded first in country a and 
afterward in country b, n(a) is the number of alien species recorded in country 

a, and n(b) is the number of alien species recorded in country b. We call S
�⃑ab

 
the proportion of sequential recordings. Importantly, and because our interest 
concerns only the sequences ending in 1950 or afterward (see above), for the 
calculation of ��⃑ab, the alien species in country a may have been recorded prior to 
1950, but in country b, they must have been recorded in this year or afterward. In 
the same manner, parameter n(a) refers to all alien species recorded in country a, 
but parameter n(b) refers to those recorded in 1950 or afterward. Thus, the support 
value S

�⃑ab
 corresponds to the number of species recorded first in country a and 

next in country b divided by the potential number of these sequences, which is 
expressed by the minimum species number of a and b. A valuable property result-
ing from the standardization of the number of spread events by the minimum 
size of the species pool is that the proportion obtained is robust to differences in 
species richness between countries, similar to the results of the Simpson metric 
in the calculation of compositional similarities (47). SI Appendix, Fig. S17 provides 
an illustrated example of the calculation of S

�⃑ab
 values for a pair of countries.

The values of S
�⃑ab

 range from 0, corresponding to a situation where no spe-
cies in country a was later found in country b, to 1, when all species in country 
a—irrespective of their number—were found later in b—irrespective of how many 
other species were found in b. The calculation of this metric for all ordered pairs 
of countries produces a nonsymmetrical square matrix, with the matrix rows rep-
resenting the value of S

�⃑ab
 when countries are first in the sequence (i.e., country 

a on the ��⃑ab sequence) and the matrix columns representing the value of S
�⃑ab

 
when countries are second in the sequence (i.e., country b on the ��⃑ab sequence).

We visualized the S
�⃑ab

 matrix with each country being represented as a node 
of a network and the values of S

�⃑ab
 being represented as weighted directed links 

between country pairs. We used the Fruchterman–Reingold algorithm to find 
a two-dimensional layout of the networks (48). This is an iterative algorithm, 
which scales the width of links as a function of their weight and adjusts node 
positions so that countries from pairs having higher support values are grouped 
closer together, whereas those with lower support are shown further apart. These 
techniques were implemented using the “qgraph” R package (49).

We also examined the relative timing of alien species recording by country. This 
was performed by calculating the outstrength and instrength metrics (50) for each 
country in the network of S

�⃑ab
 values. The outstrength of a particular node (country) 

in the network corresponds to the sum of its outflowing link weights, while its 
instrength corresponds to the sum of the inflowing link weights. A high outstrength 
value means that alien species recorded in that country are frequently recorded 
subsequently in other countries. Conversely, a high instrength value means that a 
country generally behaves as a receptor of alien species from all the other countries. 
Accordingly, we plotted the outstrength and instrength values of countries by means 
of a scatterplot to assess their relative timings of alien species recording.

Testing for Drivers of Sequential Patterns of First Records. Finally, we 
tested for significant associations between the values of S

�⃑ab
 and country-level 

descriptors. We used the social relations regression model  (51), which allows 
considering the nonindependence of dyadic-type observations (i.e., observations 
pertaining to a pair of subjects), as in the case of S

�⃑ab
 values.

For each species group, we performed two sets of analyses, one testing for 
predictors of compositional similarity among countries—given by the sum of S

�⃑ab
 

for each pair of countries—and the other testing for predictors of relative timing 
of species recording—given by the S

�⃑ab
 values directly. In the first set, we used the 

five variables describing geographic and political contexts as predictors, namely 
geographical distance (log transformed), colonial relations after 1945, pairwise 
sums of trade flows, and difference in annual mean temperature and total pre-
cipitation. Three models were built, each representing the sum of trade flows 
in a distinct decade (1981 to 1990, 1991 to 2000, and 2001 to 2010). These 
variables are symmetrical, meaning that their value is the same, irrespective of 
the order in which the two countries are compared. To conform with this property, 
as a dependent variable, pairwise sums of S

�⃑ab
 values were used. These pairwise 

sums correspond to the link strength between a pair of countries in a network 
and quantify their degree of compositional similarity. These values were logit 
transformed to improve the robustness of model estimates (52). We hypothesized 
that pairs of countries showing higher relatedness (i.e., being geographically 
close, sharing similar climates, and sharing recent colonial relationships) will 
also have in common more alien species (15, 23–25).

In the second set of models, we used the socioeconomic variables GDP 
per capita, human population, and trade flow (log transformed) as predictors. D
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Three models were built for each species group, each representing values of 
GDP per capita, human population, and trade flows for a distinct decade (1981 
to 1990, 1991 to 2000, and 2001 to 2010). Similar to S

�⃑ab
 values, these var-

iables are directed, meaning that their values reflect the order in which the 
two countries are compared. Logit-transformed S

�⃑ab
 values were used as the 

dependent variable. We expect that countries having higher values of GDP, 
trade flows, and human population will generally record alien species earlier 
due to the combined effects of increased and earlier onset of propagule and 
colonization pressures (27, 28).

For both sets of models, we measured their predictive accuracy using a five-
fold cross-validation procedure. In this procedure, 80% of the data are used to 
fit the model and 20% are left out to compare with predictions. This assessment 
is repeated 5 times, each time using a distinct data fold for model evaluation. 
Predictive performance was measured with the RAE, for which a value of zero 
represents a perfect match between predicted and observed values, while a 
value of 1 corresponds to the level of error of a “naive” predictor, consisting 
simply the average of observed values used for evaluation (53). Models were 
fit using the “amen” R package (51, 54). To rule out issues of multicollinearity 
among the predictor variables entering the models, we measured their variance 
inflation factor (VIF) using the “vif” function of “car” package (55). No relevant 
levels of multicollinearity were identified (i.e., all VIF values <2; SI Appendix, 
Tables S5 and S6).

Sensitivity of Results to Threshold of Minimum Number of Records per 
Country. Countries with a low number of first records are likely to be less rep-
resentative of the general patterns of species spread as they are more sensitive 
to randomness in the driving processes and to potential data errors (caused, for 
example, by errors in species identification). On the other hand, restricting the 
analysis to countries with a high number of first records reduces the number of 
those included in the analysis and the geographical representativeness of results. 
We use a reference threshold of 10 or more first records per country, which we 
believe to provide a good trade-off between these two criteria. However, we 
also assess the sensitivity of results to variation in the value of this threshold. 
For that purpose, we calculated the S⇀

ab

 values for thresholds ranging from 1 to 
20. We then measured the Pearson correlation coefficient between countries’ 
total strength, outstrength, and instrength for each threshold and the values 
of these metrics using the reference threshold (i.e., 10 or more first records). In 
addition, for each threshold, we reran the regression analyses testing for signifi-
cant predictors of compositional similarity and sequential recordings of species 
among countries.

Sensitivity of Results to Number of Countries per Continental Region. 
To assess the sensitivity of results to differences in the number of countries 
representing each continent, we randomly resampled, without replacement, 
up to five countries per continental region. A total of 100 random samples 
were made, and for each sample, we computed 1) the outstrength and 
instrength of each country, and 2) the regression analyses for compositional 
similarity and sequential species recordings among countries. Outstrength 
and instrength values were averaged across the 100 replicate samples and 
visualized through a scatterplot. Results of regression analyses were summa-
rized by summing the number of significant positive, significant negative, 
and nonsignificant relationships (α = 0.05) for each predictor across the 
100 samples.

Robustness of Results to Variation in Species Sampling Effort among 
Countries. We also assessed the robustness of the results to varying levels of 
species recording effort between countries. To perform this, we focused only 
on a subset of best-known species in each taxonomic group. Species better 
known to experts and nonexperts tend to be easier to identify and record (56), 
plausibly minimizing the role of available taxonomic expertise and surveillance 
efforts of countries as drivers of species recording patterns. To quantify human 
familiarity with each species, we used the Google Ngram (57), an algorithm 
that returns relative frequencies of words, or word sequences, appearing in 
several million digitized books published between 1500 and 2019. By this, we 
make the reasonable assumption that species appearing most frequently in this 
corpus are most familiar to experts and nonexperts. Using the ngramr package 
(58) for R, we obtained annual relative frequencies of the scientific name of 

each species for the time period covered in our analysis (1950 to 2019). These 
values were obtained from seven separate book corpora, each comprising books 
in one of seven languages (Chinese, English, French, German, Italian, Russian, 
and Spanish). We averaged the values for each species across years and across 
the seven corpora, so that species that appear most frequently across years 
and across a wider range of languages receive higher scores. The three most 
familiar species of each group, as indicated by this procedure, were Columba 
livia, Passer domesticus, and Gallus gallus for birds, Drosophila melanogaster, 
Aedes aegypti, and Musca domestica for insects, Cyprinus carpio, Carassius 
auratus, and Esox lucius for nonmarine fishes, and Zea mays, Phaseolus vulgaris, 
and Vicia faba for vascular plants.

Using the 25% highest ranking species in each taxonomic group, we computed 
1) the network of first recording patterns, 2) scatterplots of countries’ outstrength 
and instrength values, and 3) the regression analyses testing for predictors of 
temporal recording patterns and compositional similarity.

Robustness of Results of Temporal Models to Variation in the Capacity 
of Countries to Record Species in Early Stages of Invasion. We also 
assessed the robustness of results from temporal models to variation in the 
capacity of countries to record alien species in early stages of invasion. This 
capacity differs from “simple” species recording effort (considered above) as it 
is mainly determined by countries’ proactiveness toward the identification of 
invasions (e.g., surveillance initiatives), while recording efforts are also deter-
mined by reactive efforts (e.g., after impacts being apparent). To perform this 
assessment, we collected the categorization of countries according to their 
proactive capacity toward biological invasions performed by Early et al. (59; 
https://www.fabiogeography.com/data). These authors ranked countries from 
0 (lowest capacity) to 3 (highest capacity), according to their capacity to prevent 
the introduction of IAS and identify and control newly emerging invasions. This 
assessment was based on reports to the Convention on Biological Diversity 
and considered, among other things, existing legislation on cargo inspection 
procedures, public awareness programs, and resources for species identifica-
tion and reporting of emerging or spreading invasions. Nine countries are 
at the top of the proactiveness ranking: Australia, Austria, Belgium, Canada, 
Switzerland, Germany, the United Kingdom, New Zealand, and the USA. We 
used the countrywise differences in this ranking as an additional predictor in 
the temporal models and compared the results obtained with those of models 
not including this predictor.

Data, Materials, and Software Availability. Previously published data were 
used for this work (All data are freely available online. The major database of 
first records underlying the analysis is available at https://doi.org/10.5281/
zenodo.4632335. Sources of the predictor variables are indicated when the 
variable is first mentioned in the materials and methods section. R code 
and post-processed data sets are available at: https://doi.org/10.5281/
zenodo.6683720) (60).
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