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Abstract: The present-day COVID-19 pandemic has led to the increasing daily use of antimicrobials
worldwide. Triclosan is a manmade disinfectant chemical used in several consumer healthcare prod-
ucts, and thus frequently detected in surface waters. In the present work, we aimed to evaluate the
effect of triclosan on diatom cell photophysiology, fatty acid profiles, and oxidative stress biomarkers,
using the diatom Phaeodactylum tricornutum as a model organism. Several photochemical effects were
observed, such as the lower ability of the photosystems to efficiently trap light energy. A severe
depletion of fucoxanthin under triclosan application was also evident, pointing to potential use of
carotenoid as reactive oxygen species scavengers. It was also observed an evident favouring of the
peroxidase activity to detriment of the SOD activity, indicating that superoxide anion is not efficiently
metabolized. High triclosan exposure induced high cellular energy allocation, directly linked with
an increase in the energy assigned to vital functions, enabling cells to maintain the growth rates
upon triclosan exposure. Oxidative stress traits were found to be the most efficient biomarkers as
promising tools for triclosan ecotoxicological assessments. Overall, the increasing use of triclosan
will lead to significant effects on the diatom photochemical and oxidative stress levels, compromising
key roles of diatoms in the marine system.
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1. Introduction

Antibiotics, hormones, pharmaceutical drugs, disinfectants, biocides, and UV filters,
among others, can considered as pharmaceuticals and personal care products (PPCPs), a
wide category of emerging contaminants [1]. Indeed, their increasing popularity has led to
increased concern in recent years due to their presence in waters and consequent impacts
on aquatic organisms [2]. Due to deficient elimination in wastewater treatment plants
(WWTPs), PPCPs in household, industrial, and hospital disposal effluents enter the aquatic
environments [3,4]. Their often low biodegradability rate and evaporation at normal
temperature and pressure enhance PPCPs bioaccumulation potential and environmental
presence, resulting in their detection even in remote locations such as Antarctica [5]. Several
PPCPs are known to induce mild to severe effects in aquatic organisms, from fish to primary
producers [6–9]. Therefore, the assessment of the impact of each emerging compound is
key to an efficient and realistic environmental risk assessment [10].

Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a synthetic antimicrobial com-
pound widely used as an antiseptic in a multiplicity of healthcare products. Triclosan
is frequently detected in surface water globally at concentrations ranging from 0.011 to
2.7µg/L, with untreated effluents exhibiting average values of 10µg/L [11–15]. Triclosan
has an octanol-water partition coefficient (log Kow) value of 4.8 at pH 7.5 [16] and its hy-
drophobicity increases its bioaccumulation potential and trophic transfer through the food
web [17]. The effects of this PPCP have been widely studied in several aquatic organisms,
mostly in terms of growth inhibition, with some lack of information regarding the physio-
logical effects of triclosan in these organisms [18]. The EC50-96h values vary from 0.53 to
800µg/L for microalgae, while for aquatic invertebrates the LC50-96h has been assessed to
range from 184.7 to 3000µg/L [18–20]. Nevertheless, most of these studies focused only on
freshwater biota and on the survival or mortality of the organisms, without focusing on
its physiological impacts and biomarker assessment. Triclosan is known to impair lipid
synthesis by hindering enoyl-acyl carrier protein reductase (ENR), inducing cell membrane
deterioration, leading to its permeabilization [21–23]. This is the basis of its antimicrobial
characteristic, leading to cell disruption and consequent microorganism elimination [23].

Marine diatoms compose the large majority of estuarine and oceanic phytoplankton, and
thus exposure to PPCPs may have severe implications at the ecosystem level [24,25]. Diatoms
are cornerstones of marine food webs [26], being responsible for about 20% of the global pri-
mary production [27], being a major marine carbon sink and key oxygen-production source,
essential for supporting marine heterotrophs [28]. Phaeodactylum tricornutum is a model marine
diatom commonly used in stress physiology and ecotoxicological studies (e.g., thermal
stress [29,30], metal toxicity [31–33], nutrient stress [34], or emerging contaminants [6,8,9]).
Common physiological and biochemical traits evaluated in ecotoxicological trials using
this model organism involve photobiological feedback [31,35], oxidative stress biomark-
ers [36], and fatty acids profiling [29,34,35]. These cellular features have high resolution and
efficiency in disentangling the mechanisms of action of emerging contaminants, namely
human-targeted PPCPs. Furthermore, diatoms produce essential fatty acids (EFAs), such
as the omega 6 (ω-6) and omega 3 (ω-3) linolenic acids, Thus, any change either at the
photochemical or at the biochemical levels, due to the exposure to any contaminant has the
potential not only to provide efficient biomarkers, but also ecologically relevant biomarkers
with implications at the system level. The joint use of non-invasive phenotyping techniques
and conventional biochemical tools has been demonstrated to be an effective methodology
in P. tricornutum ecotoxicological studies, delivering key data concerning the contaminants’
mode of action and correspondent cellular effects [31,35].

Considering this, the present work aims to evaluate triclosan mediated effects on
the diatom species P. tricornutum. For this, P. tricornutum growth, energy and fatty acid
metabolism, and oxidative stress are addressed to unravel this compound’s mode of action
in diatoms, and the potential of these traits to be used as biomarkers of exposure to triclosan.
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2. Materials and Methods
2.1. Experimental Setup

For the present work, a monoclonal P. tricornutum Bohlin (Bacillariophyceae) (strain
IO 108-01, Instituto Português do Mar e da Atmosfera (IPMA)) axenic cell culture was kept
under asexual reproduction conditions in f/2 medium [37] was used. The axenic state of
the cultures is ensured throughout periodic visual inspection under the microscope. To
perform the triclosan exposure trials, cultures were kept under controlled conditions as
previously detailed [29] (Supplementary Figure S1). In short, cultures were placed in a phy-
toclimatic chamber (Temperature = 18 ◦C, 14/10 h day/night photoperiod, maximum PAR
= 80 µmol photons m−2 s−1 (RGB 1:1:1,) programmed in a sinusoidal function to mimic
sunrise and sunset, and light intensity at noon). Exposure was implemented according to
the Organization for Economic Cooperation and Development (OECD) guidelines for algae
assays [38], with minor adaptations. Initial cell density was set to 2.7 × 105 cells mL−1,
found to be adequate for microalgae cells with comparable dimensions to P. tricornutum.
Aeration with ambient air was provided as the main carbon source. A 1 mg/L triclosan
solution was prepared by dissolving triclosan (Sigma-Aldrich PHR1338 Certified Reference
Material) in f/2 medium. After 48 h acclimation, cultures were added with adequate
triclosan stock solution volumes to attain target final concentrations (0, 0.1, 1, 10, 50 and
100 µg/L triclosan). Target concentrations were chosen targeting to cover a concentration
range mimicking not only realistic environmental concentrations presented in the liter-
ature [11–13], but also higher concentrations expectably illustrative of the levels linked
with the rising biocide use under the present pandemic scenario [39,40]. Due to the fast
growth rates of this diatom, the exposure time was reduced to 48 h, to avoid artefacts due
to the ageing of the cells observed at 72 h, when the cultures already are in the stationary
phase [29]. Aseptic conditions were ensured by performing all manipulations within a
laminar flow hood chamber.

Phaeodactylum tricornutum cell density was monitored using a Neubauer improved
counting chamber under an Olympus BX50 (Tokyo, Japan) inverted microscope
(magnification = 400×). Mean specific growth rate (SGR) per day, doubling time (d, in
days), and the number of divisions per day (M) were calculated according to [41]:

d = ln
2

SGR
and M =

1
d

At the end of the 48 h of the exposure period, cells were analysed photochemically
as described below (Section 2.2), centrifuged (4000× g for 15 min at 4 ◦C), harvested for
biochemical analysis, and flash-frozen in liquid nitrogen and stored at −80 ◦C. All tested
conditions involved three biological replicates for each analysis, constituting a total of 18
experimental units.

2.2. Pulse Amplitude Modulated (PAM) Chlorophyll a Fluorometry

Before cell harvesting, 1 mL of each replicate culture was used for photochemical
chlorophyll a fluorescence measurements, using pulse amplitude modulated (PAM) flu-
orometry (FluorPen FP100, Photo System Instruments, Brno, Czech Republic). Culture
subsamples for photochemical assessment were dark-adapted for 15 min and chlorophyll
transient light curves were produced using the pre-programmed OJIP protocol, according
to [7]. Derived parameters are presented in Table 1.
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Table 1. Summary of the photochemical parameters used in the present work and their description.

OJIP-Test Parameter Description

Area Corresponds to the oxidized quinone pool size available for reduction and is a function of the area above the
Kautsky plot

N Reaction centre turnover rate
SM Corresponds to the energy needed to close all reaction centres
Mo Quinone A reduction rate
γRC Probability that a chlorophyll molecule acts as a reaction centre.
PG Grouping probability between the two PSII units

ABS/CS Absorbed energy flux per cross-section
TR/CS Trapped energy flux per cross-section
ET/CS Electron transport energy flux per cross-section
DI/CS Dissipated energy flux per cross-section
RC/CS Number of available reaction centres per cross-section
RE0/RC Electron transport from PQH2 to the reduction of PSI end electron acceptors
TR0/DI0 Contribution or partial performance due to the light reactions for primary photochemistry

ψo/(1 − ψo) Contribution or partial performance due to the dark reactions for primary photochemistry
ψE0/(1 − ψE0) Equilibrium constant for the redox reactions between PS II and PS I

RC/ABS Reaction centre II density within the antenna chlorophyll bed of PS II
SFI Structural and Functional Index of the photochemical reactions

SFI (NPQ) Structural and Functional Index of the non-photochemical reactions

2.3. Pigment Profiles

Cell pellets were homogenized with pure acetone, sonicated to ensure cell disruption
and extracted overnight at −20 ◦C to avoid pigment degradation [8]. After extraction,
samples were centrifuged at 4000× g for 15 min at 4 ◦C, and the supernatant was scanned
using a dual-beam UV-1603 spectrophotometer (Shimadzu, Kyoto, Japan). Absorbance
spectral data (350 nm to 750 nm, 0.5 nm steps) were explored using a Gauss-Peak Spectra
(GPS) fitting library, using SigmaPlot Software, and pigments were quantified using the
algorithm developed by [42]. Xanthophyll de-epoxidation state (DES) was calculated as
the ratio between diatoxanthin and diadinoxanthin.

2.4. Fatty Acid Profiles

Cell pellets were directly trans-esterified, in methanol sulfuric acid (97.5:2.5, v/v),
at 70 ◦C for 60 min and the generated fatty acids methyl esters (FAMEs) extracted using
petroleum ether and dried under an N2 stream in a dry bath at 30 ◦C [7,8]. After recon-
stitution with hexane, FAMEs were analysed in a gas chromatograph (Varian 430-GC gas
chromatograph, Varian, Inc., Palo Alto, CA, USA) under previously described chromato-
graphic conditions [7,8]. Fatty acid identification was achieved by similarity with retention
times obtained from attained from a standard collection (Sigma-Aldrich). Chromatograms
were analysed by the peak surface method, using the Galaxy software. Pentadecanoic acid
(C15:0) was used as internal standard. The double bond index (DBI) was calculated as:

DBI =
2 × (% monoenes + 2 × % dienes + 3 × % trienes + 4 × % tetraenes + 5 × % pentaenes)

100

2.5. Oxidative Stress Biomarkers

Soluble protein was extracted cell pellets by sonication (1 min) with 50 mM sodium
phosphate buffer (pH 7.6, supplemented with 0.1 mM Na-EDTA). After centrifugation
(10,000× g for 10 min at 4 ◦C), the supernatant was collected and its protein concentra-
tion was determined according to [43]. Catalase (CAT), ascorbate peroxidase (APx) and
superoxide dismutase (SOD) activities were analysed by spectrophotometry, in the protein
extract and using specific substrates as previously described [7,36]. The oxidative ratio was
calculated as:

Oxidative ratio =
SOD

CAT + APx
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where SOD, CAT, and APx are the activity values of superoxide dismutase, catalase, and
ascorbate peroxidase activities, respectively.

Lipid peroxidation products (here evaluated through the thiobarbituric acid reactive
substances, TBARS) were analysed spectrophotometrically [7,36], using trichloroacetic acid
extraction before the reaction with thiobarbituric acid.

2.6. Cell Energy Allocation and Mitochondrial Metabolism

Cell pellets were extracted with 1 mL of ultra-pure water and disrupted by ultra-
sonification. Supernatants were used to evaluate the lipid, carbohydrate, and protein
contents as well as electron transport system (ETS) activity. All assays were performed
at −25 ◦C with Milli-Q water as a reaction blank in all assays. All analysis were made
by spectrophotometric means (Synergy H1 hybrid multimode microplate reader, Biotek®

Instrument, Winooski, VT, USA). Total lipid, protein, and carbohydrate extraction and
analysis were performed according to [44], with minor modifications [7,8,45]. Total protein,
carbohydrate, and lipid contents were converted into energetic equivalents for available
energy (Ea) quantification (respective combustion energies: 17,500 mJ mg−1 carbohydrates,
24,000 mJ mg−1 protein and 39,500 mJ mg−1 lipid) [45]. The mitochondrial electron trans-
port system (ETS) activity was analysed according to [46] with the modifications described
by [7,8,45]. The calculated oxygen consumption was converted using the specific oxyen-
thalpic equivalents for an average lipid, protein, and carbohydrate mixture of 480 kJ mol−1

O2 into energetic equivalents [47]. Cellular energy allocation (CEA) values were determined
based on Ea and ETS activity [48].

2.7. Statistical Analysis

Spearman correlation coefficients and significance were assessed using the corrplot
package [49]. Barplots were plotted using the ggplot2 package [50]. Non-parametric
Kruskal–Wallis with Bonferroni posthoc tests were performed using the agricolae pack-
age [51]. Canonical analysis of principal coordinates (CAP) was used to evaluate the ability
to successfully classify individuals according to the triclosan exposure concentrations us-
ing each of the considered biochemical and biophysical traits [26,37,38], using Primer 6
software [52]. All other analyses were run in R-Studio 1.4.1717.

3. Results
3.1. Diatom Cell Growth

From the evaluation of the growth curves and derived parameters (Figure 1A–D), there
is no apparent impact of the tested triclosan concentrations on cell growth. Nevertheless,
when observing the correlation between triclosan dosage and the growth traits, some
significant correlations arise (Supplementary Figure S2A). Diatom specific growth rate
(SGR) and the number of cell divisions per day (M) showed a significant and inverse
correlation with the applied triclosan concentration. Oppositely, cell doubling time (D)
showed a strong direct and significant correlation with the triclosan concentration to which
the cells were subjected.
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Figure 1. Triclosan exposed Phaeodactylum tricornutum cultures growth curves (A), specific
growth rate (B), doubling time (C), and the number of divisions per day on a cellular basis
(D) (average ± standard error, n = 3; different letters denote significant differences between triclosan
treatments at p < 0.05).

3.2. Photochemical Traits

Observing the Kautsky induction curves (Figure 2), it is evident that the exposure to
increasing triclosan concentrations led to effects over the several steps of the photochemical
process. Not only is the fluorescence intensity lower in the samples exposed to higher
triclosan concentrations, but it is also possible to observe some changes in the curves’ shape,
which inevitably impacts the values of the derived variables.

Observing the quinone A reduction rate (Figure 3A), this parameter was found to
be lower in the control samples and significantly higher in the samples exposed to the
60 µg/L triclosan concentrations. A significant direct correlation was found between this
variable and the exogenous triclosan dose (Supplementary Figure S2B). Regarding the
size of the oxidized quinone pool of the electron transport chain (ETC), this parameter
showed significantly lower values upon the exposure to 50 and 100 µg/L (Figure 3B),
showing a significant inverse correlation with the exogenous dose of this anti-microbial
(Supplementary Figure S2). The same tendency was observed in the energy needed to
close all reaction centres (Supplementary Figure S2), as this value was significantly lower
in the diatom cells exposed to the higher triclosan concentrations (Figure 3C). Triclosan
tested concentrations did not affect the reaction centre turnover rate (Figure 3D) in the
exposed diatoms. Regarding the probability that a chlorophyll molecule acts as a reaction
centre (Figure 3E), the same effect was observed upon the application to the highest
triclosan concentrations, being this decrease significantly correlated with the increasing
triclosan levels tested (Supplementary Figure S2). Analysing the data referent to the PSII
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antennae dysconnectivity (here evaluated through the grouping probability, Figure 3F),
it was possible to observe a significant increase in the cells exposed to 50 and 100 µg/L
triclosan, which was directly and significantly correlated with the triclosan exposure dose
(Supplementary Figure S2). Nevertheless, the electron transport from PQH2 to the reduction
of PSI end electron acceptors was not affected by any of the tested triclosan concentrations
(Figure 3G). The contribution or partial performance due to the light reactions (Figure 3H)
was found to be significantly reduced with exposure to 50 and 100 µg/L triclosan, while
the contribution or partial performance due to the dark reactions (Figure 3I) was only
substantially decreased with the application of 50 µg/L triclosan. Both these parameters
showed a strong and significant inverse correlation with the exogenous triclosan dose
applied (Supplementary Figure S2). Evaluating the equilibrium constant for the redox
reactions between PS II and PS I (Figure 3J) there was a strong direct correlation with
the triclosan concentration to which the cells were subjected (Supplementary Figure S2),
favouring the PSII redox activity. Analyzing two structural and functional photochemical
indexes it is possible to observe that under the highest triclosan doses tested, the SFI suffers
significant decreases (Figure 3K), while its non-photochemical congener (SFINPQ, Figure 3L)
showed the opposite trend. This was confirmed by the strong direct and inverse correlations
verified, respectively, between the SFI and the SFINPQ and the triclosan exogenous dose.
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Figure 3. Triclosan-exposed Phaeodactylum tricornutum cultures photochemical traits [quinone A
reduction rate (Mo, A), oxidized quinone pool size (B), energy needed to close all reaction centres
(SM, C), reaction centre turnover rate (N, D), the probability that a chlorophyll molecule acts as a
reaction centre (γRC, E), grouping probability (PG, F), electron transport from PQH2 to the reduction
of PSI end electron acceptors (RE0/RC, G), contribution or partial performance due to the light
(TR0/DI0, H) and dark (ψ0/1 − ψ0, I), the equilibrium constant for the redox reactions between PS
II and PS I (ψE0/1 − ψE0, J), structural and functional indexes of the photochemical (SFI, K) and
non-photochemical (SFINPQ, L) reactions of the primary photochemistry] (average ± standard error,
n = 3; different letters denote significant differences between triclosan treatments at p < 0.05).

Differences in energy fluxes that rule the photochemical energy transduction pathway
were also found (Figure 4). While no effects were detected in the absorbed energy flux
(Figure 4A), exposure to 50 and 100 µg/L triclosan led to significant reductions in the
trapped and transported energy fluxes (Figure 4B,C respectively), as well as in the number
of available reaction centres per cross-section (Figure 4E) and of the reaction centre II density
within the antenna chlorophyll bed of PS II (Figure 4F). Additionally, these variables also
showed strong inverse correlations with the exogenous triclosan dose tested (Supplemen-
tary Figure S2B). On the other hand, the dissipated energy flux showed a significant increase
in the cells exposed to the highest triclosan doses (Figure 4D), accompanied by a significant
and direct correlation with the triclosan exogenous dose (Supplementary Figure S2B).
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Figure 4. Triclosan-exposed Phaeodactylum tricornutum cultures phenomological energy fluxes [ab-
sorbed (ABS/CS, A), trapped (TR/CS, B), transported (ET/CS, C) and dissipated (DI/CS, D) energy
fluxes], number of available reaction centres per cross-section (RC/CS, E) and reaction centre II
density within the antenna chlorophyll bed of PS II (RC/ABS, F) (average ± standard error, n = 3;
different letters denote significant differences between triclosan treatments at p < 0.05).

3.3. Pigment Composition

The exposure to the highest triclosan concentration tested led to a significant reduc-
tion of the diatom cell’s chlorophyll a concentration (Figure 5A), concomitant with an
also significant increase in pheophytin a concentration (Figure 5C). Both these pigments
showed a significant relationship with the exogenous triclosan dose applied (Supplemen-
tary Figure S2C). Although no significant differences could be detected in the chlorophyll c
concentration between the different triclosan concentrations tested (Figure 5B), a signifi-
cant inverse correlation could be observed between this pigment and the anti-microbial
concentration applied (Supplementary Figure S2C). Regarding β-carotene, triclosan had
no significant impact on this pigment concentration (Figure 5D). Contrastingly, fucoxanthin
was severely impacted by triclosan (Figure 5E) being depleted in the cells exposed to
10, 50, and 100 µg/L triclosan. This effect was found to be strongly correlated with the
anti-microbial dose applied (Supplementary Figure S2C). None of the pigments involved
in the diatom xanthophyll cycle (diadinoxanthin and diatoxanthin) showed any significant
differences along the triclosan gradient tested (Figure 5F,G). This also led to no alterations at
the de-epoxidation state level (DES, Figure 5H). Nevertheless, the three variables presented
a significant inverse correlation with the triclosan exogenous dose tested (Supplementary
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Figure S2C). Total carotenoid content was significantly reduced in diatom cells exposed
to 50 and 100 µg/L triclosan, especially when compared to the cells exposed to low (0.1
and 1 µg/L) triclosan concentrations (Figure 5I), strongly correlated to dose applied. The
chlorophyll a/c ratio was found significantly reduced in the cells exposed to 100 µg/L
triclosan when compared with the cultures exposed to 0.1 µg/L (Figure 5J). Nevertheless,
this variable also showed an a strong and significant inverse correlation with the exogenous
anti-microbial dose applied (Supplementary Figure S2C).
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Figure 5. Triclosan-exposed Phaeodactylum tricornutum cultures pigment concentrations [chlorophyll
a (Chl a, A), chlorophyll c (Chl c, B), pheophytin a (Pheo a, C), β-carotene (D), fucoxanthin (Fx, E),
diadinoxanthin (Diadino, F), diatoxanthin (Diato, G)], de-epoxidation index (DES, H), total carotenoid
concentration (I), and chlorophyll a to c ratio (J) (average ± standard error, n = 3; different letters
denote significant differences between triclosan treatments at p < 0.05).

3.4. Fatty Acid Profile

Comparing the relative concentrations of each fatty acid at each tested concentration,
only the palmitolinolenic acid (C16:3) showed a significant decrease upon exposure to
100 µg/L triclosan (Figure 6A). Nevertheless, subtle non-significant increases and decreases
contributed to several significant direct correlations between fatty acid traits and the ex-
ogenous triclosan dose applied, namely with the palmitic acid (C16:0), palmitoleic acid
(C16:1) and stearidonic acid (C18:4) (Supplementary Figure S2D). Also, the monounsat-
urated fatty acids relative concentration and the total fatty acid concentration presented
a similar trend, as well as the SFA/UFA ratio (Supplementary Figure S2D). Oppositely,
the palmitolinolenic (C16:3) acid and eicosapentaenoic acid (C20:5) showed an inverse
and significant correlation with the tested triclosan doses. The same could be verified for
the polyunsaturated fatty acid relative concentration (PUFA), PUFA/SFA ratio, and DBI
(Supplementary Figure S2D). Considering the cell total fatty acid content, as well as the
saturation indexes, evaluated, no significant differences were found between the diatom
cells exposed to different triclosan concentrations.
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Figure 6. Triclosan-exposed Phaeodactylum tricornutum cultures fatty acid profiles and respective satu-
ration classes relative concentrations [myristic acid (C14:0), palmitic acid (16:0), palmitoleic acid (16:1),
hexadecadienoic acid (C16:2n4), palmitolenic acid (C16:2n7), palmitolinolenic acid (C16:3), palmiti-
donic acid (C16:4), stearic acid (C18:0), γ-linolenic acid (C18:3), stearidonic acid (C18:4), arachidonic
acid (C20:4), eicosapentaenoic acid (C20:5), monounsaturated (MUFA), Polyunsaturated (PUFA),
saturated (SFA) and unsaturated (UFA) fatty acids, A], total fatty acid content (TFA, B), double-bound
index (DBI, C), saturated to unsaturated fatty acids ratio (SFA/UFA, D), and polyunsaturated to
saturated fatty acid ratio (PUFA/SFA, E) (average ± standard error, n = 3; different letters denote
significant differences between triclosan treatments at p < 0.05).

3.5. Cellular Bioenergetics

Triclosan did not significantly affect the content of carbohydrates (Figure 7A), lipids
(Figure 7B), and proteins (Figure 7C) nor the electron transport system activity (Figure 7D)
or the overall available energy (Figure 7E). Regarding the cellular energy allocation (CEA),
this was found to be increased in the cultures exposed to 50 and 100 µg/L triclosan when
compared to the remaining treatments (Figure 7F). If the linear relationships between the
exogenous triclosan dose applied and these traits are observed, it is possible to observe that
CEA displays a significant positive correlation with the triclosan concentration to which
the cells were subjected (Supplementary Figure S1E).
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Figure 7. Triclosan-exposed Phaeodactylum tricornutum cultures energetic traits [carbohydrates (A),
lipids (B), proteins (C), electron transport system (ETS, D), available energy (Ea, E), and cellular
energy allocation (CEA, F)] (average ± standard error, n = 3; different letters denote significant
differences between triclosan treatments at p < 0.05).

3.6. Oxidative Stress Biomarkers

Concerning oxidative stress biomarkers, several effects were detected (Figure 8). Cata-
lase (Figure 8A) was significantly enhanced in the samples exposed to 100 µg/L triclosan.
This increase was found to be significantly correlated with the triclosan exogenous dose ap-
plied (Supplementary Figure S2F). Ascorbate peroxidase was significantly increased in the
diatom cells exposed to triclosan concentrations higher than 1 µg/L triclosan (Figure 8B).
Superoxide dismutase was significantly inhibited under 50 and 100 µg/L triclosan concen-
tration when compared to the high activity value observed for the cells exposed to 1 µg/L
(Figure 8C), with this decrease being significantly correlated with the anti-microbial dose
applied (Supplementary Figure S2F). Analysing the integrative oxidative ratio (Figure 8D)
disclosed a significant decrease in this ratio upon exposure to triclosan concentrations above
10 µg/L. This variable also showed a significant inverse correlation with the anti-microbial
dose applied (Supplementary Figure S2F). The membrane damage effects, here evaluated
through the TBARS concentration, presented a significant rise in the cells exposed to 10
and 100 µg/L triclosan (Figure 8E), with this increase being significantly correlated with
the anti-microbial concentration applied (Supplementary Figure S2F).
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Figure 8. Triclosan-exposed Phaeodactylum tricornutum cultures oxidative stress biomarkers [catalase
activity (CAT, A), ascorbate peroxidase activity (APx, B), superoxide dismutase (SOD, C), and
thiobarbituric reactive substances (TBARS, E)] and oxidative ratio (D) (average ± standard error,
n = 3; different letters denote significant differences between triclosan treatments at p < 0.05).

3.7. Biomarker Profiling

Analysing the different photochemical and biochemical traits in a multivariate ap-
proach allowed us to observe ways in which different trait datasets responded to the tested
triclosan concentrations (Figure 9). None of the evaluated datasets was able to describe
with 100% efficiency the triclosan concentrations to which the cells were exposed. Based on
the photochemical Kautsky induction curve fluorescence values (Figure 9A) only 50% of the
samples could be correctly classified, with high misclassifications at intermediate triclosan
concentrations (1, 10, and 50 µg/L, 33.3% classification efficiency). The pigment and fatty
acid profiles (Figure 9B,C, respectively) also showed low-resolution power in depicting
exposure dose (38.9% and 22.2% respectively). Regarding oxidative stress (Figure 9D),
the canonical analysis revealed a high classification efficiency (72.2%), highlighting the
potential of these oxidative stress traits as biomarkers of exposure to triclosan, however
still having difficulty in distinguishing among 10 µg/L and 0.1, 1, or 50 µg/L exposures.
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Figure 9. Canonical analysis of principal (CAP) components of the bio-optical data (A), pigment
concentrations (B), fatty acids profiles (C), and oxidative stress biomarkers (D) obtained from the
analysis of Phaeodactylum tricornutum cultures exposed to the different triclosan concentrations.

4. Discussion

Triclosan is one of the most widespread anti-microbial agents used in a wide variety
of consumer healthcare products, soaps, and plastics. Thus, its presence in the aquatic
environment has been recorded frequently [11,14,15]. At the tested concentrations, triclosan
did not induce any significant decrease in diatom growth, thus disabling the use of the
typical growth inhibition tests as a biomarker of its effects [38]. Although in surface waters
triclosan concentration has been found in the range of 0.011–2.7µg/L, with maximum
values measured found in untreated waters (10µg/L) [11–13], it is important to stress that
under the current COVID-19 pandemic or with the emergence of new microbial threats and
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consequent increase in the use of antimicrobial agents, the environmental concentration is
expected to rise [39,40].

Previous reports [53,54] found that triclosan exposure suppressed molecular signalling
pathways including porphyrin and chlorophyll metabolism, and photosynthesis was sup-
pressed in green algae. In this work, triclosan exposure led to the reduction of the connectiv-
ity of the PS II antennae, essential for energy capture and transduction. These implications
are most evident when observing the reduction in the trapped energy flux, which was
severely reduced in the cells exposed to the two highest triclosan concentrations tested.
This leads to an disruption of the energy transduction of the PSII to the ETC, increasing the
likelihood that the cells undergo photoinhibition potentially damaging conditions, driven
by excessive redox potential build-up within the photosystems, which can eventually lead
to D1 protein destruction and inactivation of the PS II repair cycles [55]. Nevertheless, the
high dissipated energy flux under exposure to higher triclosan concentrations indicates a
deterrence of the PS II donor side stored energy from the photosystems, one of the most
common counteractive measures toward permanent photo-inhibition [7,56,57]. Addition-
ally, the reduction of PS II antennae RC centre density accompanied by an increase in the
energy required to close all RCs, as well as in the RCs turnover rates, indicates a possible
activation of another counteractive measure to avoid unnecessary photonic energy to be
absorbed. This strategy was also previously observed in P. tricornutum cells exposed to
propranolol [7]. This lack of efficiency in harvesting light results not only from impaired PS
II antennae connectivity, but also from the reduced probability that a chlorophyll molecule
can capture light energy, as highlighted by the changes observed in the chlorophyll content
of the cells.

At high levels of exogenous triclosan, a severe reduction of the chlorophyll a cell
content was detected with a concomitant increase in its degradation product pheophytin a,
indicating that triclosan induced the degradation of this essential light-harvesting pigment
(in opposition to a chlorophyll a biosynthesis inhibition) [58], which contributed to the
low efficiency of the PS II. Another of the most evident effects was related to the structure
and function of the chloroplast quinone electron transport chain, reduction of the oxidized
quinone pool, and its redox turnover. This leads to an inhibition of the electron transport
energy flux and consequent increase in the energy dissipation. This leads to a reduction
of the energy arriving the PS I, disrupting the energy between both photosystems and
impairing the reduction of PS I end acceptors [35]. Additionally, the impairment of the
contribution of the dark reactions to primary photochemistry leads to a blockage of Calvin
cycle substrate regeneration, downstream the PS I [59].

Cells can dissipate energy by biophysical (energy dissipation through heat and fluores-
cence) or biochemical (through de-epoxidation reaction in the xanthophyll cycle) means [56].
Triclosan did not induce the activation of the xanthophyll cycle, indicating that the excess
energy is being diverted through heat and fluorescence, a common feature already reported
for diatoms under propranolol exposure [7]. At the carotenoid level, there was also evi-
dence of severe depletion of fucoxanthin under triclosan application, indicating a potential
impairment its biosynthetic pathway downstream β-carotene [8], as this carotenoid is a key
precursor in this pathway, and presents rather stable values. Compromised carotenoid pro-
duction has also consequences at the oxidative stress level, as several carotenoids are also
described to counteract lipid peroxidation and scavenge reactive oxygen species [8,60]. In
metabolic terms, diatom cells exposed to high triclosan concentrations apparently preferred
the use of carotenoid-based ROS (reactive oxygen species) quenchers such as β-carotene
in opposition to the use of other carotenoid pigments, such as diadinoxanthin and dia-
toxanthin, key players for counteracting photoinhibition, that in this case was prevented
by biophysical means. A reduction in fucoxanthin was also observed, leading to the in-
evitable reduction of the fucoxanthin chlorophyll a/c-binding protein (FCP), an exclusive
light-harvesting and excitation energy transfer present in diatoms [61] and is related with
observed the decoupling of the PS II antennae as well as with the reduced trapped energy
flux in diatoms exposed to high triclosan concentrations.
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Photochemical impairment leads to excessive redox potential accumulation and ox-
idative stress, with implications at the fatty acid composition level [30] as well as in terms
of the generation of lipid peroxidation products [36]. Yet, no significant changes could be
observed either in its fatty acid composition. Nevertheless, a significant increase in the
lipid peroxidation products of the cells exposed to mild and high triclosan concentrations
was detected. Observing the oxidative ratio, a promotion of the peroxidasic activity in
detriment of the SOD activity [62] is evident, indicating a high generation of hydroxyl
radicals by peroxidasic activity [63], which without iron-based Fenton reactions will not
be efficiently quenched and prone to produce lipid hydroperoxides, thus leading to the
lipid peroxidation products increase. This lack of SOD efficiency reinforces the role of
carotenoid-ROS quenching mechanisms and the abovementioned carotenoid depletion.

A high amount of stored energetic substrates (lipids, proteins, and carbohydrates)
could be observed alongside the triclosan gradient applied, without reduction of the
mitochondrial electron transport rate (directly related to respiratory activity). This indicates
mitochondrial function maintenance and increased storage of energy of the cells, resulting
in an increased energy budgets (CEA) verified by increasing triclosan concentrations.
According to previous studies [48], an increase in CEA and consequently in the net energy
budget indicates that more energy is available to fundamental functions (e.g., growth), thus
preventing growth reductions, despite the photochemical impairments observed.

Univariate analysis indicated parameters in isolation are not efficient biomarkers of Tri-
closan exposure. However, considering the metabolic interconnectivity of these parameters,
integrated approaches not only highlight which metabolic pathways (photochemical, fatty
acid, pigment, oxidative stress) provide the best set of biomarkers for triclosan exposure
classification, but also insight regarding the parameters contributing most to dose-related
effects. In this case, the oxidative stress biomarkers were the most suitable and efficient,
following ecotoxicological evaluations of classical and emerging contaminants [36].

5. Conclusions

Although no signs of growth inhibition were detected, significant effects at the pho-
tochemical and oxidative stress levels were verified, which may compromise the key role
of these organisms in the marine system. Available triclosan concentration data in the
aquatic environment point to values below those with expectable adverse effects according
to this study. Nevertheless, the pandemic scenario that has afflicted the world population
has led to an increased use of antimicrobials, namely triclosan, and there is the potential
that resulting higher concentrations of triclosan in the aquatic environments could induce
effects on marine diatoms, as seen here. Importantly, the present work highlights how using
oxidative stress biomarkers could be represent an important tool for future monitoring
programs and ecotoxicological assessments regarding the presence and potential impacts
of triclosan in marine environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11081442/s1, Figure S1: Overview of the Phaeodactylum
tricornutum cultivation units within the growth chamber; Figure S2: Spearman correlogram between
Phaeodactylum tricornutum growth, photochemical, pigment, fatty acid, energetic and oxidative stress
traits and the exogenous triclosan concentration applied (only significant correlations at p < 0.05 are
shown; N = 3 per treatment).
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