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É incontestável a participação de várias entidades na elaboração e execução deste documento, que
passarei a citar.

Agradeço aos colegas do AICOS Fraunhofer Portugal, particularizando o Duarte Folgado que traçou
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todos os momentos e pela ambição hereditária, ao pai, pelo mimo incontestável e por uma boa dose
de loucura, ao mano João, teimoso incurável, pelos beijos e abraços forçados em dias de menos bons,
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Resumo

As Lesões Musculoesqueléticas Relacionadas com o Trabalho (LMERTs) representam 15% do
número total de anos de vida perdidos por danos fı́sicos ou doenças com a sua génese no trabalho.
De entre os fatores de risco para as LMERTs, no presente estudo, destacam-se as posturas corporais
relacionadas com o trabalho. A exposição biomecânica a posturas consideradas prejudiciais tem um im-
pacto negativo na saúde dos trabalhadores, na economia das empresas e na sociedade. A fim de aperce-
ber a prática recorrente de posturas prejudiciais no local de trabalho, têm sido invocados métodos de
autoavaliação ergonómica, nos quais o risco é percecionado pelo próprio trabalhador; observacionais,
conduzidos por peritos em ergonomia; e de medição direta, que recorrem ao emprego de soluções
tecnológicas para a recolha e monitorização objetiva de variáveis pertinentes para a avaliação er-
gonómica. Porém, frequentemente e em contexto industrial, são apenas aplicados métodos de
autoavaliação e observacionais, apesar da medição direta constituir uma solução mais notável.

O advento da Internet das Coisas vem revelar a oportunidade da utilização de wearables para uma
recolha de dados omnipresente, amplificando a quantidade de dados disponı́vel com o fim de uma
avaliação ergonómica mais individual e imparcial. Deste modo, estudos relativos à avaliação ergonómica
no local de trabalho têm primado pelo uso de wearables com vista a monitorização do movimento hu-
mano.

A presente dissertação respeita ao desenvolvimento de uma abordagem automática para a avaliação
ergonómica em contexto industrial. As contribuições principais são o desenvolvimento de (1) uma rotina
de captura de movimento, através da utilização de um sistema wearable com sensores inerciais; (2)
uma framework computacional para a monitorização do movimento da parte superior do corpo humano,
em termos dos ângulos relativos às articulações entre os segmentos anatómicos, estimados com recurso
à cinemática inversa; e (3) implementações computacionais de especificações estabelecidas e relativas
aos fatores de risco de postura para a quantificação da exposição biomecânica e consequente risco er-
gonómico em âmbito ocupacional. Subsequentemente, as implementações das especificações foram
aplicadas por forma a prover constatações acerca de um caso de estudo das linhas de montagem de
automóveis da Volkswagen Autoeuropa.

O estudo delineado foi dividido em dois cenários: validação e avaliação. A validação consistiu
em comparar os dados provisionados por um sistema inercial de referência e determinados através dos
métodos desenvolvidos. Para tal, usaram-se dados de sensores inerciais recolhidos em laboratório (N =
8 participantes) e nas linhas de montagem de automóveis (N = 9 participantes). A avaliação consistiu
em quantificar a exposição biomecânica e consequente risco ergonómico respeitantes ao caso de es-
tudo, empregando as estimativas angulares calculadas pela framework desenvolvida, e a partir dos dados
recolhidos com o nosso sistema nas linhas de montagem de automóveis.

Os resultados revelaram que a framework proposta tem o potencial para ser aplicada na monitorização
de tarefas industriais. A avaliação ergonómica é mais lata através da medição direta, desvendando
diferenças de exposição biomecânica e consequente risco ergonómico entre operadores.
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Abstract

Work-related musculoskeletal disorders (WRMSDs) represent 15% of the total number of life-years
lost due to work-related injuries and illness. Among WRMSDs’ risk factors, work-related postures are
underlined in this research. Biomechanical exposure to hazardous postures negatively impacts work-
ers’ health, enterprises’ economy, and society. Toward the apperception about the recurrent practice of
hazardous postures in the workplace, self-reported, observational, and directly measured ergonomic as-
sessment methods have been established. However, only self-reported and observational approaches are
enforced on a more frequent basis, besides directly measured is a more compelling choice.

The advent of the Internet of Things poses the opportunity of using wearables in the direction of
ubiquitous data collection, increasing the amount of available data for a more personal and non-biased
ergonomic evaluation. As follows, over workplace ergonomics research, wearables have been used to
monitor human motion.

The dissertation developed an automatic approach to ergonomic evaluation in industrial contexts.
Its main contributions are the development of (1) a motion capture routine using inertial sensors; (2)
a computational framework to monitor human upper body motion, in terms of joints’ angles, through
inverse kinematics; and (3) computational implementations of posture risk factors specifications to quan-
tify the biomechanical exposure and consequent ergonomic risk in occupational settings. Subsequently,
specifications implementations were applied to provide insights in consideration of a case study from
Volkswagen Autoeuropa automotive assembly lines.

The research was divided into two scenarios: validation and evaluation. Validation consisted of
comparing data provided by a ground truth inertial motion capture system and computed throughout
the developed methods. Hence, inertial sensors’ data, collected in the laboratory (N = 8 participants)
and automotive assembly lines (N = 9 participants) settings, were used. The evaluation consisted of
quantifying the biomechanical exposure and consequent ergonomic risk concerning the case study, using
angular estimates computed through the developed framework and about data collected in automotive
assembly lines.

The results revealed that the proposed framework has the potential to be applied to monitor industrial
tasks. The ergonomic evaluation is more comprehensive through direct measures, uncovering differences
about biomechanical exposure and consequent ergonomic risk among operators.

Keywords: Ergonomics, Musculoskeletal disorders, Posture, Inertial sensors, Inverse Kinematics
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1. Introduction

This chapter introduces the purpose of the current dissertation. Firstly, it poses the problem (1.1)
from which it arises, the motivation (1.2), and the context (1.3) in which the dissertation was developed.
Afterward, the study’s objectives and research questions (1.4), and structure (1.5) are depicted.

1.1 Problem

According to Kok et al., 2019, Musculoskeletal Disorders (MSDs) are the most prevalent work-
related health problem among European Union (EU) workers, three out of five reporting MSDs com-
plaints. The prevalence of work-related MSDs (WRMSDs) varies between the Member States, sectors
and occupations. The construction, water supply and agriculture, forestry and fishing sectors are the
most affected ones. Additionally, sociodemographic factors play a differentiating role in WRMSDs
prevalence, female and elder workers bearing the higher rates. Section 3.1.2 presents a brief description
of a few WRMSDs.

There is a wide range of risk factors related to the development of these disorders, which can be
divided into three main categories: related to work, individual (also known as co-factors), and organ-
isational/psychosocial. Note that the exposure to the risk factors, just by itself, does not enforce the
development of MSDs; it depends on three additional factors: intensity, repetition and duration of the
exposure to the risk factor (Direção-Geral da Saúde, 2008) (Figure 1.1).

Intensity

Repetition

Duration

Related to Work
Extreme Postures/ Positions
Force Exertion
Repetitiveness
Mechanical Elements Exposure

Individual (Co-factors)
Age
Gender
Height, Weight and Anthropometrics
Health Status

Organisational/ Psychosocial
Intense work rhythms
Monotony of tasks
Insufficient social support
Organisational production model

Risk of
Development of
Work-related

Musculoskeletal
Disorders

Figure 1.1: Diagram of risk factors for the development of WRMSDs.

Risk factors related to work are highly present in the automotive industry, and a considerable de-
gree of their additional factors. The current dissertation tackles this problem, assessing the posture of
operators with different individual characteristics during a work shift in automotive assembly lines and
focusing on the case study of Volkswagen Portugal automotive industry.
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1.2 Motivation

Nowadays, WRMSDs have a huge impact on workers’ health, representing 15% of the total number
of (disability-adjusted) life years lost due to work-related injuries and illness, and enterprises’ econ-
omy, being intimately related to higher rates of absenteeism and for more extended periods. Ultimately,
WRMSDs affect EU countries, in terms of financial and social cost (i.e. loss of productivity and higher
social expenses) (Kok et al., 2019).

Motivated by these consequences, German enterprises have been investing in the prevention of
WRMSDs. In the Financial Times’ article Germany invests to prolong employees’ working lives (McGee,
2019), employers also justify their recent investments in ergonomic solutions explaining that experienced
workers have the know-how, which makes them fundamental to productive and efficient processes. Like-
wise, as life expectancy has increased over the last years, workers’ length of service will be extended
over the next ones. Hence, there is a need to promote workers’ health to ensure their well-being and
performance.

1.3 Context

Towards WRMSDs prevention, several ergonomics approaches have been chased, and a few are
described in section 2.1. Those approaches often involve an observer evaluating the performance of
workers at the assembly line. They require a time-consuming manual data collection process, hindering
the possibility of collecting individual data on a more frequent basis. In addition, they might require an
observer to analyse the operator’s motion, which often leads to biased results since the worker is aware
that an external auditor is observing his work-method.

The advent of the Internet of Things (IoT) poses the opportunity of using wearables in the direction
of ubiquitous data collection, increasing the amount of available data for a more personal and non-biased
ergonomic evaluation. Along with these lines, the project OPERATOR (Fraunhofer Portugal, Center for
Assistive Information and Communication Solutions – AICOS, 2020), which proposes a set of tools for
risk exposure analysis in the workplace, sprang up.

This dissertation was developed in the context of the OPERATOR project. It follows the research of
the authors of Santos et al., 2020, as it aims to solve their study limitations, validating an inertial sensing
system setup for tracking wrist motion, refining the general upper body motion tracking algorithm, and
upgrading the risk exposure analysis.

Presently and in line with Industry 4.0, the typology of the “Operator 4.0”, established by the authors
of Romero et al., 2016, has been developed about topics of motion capturing and analysis in industrial
contexts, covered by research detailed in chapter 2. The current dissertation focuses on the Healthy type
of the ”Operator 4.0” (i.e. Operator + Wearable Tracker). It comprehends the development of methods
using wearable trackers to monitor the motion of operators with different individual characteristics and
in automotive assembly lines.

Ahead, as it is referred to in chapter 2, there is a considerable amount of solutions providers and
research on the topic of risk assessment in the workplace. However, the solutions are often high-priced
or do not provide any explanation about the ergonomic risk given, while research studies are usually
conducted in controlled settings. Therefore, under the OPERATOR, this dissertation proposes to use
low-cost wearable technology to track human motion and provide relevant insights of ergonomic risk
assessment about a case study of Volkswagen Autoeuropa automotive assembly lines.

Furthermore, in the present future, we will assist the growth of Industry 5.0, which is a re-found and
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widened purposefulness concept, going beyond producing goods and services for profit. This broader
purpose constitutes three core elements: human-centricity, sustainability and resilience (De Nul et al.,
2021). This perspective further motivated the work carried out in this dissertation.

1.4 Objectives and Research Questions

The main goal of this dissertation is to quantify the ergonomic risk and biomechanical exposure in
automotive assembly lines, and its objectives and their respective research questions are depicted in Table
1.1.

Table 1.1: Study objectives and their respective research questions.

Objective Research Question
1 Validation of an inertial sensing system setup to track up-

per body motion;
Which is the best placement of sensors on human body’s
segments to track the upper body motion?

2 Development of a methodology to synchronise the sys-
tem over time;

How to synchronise system’s sensors over time, and in
what extend?

3 Application of kinematic/biomechanical constraints to
the body segments’ motion estimates;

How to estimate body segment’s orientation and move-
ment from wearable sensors’ data, and using a model that
describes the human upper body motion?

4 Definition of biomechanical exposure measures for er-
gonomic risk assessment;

What should be the criterion used to assess operators’ pos-
ture and position?

5 Characterisation of the motion from different workers in
automotive assembly lines;

How the operator’s profile affects the his/her work-
method while operating in the automotive assembly lines?

6 Design of an ergonomics report. How to report ergonomic risk in order to support er-
gonomists’ intervention?

1.5 Structure

The present document is divided into six main chapters (Figure 1.2).

Introduction

LITERATURE
REVIEW

Materials & Methods

OUTPUTS

State of the Art

Theoretical
Background

Results & Discussion

Conclusions & Future
Work

1 2

3

4 5

6

Figure 1.2: Dissertation’s document structure.

1. Introduction - regards the root cause of this dissertation project and its end goal;

2. State of the Art - reviews current commercial solutions and latest research studies to assess er-
gonomic risk in occupational settings;

3. Theoretical Background - describes knowledge base theory, considered to be crucial to the disser-
tation development and comprehension;

4. Materials and Methods - details materials deployed and methods implemented and developed dur-
ing the dissertation’s project;

5. Results and Discussion - exhibits and interprets dissertation’s outputs;
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6. Conclusions and Future Work - provides final resolution of this dissertation and the future steps in
the research topic.

Note that every chapter ends up with a summary of its information, as conclusions, excluding chapter
6.

1.6 Chapter Conclusions

WRMSDs are a big problem with negative impact on individuals’ health, enterprises’ economy, and
countries’ social and financial costs. Also, these disorders are increasing in modern societies. The cur-
rent dissertation, developed within the Fraunhofer’s OPERATOR project and toward Industry 4.0 view,
proposes a framework using wearable sensors’ data to monitor the motion of operators in automotive
assembly lines and, subsequently, to evaluate the movements through ergonomic risk assessment and
relate it to the work method conducted by each operator.

As it is indicated in Figure 1.3, the next chapter is the state of the art (2), supporting the topics
explored in the theoretical background chapter (3). It follows the introduction provided, presenting
“What?” has been done to accomplish the dissertation’s main goal, and precedes theoretical background,
posing the challenge of “How?” to sense and monitor human motion.

L
ite

ra
tu

re
 R

ev
ie

w

State of the Art

Ergonomic Risk Assessment Methods

Workplace Ergonomics Research

Current Commercial Available
Solutions

Motion Capture Technology in
Industrial Contexts

Work-Method Characterisation

Theoretical Background

Model Human Motion

Sense Human Motion

Characterise Human Motion

Monitor Human Motion

Human Motion System Understanding

General Human Motion Analysis Tasks

Human Motion Description

W
hat?

H
ow

?

Introduction

Objectives &
Research
Questions

ContextMotivationProblem

Introduction

Objectives &
Research
Questions

ContextMotivationProblem

Figure 1.3: Block diagram about the chapters’ information linkage from chapter 1 to 3 (inclusive).
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2. State of the Art

Berlin et al., 2017, explain the etymology of the word “ergonomics” which comes from the Greek
roots ergon (work) and nomos (laws), being roughtly translated as “the science of work”.

According to International Ergonomics Association (IEA) (The International Ergonomics Asso-
ciation, 2000), ergonomics (or human factors) is defined as a scientific discipline concerned with the
understanding of interactions among humans and other elements of a system, and the profession that
applies theory, principles, data, and methods to design in order to optimise human well-being and
overall system performance. Also, IEA recognises the physical, cognitive and organisational branches
of ergonomics as the three main “domains of specialisation”. It should be noted that this dissertation
focuses solely on the ergonomics’ physical branch.

In this chapter, ergonomic tools are introduced, from generic ergonomic risk assessment methods
(2.1) to particular current available commercial solutions (2.2). The latter are the main competitors of
the solution developed in the OPERATOR. Additionally, a few research studies (2.3), that have been
pursued to improve ergonomic risk assessment, are presented.

2.1 Ergonomic Risk Assessment

An ergonomic risk assessment method can be classified as:

• Self-reported, involving the interpretation of worker’s diaries, interviews and questionnaires;

• Observational, in which worker’s behaviour is evaluated by ergonomic teams experts, e.g. on
proforma sheets. A proforma sheet is a checklist with domains related to workers’ exposure to
ergonomic risk factors. After an ergonomist fills it out, it provides a score or a judgment about the
workstation/task risk rating;

• Directly measured, which measures the exposure to the ergonomic risk using sensors to quantify
workers’ motion effectively.

Concerning the self-report method, its outcome can result in the unreliability of the worker’s exposure
perception, as the risk is discerned by himself/herself, and its comprehension or interpretation depends
on the worker’s literacy, which hinders the possibility to compare different workers’ outcomes. In order
to overcome these limitations, observational methods have been developed, and, in Table A.1, a few
proforma sheets that are used during observational ergonomic risk assessment are indicated.

Nevertheless, the scoring system used in ergonomic assessment sheets may be questionable, and
filling them out can be time-consuming for ergonomic teams, leading to biased conclusions. In order to
cope with observational methods’ drawbacks, direct measuring has been used to record human motion
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continuously, at the workplace or under standardised experimental conditions. Its goal is to accurately
characterise human motion (Menolotto et al., 2020, OSHwiki, 2020). Next, in sections 2.2 and 2.3,
approaches used to directly characterise human motion in industrial contexts are outlined.

However, a directly measured method also has disadvantages; it is usually more expensive and chal-
lenging to analyse and interpret the recorded data in real time.

2.1.1 Guidelines for Ergonomic Assessment

Ergonomics guidelines have been developed in different countries and by various entities. Those
guidelines may have a powerful impact on achieving the implementation of good workplace standards, as
the legal status and recognition of the guidelines may be the only thing that will persuade the management
to take action in benefit of the workers’ well-being (Berlin et al., 2017). Table A.3 from the authors of
Berlin et al., 2017, was reproduced, as it enumerates some of the standards, guidelines and legal status
primarily aimed to prevent WRMSDs.

2.2 Current Available Commercial Solutions

A considerable number of solution providers offer the ability to monitor human motion automatically
and assess one or more risk factors in occupational settings. Table 2.2 shows a comparison between some
of the available commercial solutions in terms of the system’s design complexity.

Each solution was evaluated according to the criteria proposed by Santos et al., 2020:

• Explainability, i.e. the degree of information that the system can report;

• Invasiveness, i.e. the user discomfort levels and also the impact of the system’s setup on his/her
motion due to physical restrictions;

• Scalability, i.e. related to the number of subjects that can, simultaneously, use the setup. It depends
on the system’s invasiveness and cost.

Table 2.1 explains the criteria for high, medium and low level assignment to each system’s design
complexity component. If the system provides high level movement data, it means the system outputs
more generalised metrics (e.g., it counts the number of bad lifting instances). Otherwise, if low level
movement data is provided, the system outputs more detailed metrics (e.g., it calculates the angles from
anatomical joints during bad lifting instances).

Most of the solutions focus on providing high-level movement data to supply indicators for assessing
the ergonomic risk exposure. Nevertheless, not all featured it, such as Reactec Ltd., which focuses
on reporting vibration tools usage, and WakeCap Technologies Inc., which mainly meet construction
industry requirements, focusing on outdoor location and fall detection.

Every system in Table 2.2 relied on wearable (superficial) sensing technology. However, invasive-
ness was considered medium level for highly compound systems, i.e. systems that require the placement
of a high number of sensors in the user’s body, which suggests physical restrictions on the user’s motion.
For example, ViveLab Ergo and Scalefit solutions make use of XSens full-body system to capture their
user’s motion. Additionally, AXS Motion System Ltd. presents a full-body motion capture system with
wires connecting its sensors, which may limit even more its user’s motion.
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Table 2.1: Criteria for system’s design complexity component’s level assignment. System’s design complexity components are:
explainability, invasiveness and scalability. Each component can be classified as high, medium or low level.

Component Low Medium High
Explainability If neither high nor low level

movement data is provided
If only high or low level move-
ment data is provided

If both high and low level
movement data are provided

Invasiveness If the setup is comfortable and
it does not limit user’s motion

If the setup is uncomfortable or
it limits user’s motion

If the setup is both uncomfort-
able and it limits user’s motion

Scalability If the setup has many pieces and
it is high-priced

If the setup has many pieces or
it is high-priced

If the setup has a few pieces and
it is not high-priced

Table 2.2: Current available commercial solutions.

Commercial solution Explainability Invasiveness Scalability
WearHealth (WearHealth,
n.a)

High Medium Medium

AXS Motion System Ltd.
(AXS, n.a)

High Medium Medium

Modjoul (Smartbelt) (Mod-
joul, n.a)

medium (activities recog-
nised from the waist down)

Low/Medium (depends on
what indicators the user de-
sires to track)

High/Medium (depends on
what indicators the user de-
sires to track)

VIT (VIT, n.a) Medium (only detects lifts –
back injuries)

Low High

Reactec Ltd. (Reatec, n.a) Low Low High
Wearable Technologies
Limited (Eleksen, n.a)

Medium Low High

WakeCap Technologies Inc.
(Reporting et al., n.a)

Low (although it detects
falls, trips, etc.)

Low High

Soter Analytics (SoterAna-
lytics, n.a)

Medium Low Medium

ViveLab Ergo (ViveLab,
n.a)

High Medium Medium

Romware (Rombit, n.a) Medium (detects falls, still-
ness)

Low High

Kinetic (WearKinetic, n.a) Medium (detects posture) Low High
Equivital’s Life Monitor
(Equivital, n.a)

High (motion and fall detec-
tion)

Low High

Scalefit (Scalefit, n.a) High Medium Medium
XSens (Xsens, n.a) High Medium Medium

Concerning scalability, some examples used a small number of sensors which increases their scal-
ability to a high level (e.g. WearHealth, VIT, Wearable Technologies Limited, WakeCap Technologies
Inc.). However, usually, those solutions were/are being developed to track particular indicators.

In addition, Soter Analytics solution uses artificial intelligence to compute ergonomic risk indicators.

Overall, high explainability systems depend on many sensors to monitor human motion, which
increases systems’ cost and may have a negative impact on user’s motion, that downgrades systems’
invasiveness and scalability. Conversely, low to medium level explainability systems display a few
sensors, decreasing invasiveness and increasing scalability. Note that, besides Equivital’s Life Monitor
solution has a nice trade-off between the three components; it mainly provides physiological data, e.g.
Electromyography (EMG) data.
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The framework developed within this dissertation provides low and high level data using low-cost
inertial sensors that will be mounted on workers’ apparel in the near future. The OPERATOR project
proposes a solution with high level explainability and scalability and low to medium level invasiveness.

2.3 Workplace Ergonomics Research

This section adresses topics of research about workplace ergonomics. It starts with Motion Capture
(MoCap) technology in industrial contexts (2.3.1) and, then, points out methods used to characterise
individuals’ work-method through motion data analysis (2.3.2).

2.3.1 Motion Capture Technology in Industrial Contexts

In the current revolution of the Industry 4.0 (Romero et al., 2016), MoCap solutions have been
incorporated in order to improve the workers’ health and safety, increase productivity, and improve
industrial processes. The majority of the MoCap systems that were employed in industry were Inertial
Measurement Unit-based (IMU-based) (Menolotto et al., 2020). For a more detailed description of
MoCap systems and IMUs, refer to section 3.2.

There are several advantages of inertial sensing usage concerning occupational settings, as the re-
duced hardware dimensions and weight, inertial systems are cheaper than visual systems, recent advances
in wireless connectivity and data processing, longer life battery, and larger bandwidth. Nonetheless, iner-
tial sensing technique lags in compliance, sensor durability, information validity, and technique efficacy
(Lim et al., 2020).

In Inertial Human Motion Tracking (IHMT), and with the aim of estimating multiple body segments’
pose, more than one IMU has been deployed (Menolotto et al., 2020, Filippeschi et al., 2017), as it
can be consulted in Figure A.1 , which displays different inertial systems setups used in occupational
ergonomics research (Lim et al., 2020).

However, note that a larger number of sensors involves higher frequency measurements and greater
power consumption. So, it is crucial to consider the minimum set of sensors that solves a task satisfacto-
rily (W3, 2017).

Moreover, to assess human motion data given by a MoCap, usually a comparison with human motion
data from a ground truth MoCap is pursued, using e.g. Root Mean Squared Error (RMSE), correlation
coefficients and Cumulative Distribution Function (CDF) as metrics, and drift and accuracy as perfor-
mance measures (Santos et al., 2020, Filippeschi et al., 2017).

2.3.2 Work-Method Characterisation

In the present section, methods used to analyse time series from human motion data, i.e. ordered
sequences of body segments angular data typically sampled at equal intervals in time, such as the ones in
Figure 4.8, are introduced, from statistics (section 2.3.2.1), to more sophisticated approaches for Human
Activity Recognition (HAR) (2.3.2.2).

In recent years, directly measuring methods have been developed and deployed to complement the
self-reported and observational ones. Likewise, measures to quantify the biomechanical exposure have
been designed, based on ergonomic risk factors specifications, and calculated from body segments angu-
lar data (Santos et al., 2020, Vignais et al., 2013, Malaise et al., 2019).
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Ergonomic risk factors related to work specifications (for WRMSDs of the upper limb) have been
identified (Seidel et al., 2019, Keir et al., 2021) and evaluated using proforma sheets. The authors of Lim
et al., 2020 suggest quantifying the intensity, repetition and duration in extreme postures and motions to
measure the biomechanical exposure within workplace ergonomics.

In occupational ergonomics, measuring the biomechanical exposure has been taking part, as an
input, on algorithm-based and automatic ergonomic risk assessment, and, subsequently, on intervention
(Santos et al., 2020, Lim et al., 2020, Vignais et al., 2013, Malaise et al., 2019).

2.3.2.1 Descriptive and Inferential Statistics

Several studies used descriptive statistics to analyse time series from human motion data. In gen-
eral, these studies contemplate measurements of median, mean, standard deviation, range and percentiles,
among others, calculated either for the entire data collection duration or stratified by condition for com-
parison (e.g. by job category, task types) (Lim et al., 2020). Additionally, inferential statistics, such
as ANOVA or mixed effects analyses, have been undertaken in order to establish relationships between
upper limb ergonomics risk and biomechanical exposure variables (Álvarez et al., 2016, Brandt et al.,
2015, Acuna et al., 2012, Möller et al., 2004).

The authors of Hansson et al., 2010 evaluated the physical workload in 43 types of work, using
inclinometry for the head and upper arms, and EMG for the trapezius muscles. The researchers imple-
mented meta-analysis techniques using aggregated group-level data (i.e. separating the combined data
into females’ and males’ data). Then, the group mean values, the corresponding standard deviations, and
correlations between motion from different body segments were used throughout the analysis. Similarly,
in Hodder et al., 2010, they used inclinometry data to monitor nurses posture throughout their shift,
including calculation of percentage time in high ergonomic risk postures and repetition.

Douphrate et al., 2012 analysed dairy parlour workers’ ergonomics, extracting selected percentiles
(10th, 50th, and 90th) from the cumulative distribution of postures, variables describing extreme postures
and variables assumed to describe the occurrence of rest and recovery. As an index of repetitiveness,
Mean Power Frequency (MPF) percentiles of the power spectra were calculated.

Vignais et al., 2013 computed task execution time and the percentage of time spent at each Range of
Motion (RoM) defined in RULA. The authors of Vignais et al., 2013 also analysed each joint described
in RULA and its limits, generating a local score, if the joint RoM values are higher than its limits, and
calculating the total time and the frequency of appearance.

Recently, the authors of Santos et al., 2020 constructed an ergonomic risk score based on RULA, the
Adjusted RULA (AdRULA). These used pie charts to display AdRULA score associated with each work-
station in an automotive assembly line and violin plots to characterise the orientation of body segments
in terms of the joint angular data distribution for each workstation and worker.

The authors of Maurer-Grubinger et al., 2021 constructed five new levels of complexity of RULA,
i.e., from lowest complexity to highest. According to Maurer-Grubinger et al., 2021, an objective and
detailed ergonomic analysis was possible using that method, which evaluates the entire task cycle and
allows different levels of analysis.

Álvarez et al., 2016 provided a quantitative assessment of the ergonomic risk for the motion of the
upper limbs, such as of the time in awkward postures, repetition percentages of time in which joints
are unexpected angular ranges, motion frequency, and mean angular velocity. Repetition was computed
using a Fourier analysis of the signals. In addition, the authors of Álvarez et al., 2016 displayed the
measured angles in both angle–time and velocity–angle graphs. Angle–time graphs allow the detection
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of joint angle values exceeding the recommended limits. Note that the percentage of time out of these
bounds can be computed and used as a health risk evaluation tool. Differently, velocity–angle graphs
allow the evaluation of the joint angle limitations and can be used to evaluate motion repeatability.

2.3.2.2 Human Activity Recognition in Occupational Settings

Over the years, several methods have been used in HAR within occupational settings, through
mining time series’ tasks (Scheurer et al., 2020). In Table 2.4, a few of these are briefly depicted.

Table 2.4: Human Activity Recognition through mining time series’ tasks (adapted from Lim et al., 2020).

Study Task Method
Anderson et
al., 2019

To classify activities: sitting, stand-
ing, weight-shifting, shuffling, and
walking

Supervised learning based on Decision Tree (DT) algorithm, us-
ing mean and standard deviation values of human motion data,
derived from inertial sensing, as features

Brandt et al.,
2018

To classify the low and high-risk
lifting based on the guidelines of
the Danish Working Environment Au-
thority

Supervised learning based on Linear Discriminant Analysis
(LDA), using human motion data, derived from EMG and in-
clinometry, as features

Hosseinian
et al., 2019

To classify manual material handling
activities: four static and seven dy-
namic activities

Supervised learning based on Random Forest (RF) and Support
Vector Machine (SVM) algorithms, using medians of postural
angles and the area under the curve of transformed triaxial ac-
celerometer data as features

Kim et al.,
2014

To classify manual material handling
task types: walking, carrying, lifting,
lowering, pushing and pulling

Supervised learning based on Linear Discriminant Analysis
(LDA), k-Nearest Neighbour (k-NN) and Multilayer Feedfor-
ward Neural Network (NN) algorithms. The authors used an
unsupervised clustering algorithm to explore hidden structures
in initial data and then clustered them. For each cluster, de-
scriptive statistics and fast Fourier transform components were
calculated and used as features

Peppoloni et
al., 2016

To identify task types: neutral pose,
reach, grasp, and move

Automatic segmentation based on State Machine, using posture
estimates and muscle effort compared to the maximal voluntary
contraction values to infer the current phase (i.e. state) within
the work-cycle over time

Folgado
et al., 2018

Classify the speed of predefined mo-
tions using inertial data

Supervised learning based on k-NN algorithm (k=1), using time
series similarity measurements as features

Malaise
et al., 2019

To classify tasks using the taxonomy
proposed by the authors (contructed
based on EAWS and later on upgraded
by Maurice et al., 2019)

Supervised learning based on Hidden Markov Model (HMM)
algorithm, using human motion data, derived from inertial sens-
ing, as features

Varandas et
al., 2019

To detect anomalies in generic, repet-
itive time series from human motion
acquired in industrial contexts

Unsupervised learning based on Density-Based Spatial Clus-
tering Algorithm for applications with noise, using statistical
features extracted from cycles of repetitive time series (seg-
mented through an unsupervised algorithm proposed by the au-
thors), their representation transformations and similarity mea-
surements
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2.4 Chapter Conclusions

Toward ergonomic risk assessment, self-reported, observational and directly measured methods have
been used. However, directly measured are not being used daily, because current commercial solutions do
not provide an adequate trade-off between their systems’ design complexity components. This requires
the need to develop an accesible and intuitive solution that delivers a compreehensive and interpretable
data to ergonomic assessment.

Concerning workplace ergonomics research, IHMT usage is preferable than other MoCap technolo-
gies. Moreover, implementations of guidelines/standards based on ergonomic risk factors related to work
specifications have been settled to quantify the biomechanical exposure and the consequent ergonomic
risk, associated with workers’ work-method in terms of motion.

11



12



3. Theoretical Background

This chapter covers topics considered fundamental to the present dissertation development and com-
prehension. It introduces general knowledge about human motion description (3.1), describes the tech-
nology used to sense human motion (3.2), and depicts the computational methods implemented to mon-
itor human motion (3.3) from sensed data. At the end of the chapter, a brief review of the existing
approaches undertaken to characterise human motion (3.4) is provided.

3.1 Model Human Motion

Firstly, to study human motion, it is crucial to understand human anatomical description. Anatomy
is the study of the structure of the human body, and it defines the human body relative to the anatomical
position (Arus, 2018).

Figure 3.1 shows an approximation of the anatomical position and represents the three main spa-
tial dimensions of the human body, the anatomical planes - frontal, sagittal and transverse -, and their
associated anatomical axes - longitudinal, anteroposterior and mediolateral, respectively.

Frontal 
Plane

Sagittal 
Plane

Transverse 
Plane

Longitudinal 
Axis

Anteroposterior 
Axis

Mediolateral 
Axis

Figure 3.1: Anatomical planes (left) and axes (right).

Anatomical planes and axes are used to describe the human body’s motion, as they will be presented
in the following section 3.1.1, which briefly describes the main elements of the human body’s muscu-
loskeletal system, focusing on the upper body’s joints description. From there on, the definition of MSDs
is detailed and a few WRMSDs of the upper body’s limbs and spine (3.1.2) are pointed out. Further,
biomechanics (3.1.3) and human motion modelling approaches (3.1.4), using mathematical kinematics
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formulations, are introduced.

3.1.1 Musculoskeletal System

The musculoskeletal system is composed of passive and active elements (Nedoma et al., 2011), but
only the study of the passive elements is in the scope of this dissertation.

Passive tissues, e.g. bones and joints, transfer originated and acting forces, while active tissues,
e.g. muscles, can change the energy of biomechanical reactions into work and develop some power for
achieving movement. Note that bones define body segments that are linked through joints.

Mobility of the human body’s joints can be described as a combination of movements around the
three anatomical axes (Nedoma et al., 2011, Arus, 2018):

1. Around the mediolateral axis, in the sagittal plane, the flexion (i.e. the decrease of the angle
between two body segments in the sagittal plane) and the extension (i.e. the increase of the angle
between two body segments in the sagittal plane). Note that extreme flexion/extension movement
is called hyperflexion/hyperextension;

2. Around the anteriorposterior axis, in the frontal plane, the abduction (i.e. away from the midline
in the frontal plane) and the adduction (i.e. back toward the midline in the frontal plane);

3. Around a longitudinal axis of the bone, in the transverse plane, the rotation can be inward or
outward.

Depending on joint’s type, it can be depicted by movements around one, two or the three anatomical
axes. As this dissertation focuses on upper body movement study, the motions from joints of the upper
limb (shoulder, elbow and wrist) and spine are explained. Ahead, Figures 3.3, 3.5, 3.7 and 3.8 picture
joints’ Degrees of Freedom (DoF) and their RoM. DoF and RoM are two fundamental concepts to keep
in mind, derived from kinematics and biomechanics, which will be clarified in sections 3.1.4 and 3.1.3,
respectively.

3.1.1.1 Shoulder joint

The shoulder consists of the glenohumeral, acromioclavicular, sternoclavicular, and scapulothoracic
joints (Figure 3.2). It also has musculature structures that support these joints. Its motion includes flex-
ion/extension, abduction/adduction, and inward/outward rotation (Figure 3.3). According to the shape of
the contact surface, the shoulder joint is a ball-and-socket joint type. It can rotate about the mediolateral,
the anteriorposterior, and the humerus’ longitudinal axes. In addition, it can perform a shift movement,
which occurs only in the luxation case (Nedoma et al., 2011).
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SternumClavicle
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Figure 3.2: Shoulder joint complex’s components: (1) sternoclavicular, (2) acromioclavicular, (3) scapulothoracic and (4)
glenohumeral.

Figure 3.3: Shoulder motion: abduction/adduction (upper left), inward/outward rotation (bottom middle) and extension/flexion
(upper right).

3.1.1.2 Elbow joint

The elbow joint is a compound joint that allows two types of motion: flexion/extension, related
to the upper arm, and forearm’s pronation/supination (Figure 3.5). The joint has three parts: trochlea-
shaped, situated between the humerus and the ulna; spherical-shaped, placed between the humerus and
the radius; cylindrical-shaped, located between the ulna and the radius (Nedoma et al., 2011) (Figure
3.4).
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Figure 3.4: Elbow joint’s components: (1) humeroradial (spherical-shaped), (2) humeroulnar (trochlea-shaped) and (3) proxi-
mal radioulnar (cylindrical-shaped).

Figure 3.5: Elbow motion: pronation/supination (upper left) and extension/flexion (bottom right).

3.1.1.3 Wrist joint

The wrist is a compound joint named radiocarpal joint, which lies between the radius, its articular
disc and three proximal carpal bones (the scaphoid, lunate and triquetral bones) (Figure 3.6). It enables
two types of hand motion, related to the forearm: dorsal/palmar flexion (i.e. wrist extension/flexion,
respectively) and ulnar/radial deviation (Nedoma et al., 2011) (Figure 3.7).

Radius

Scaphoid

Lunate

Triquetral1

Figure 3.6: Wrist’s (1) radiocarpal joint.
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Figure 3.7: Wrist motion: extension/flexion (left) and ulnar/radial deviation (right).

3.1.1.4 Spine

The human spine is a complex structure created from 33 vertebrae, whose principal functions are
to protect the spinal cord and transfer loads from the head and trunk to the pelvis and the lower limbs.
The 33 vertebrae of the spinal column are divided into five regions: cervical (7), thoracic (12), lumbar
(5), sacral (5), and coccygeal (4) (Nedoma et al., 2011). This complex structure enables trunk flex-
ion/extension, lateral bending and rotation (Figure 3.8).

Figure 3.8: Spine motion: lateral bending (upper left), rotation (bottom middle) and extension/flexion (upper right).

3.1.2 Musculoskeletal Disorders

MSDs are defined as impairments of body structures such as muscles, joints, tendons, ligaments,
nerves, cartilage, bones and the localised blood circulation system. If MSDs are caused or aggravated
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primarily by work and by the effects of the immediate environment in which work is carried out, they
are known as WRMSDs (Kok et al., 2019). A few WRMSDs are listed as follows.

3.1.2.1 Work-Related Musculoskeletal Disorders

Rotator Cuff Tears Tendinitis One of the most frequent shoulder’s WRMSDs. It is related to tasks
consisting of sustained or repetitive elevation of the upper limbs at the shoulder’s level or above it, or to
the execution of circular movements with elevated arms (Direção-Geral da Saúde, 2008).

Carpal Tunnel Syndrome A neuropathy (i.e. pathology related to a peripheral nerve) due to com-
pression of the median nerve within a limited space, i.e. the carpal tunnel, which is located in the fist.
Excessive wrist extension or hyperflexion postures may lead to carpal tunnel syndrome (Direção-Geral
da Saúde, 2008).

Wrist Tendonitis or Tenosynovitis It is triggered by the execution of repetitive movements of flex-
ion/extension of the wrist and fingers or holding a load in an inadequate posture (Direção-Geral da Saúde,
2008).

Epicondylitis These are the lateral/tennis elbow and the medial/golfer’s elbow epicondylitis. These are
tendinopathies related to elbow’s overload due to repetitive gestures or to manual handling of excessive
or badly distributed loads (Direção-Geral da Saúde, 2008).

Rachialgias These WRMSDs are the most common ones. Symptoms vary according to the affected
region(s) in the spine (cervical, thoracic and lumbar), back (lumbar) and neck (cervical) pain being
frequently reported. Upright postures for long periods, frequent spine flexion/extension movements,
manual handling and transportation of loads, and computer work (seated) for long periods are risk factors
of rachialgias (Direção-Geral da Saúde, 2008).

3.1.3 Biomechanics

Biomechanics is described as an area of kinesiology, i.e. the whole scholarly area of human move-
ment study, that focuses on the study of the movement of living things using the science of mechanics.
Mechanics is the branch of physics that studies the motion of objects and the forces that cause that mo-
tion; it is divided into many areas, but the three main areas of biomechanics are: rigid-body, deformable-
body, and fluids (Arus, 2018). In Figure B.1, are displayed the major branches of mechanics used in most
biomechanical studies. This dissertation only concerns rigid body’s and, particularly, dynamic motion’s
kinematics.

Likewise, biomechanics have been applied to improve performance and to prevent and treat injuries,
using qualitative and quantitative measurements to analyse human motion (Arus, 2018). Respecting
ergonomic risk assessment approaches, presented in chapter 2, these take part in injury prevention, espe-
cially respecting WRMSDs.

Before going through kinematics (3.1.4), the nine principles for application of biomechanics, ac-
cording to Arus, 2018 (Figure B.2), are listed.

1. Force-Motion: Unbalanced forces act on our bodies or objects when we create or modify move-
ment.
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2. Force-Time: The amount of time over which a force is applied affects the resulting motion.

3. Inertia: The property of all objects to resist changes in their state of motion.

4. Range of Motion: The overall motion used in a movement which can be specified by linear or
angular motion of the body segments.

5. Balance: Person’s ability to control their body position relative to some base of support.

6. Coordination Continuum: How the muscle actions and body segment motions are timed in a human
movement.

7. Segmental Interaction: The forces acting in a system of linked rigid bodies can be transferred
through the links and joints.

8. Optimal Projection: There is an optimal range of projection angles for a specific goal for most
human movements involving projectiles.

9. Spin: Rotations imparted to projectiles.

3.1.4 Kinematics

Kinematics is defined as a branch of mechanics which describes the geometrically possible motions
of objects (i.e. particles and rigid bodies) without regard to the forces that cause those motions. In human
movement study, each body segment is seen as a rigid-body, i.e. a set of many particles constrained to
maintain constant distances between one another (Foxlin, 2002).

Next, kinematics representations (3.1.4.1) for posing body segments and human motion modelling
approaches (3.1.4.3), using kinematics formulations, are introduced.

3.1.4.1 Kinematics Representations

Firstly, a particle in 3-Dimensional (3D) space is represented as a point, and defined by its mass,
time-varying position r(t) and velocity v(t). Tracking an unconstrained particle in a 3D space consists of
reporting the then-current three DoF of r(t), considering v(t), at any point in time (i.e. 3-DoF position
(only) problem). On the other hand, a rigid-body requires 6-DoF to specify its pose, 3-DoF for position
and 3-DoF for orientation (i.e. rotation) (Foxlin, 2002), as it is shown in Figure 3.9.

In order to describe the pose (position and orientation/rotation) of a rigid-body, two cartesian co-
ordinate frames, both specified by a right-hand orthonormal basis, have been deployed: the Earth-fixed
inertial (reference) coordinate frame, E, and the body-fixed non-inertial coordinate frame, B, represented
in Figure 3.10 (Sabatini, 2011, Diebel, 2006).

Three translations can characterise a change in the rigid-body position, each one along a coordinate
axis of E, in other words, the rigid-body position is encoded by the position of the origin of B in E
(Filippeschi et al., 2017, Diebel, 2006). Regard that translations are commutative (Haslwanter, 2018).

Concerning the rigid-body orientation, a change can be described by three rotations, each one about
a coordinate axis of E. Note that the rotations can be described in cartesian or in polar coordinates
(Haslwanter, 2018).
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Figure 3.9: 3D space particle position changes along x, y and z-axis - 3-DoF position (only) problem (left). Rigid-body pose
changes, position and orientation (i.e. rotation around x, y and z-axis) - 6-DoF position and orientation problem (right).
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Figure 3.10: Generic coordinate frames used in rigid-body orientation representation: the Earth-fixed inertial coordinate frame
- E (left); and the body-fixed non-inertial coordinate frame - B (right).

There are a few possibilities to represent rigid-body orientation over time, which are explained in
the next sections.

Rotation Matrix A rotation matrix is defined as a matrix whose multiplication with a vector v rotates
the v while preserving its length (Diebel, 2006). Therefore, it can describe the rotation of a rigid-body
represented by v (Haslwanter, 2018).

There is a representation of v with respect to E and to B, v′ and v, and these representations are
related to each other through a rotation matrix, the Direction Cosine Matrix (DCM) R (Figure 3.11), as
follows

v = Rv′ (3.1)

A DCM is a 3×3 orthogonal matrix with unit determinant and it belongs to the 3D special orthogonal
group of rotation matrices, denoted by SO(3), satisfying

RT R = I = RRT , det(R) = 1, (3.2)

Where I denotes the 3×3 identity matrix, the identity element of the SO(3) group.
Its transpose RT allows moving v representation from the body-fixed frame to the Earth-fixed frame,
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as
v′ = RT v (3.3)

Please note that DCM’s column (row) vectors orthogonality requirement forces six constraints on
its nine elements, thus only three elements of it are actually needed to uniquely characterise the rotation
of v (Sabatini, 2011, Diebel, 2006).
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R = Rx/y/z
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Figure 3.11: DCM as a representation of B rotation relative to E. Representation of v projections (vi, v j, vk) in each axis of B (x,
y, z) (top left). Note that, each projection of v reflects the angle between each axis and the vector v v may represent B orientation
changes over time, but, in human motion tracking, it is usually required to represent B changes relative to a reference coordinate
frame, as E (top right). The concept of projections can be applied in human motion tracking, constructing a projection-matrix,
in which each column represents the projection of x, y, z−axis on x, y, z−axis (each row) . The projection-matrix is a rotation
matrix, R, which describes how B is rotated relative to E. (bottom).

The rotation matrices that describe a rotation θ of B relative to an axis of E are

Rx =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

, Ry =

cosθ 0 sinθ

0 1 0
sinθ 0 −cosθ

, Rz =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

,

About E’s x−, y−, and z−axis, respectively.
Often, a B rotation relative to E does not occur just about one single axis of E, thus more compound

approaches have been defined, such as Euler’s theorem and angles and quaternion.

Euler’s Theorem and Angles Euler’s theorem states that the most general motion of a rigid-body with
one fixed point is a coordinate rotation, which is a rotation about a single coordinate axis, and, also, that
the composition of two rotations is again a rotation (Diebel, 2006, Haslwanter, 2018).

The orientation over time of B relative to E can be described using Euler’s theorem in terms of three
consecutive coordinate rotations, expressed by three body- or Earth-referenced Euler angles, α , β and γ ,
about the x-, y- and z-axis, respectively (Sabatini, 2011, Filippeschi et al., 2017, Diebel, 2006) (in Figure
3.12).

21



3. THEORETICAL BACKGROUND

Figure 3.12: Euler Angles α , β and γ , where xyz is the reference coordinate frame, usually E, XY Z is the rotated coordinate
frame, B, and N the axis of the coordinate rotation (Wikipedia, n.a).

These angles can be arranged in a 3D-vector, parallel to the axis of the rotation and with a length
proportional to the magnitude of the rotation in radians, the Euler vector:

u := [α, β , γ]T (3.4)

With the corresponding rotation matrix (Diebel, 2006, Haslwanter, 2018):

Rx,y,z(α, β , γ) := Rx(α) Ry(β ) Rz(γ) (3.5)

In many applications, Euler angles time derivatives using finite difference approximations are neces-
sary. Also, the usage of the linearised versions of primitive functions that generally describe Euler angles
may be required (Diebel, 2006).

There are diverse configurations of the three consecutive Euler angles’ rotations sequence. Diebel,
2006, summarises the most commonly used ones and their expressions for orientation representation.

Euler angles representation is easy to interpret, but it can suffer from singularities, referred to as gim-
bal lock. These are characterised by the indistinguishability of changes in the first and third angles when
the second angle is at some critical value (Sabatini, 2011, Diebel, 2006). To overcome this limitation,
one can alternatively use the quaternion kinematic representation to describe a rigid-body orientation
over time.

Quaternion A quaternion is a 4-Dimensional (4D) complex number defined as the sum of a scalar q0

and a vector q = (q1, q2, q3) (Diebel, 2006, KUIPERS, 2020, Haslwanter, 2018) as it follows:

q = q0 +q = q0 +q1i+q2 j+q3k (3.6)

Where, according to Hamilton’s expression i2 = j2 = k2 = i jk = −1, the Hamilton’s rules are:

i j = k jk = i ki = j ji =−k k j =−i ik =− j (3.7)

Quaternion Algebra Its conjugate, norm and inverse are given by (Haslwanter, 2018):

q∗= q0−q1i−q2 j−q3k (3.8)

||q||=
√

q2
0 +q2

1 +q2
2 +q2

3 =
√

q ⊗q∗=√q∗⊗ q (3.9)
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q−1 =
q∗
||q|| (3.10)

The multiplication of two quaternions, q and p, is not commutative and is given by (Haslwanter,
2018):

q⊗ p = (q0 p0−q ·p)+(q0p+ p0q+q×p) · (i, j,k) (3.11)

Interpretation of Quaternions A quaternion can be named as(Haslwanter, 2018):

• Pure quaternion - its scalar component equals to 0;

• Scalar quaternion - its vector component is equivalent to 0;

• Unit quaternion - its norm verifies ||q|| = ||q*|| = 1, so it belongs to SO(3), being also known as
rotation quaternion.

There are also quaternions that do not satisfy any of the conditions to be a pure, scalar or unit
quaternion.

Quaternion Rotation Operator A unit quaternion describes a pure rotation in a 3D space,
i.e. a rotation of an object about a fixed non-moving axis (Haslwanter, 2018). Remember that v can
define a rigid-body orientation and is a pure quaternion (v ∈ R3). Furthermore, KUIPERS, 2020, proves
that the quaternion rotation (linear) operator Lq(v) acts on v like a rotation about q and states it as follows:

Theorem 1 For any unit quaternion

q = q0 +q = cos
θ

2
+usin

θ

2
(3.12)

and for any vector v ∈ R3 the action of the operator

Lq(v) = qvq∗ (3.13)

on v is equivalent to a rotation of the vector through an angle θ about u as the axis of rotation. Note
that u is a unit-norm vector along q.

Moreover, while the quaternion operator Lq(v) may be interpreted as a point or vector rotation with
respect to the (fixed) coordinate frame, its conjugate quaternion operator Lq ∗ (v) may be interpreted as a
coordinate frame rotation with respect to the (fixed) space of points, and it is stated as follows (KUIPERS,
2020):

Theorem 2 For any unit quaternion

q = q0 +q = cos
θ

2
+usin

θ

2
(3.14)

and for any vector v ∈ R3 the action of the operator

Lq ∗ (v) = q∗ v(q∗)∗= q∗ vq (3.15)

is a rotation of the coordinate frame about the axis u through an angle θ while v is not rotated.
Equivalently, the operator Lq ∗ (v) rotates the vector v with respect to the coordinate frame through an
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angle −θ about q.
According to these Theorems, if Lq(v) describes a rotation of v in the body coordinate frame B,

about an axis in a (fixed) coordinate frame E, then Lq ∗ (v) describes it as a rotation of E in B.
A composition rotation is the product of quaternions (equation 3.11) which can be represented by the

composite rotation operator Lqp(v), equivalent to Euler angles rotation matrix in equation 3.5 (Diebel,
2006, KUIPERS, 2020). Additionally, as equation 3.13 equals equation 3.1 (Diebel, 2006, KUIPERS,
2020), then,

R =

1−2(q2
3−q2

4) 2(q2q3−q1q4) 2(q2q4 +q1q3)

2(q2q3 +q1q4) 1−2(q2
2−q2

4) 2(q3q4 +q1q2)

2(q2q4−q1q3) 2(q3q4 +q1q2) 1−2(q2
2−q2

3)


In Figure 3.13, an example of the rotation vector v0, using unit quaternion description is shown.
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Figure 3.13: Example of a v0 posing, with respect to a (fixed) reference coordinate frame. The v0 rotation is described by the
unit quaternion q = 6.123234e− 17 + 0i+ 0 j + k about the unit vector u = [0 0 1] (i.e. corresponding to the reference
coordinate frame z−axis). Note that q rotates v0 around a coordinate axis by 180º (i.e. π rad), which is consistent with equation
3.12. There is also a change in v0 position along the reference coordinate frame axes, which is represented by p = [−1 −1 −1].
v1 is the pose of v0 after pose changing, depicted by q (i.e. orientation/rotation) and p (i.e. position).

3.1.4.2 Kinematics Representations Conclusions

According to the literature, unit quaternion representation has been extensively used in human mo-
tion tracking, as it overcomes Euler angles drawbacks: the presence of singularities (i.e. gimbal lock);
less accurate than unit quaternion, when used to integrate incremental changes in orientation over time
(i.e. higher error occurrence); and lower computational speed, due to the computation of trigonometric
functions.

Unit quaternion representation also has disadvantages, i.e. less intuitive physical interpretation, and
it may lead to complex optimisation problems due to the restriction of the unit norm to represent a
pure rotation. Nonetheless, its mathematical elegance and lack of singularities make it a very popular
representation for encoding the orientation of a rigid-body.

3.1.4.3 Human Motion Constraints

In human motion tracking, constraints equations define multiple body segments interactions (Foxlin,
2002). In section 3.1.1, it was noted that the human body is a high linkage system, e.g. through joints.

In order to track human body constrained motion, imposed by joints DoFs and respective RoMs,
different methods have been applied as a part of Forward Kinematics (FK), i.e. generates simula-
tion of movement, or Inverse Kinematics (IK), i.e. provides insight into observed/measured movement
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(Carmichael et al., n.a). These two major techniques are based on transformations from(to) joint angles
to(from) coordinates while considering body segments constant geometric parameters.

Moreover, a kinematics chain can be established. It encodes the motion of a body segment as a
function of the previous segment’s motion in the chain (Foxlin, 2002, Filippeschi et al., 2017). Alter-
natively, a free segment model that keeps some constraints as hard ones, while others are relaxed, can
be implemented (Filippeschi et al., 2017). Therefore, kinematics chain and free segment are the most
common types of kinematical models established based on the joints’ biomechanics.

Setting human motion constraints is crucial because it can prevent the relative displacement of the
body segments due to sensors’ signals and computations inacurracies over time (Filippeschi et al., 2017).
These issues are explained in the following sections, 3.2 and 3.3.

Joints DoF constraints and body segments RoM limitations have been implemented by considering
the orientation estimation as an optimisation problem, whose objectives are to respect the motion con-
straints and limitations and to optimise the consistency of the estimated orientations (Filippeschi et al.,
2017).

About human motion tracking, IK has been deployed to solve kinematic chain global optimisation
problems (Lim et al., 2020). To that end, biomechanical models have been constructed throughout
kinematic and kinetic modelling. Biomechanical models can describe the motion of upper body joints
(Sybele et al., 2006, Holzbaur et al., 2005) or detail the motion of a specific compound joint, such as the
scapulothoracic (Seth et al., 2016). Note that a few of these use the guidelines provided by the Standard
Terminology Committee (STC) of the International Society of Biomechanics (ISB) (Wu et al., 2005,
Lipton et al., 2002).

3.2 Sense Human Motion

Motion Capture (MoCap) is the process of digitally tracking and recording the movements of objects
or living beings in space. To estimate the motion of body segments, MoCap systems comprise diverse
tools and techniques (Yahya et al., 2019, Menolotto et al., 2020).

There are two main categories of MoCap systems, the visual and the non-visual (Yahya et al., 2019,
Menolotto et al., 2020).

• Visual, or optical, MoCap systems comprise of depth camera, single camera and/or multiple cam-
eras, and can be classified as marker-based (i.e. markers are attached to the body segments to
track their motion, and they can be active or passive, e.g. Vicon (Vicon Motion Systems, n.a))
or as markerless (i.e. make use of images’ features for detection of body segments motion, e.g.
OpenPose (Cao et al., 2021));

• Non-visual MoCap systems are inertial which comprise the usage of IMUs, e.g. XSens (Xsens,
n.a).

There are also hybrid solutions, combining both visual and non-visual technologies. Additionally,
Surface Electromyography based sensors, which use surface electrodes that capture the myoelectric sig-
nal containing the muscles activation information, have been used alongside with MoCap systems.

From now on, this dissertation mainly focuses on Inertial Human Motion Tracking (IHMT), since
IMUs are the elected technology in industrial contexts. As the goal is to obtain motion estimates from
diverse body segments, the usage of diverse IMUs is needed and their signals have to be synchronised.
Thus, devices synchronisation is outlined in the section 3.2.2.
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3.2.1 Inertial Measurement Unit Sensors

The most common type of IMUs used in biomedical applications consists of strap-down systems (i.e.
systems wherein sensors are firmly fixed to the rigid-body being measured, and there are no “gimbals”
or moving parts (Haslwanter, 2018)). Plus, in recent years, a new generation of IMUs based on Micro-
Electro-Mechanical Systems (MEMS) technology supported the growth IHMT research (Filippeschi et
al., 2017).

An IMU consists of a set of triaxial low-level sensors that measure 3D quantities in order to esti-
mate the pose, or at least either the position or the orientation/rotation, of the body segment to which it
is attached (W3, 2017, Lim et al., 2020, Filippeschi et al., 2017). Generally, it is composed of an ac-
celerometer and gyroscope, and, many times, it is also equipped with a magnetometer. The naive use of
an IMU is the integration of the sensors’ signals over time to estimate velocity, position and orientation
(Filippeschi et al., 2017). Next, IMU’s low-level triaxial sensors are described. These are geometrically
represented as in Figure 3.14.
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Figure 3.14: Accelerometer (left), Gyroscope (middle) and Magnetometer (right) geometric representations.

3.2.1.1 Accelerometer

Accelerometers are used to determine the direction of the local vertical (Roetenberg et al., 2009),
also known as Gravito-Inertial Force (GIF), which is the sum of gravity and the inertial forces caused
by linear accelerations. Note that accelerometers cannot distinguish between inertial and gravitational
forces, as these sense all accelerations in one (Haslwanter, 2018).

An accelerometer is an inertial sensor. Thus, the directions of the force causing the motion and the
associated sensed acceleration have opposite directions (Haslwanter, 2018). As follows, when the device
is in free fall, the acceleration is 0 m/s2 in the falling direction. Otherwise, when the device is laying flat
on the table, its acceleration in the upwards direction will be equal to the Earth’s gravity (9.8 m/s2), as it
is measuring the force of the table pushing the device upwards (W3, 2017).

Accelerometers can provide the linear acceleration, the acceleration without gravity, or the gravita-
tional acceleration, used to obtain the gravity vector that can be useful for some kinds of sensor fusion,
such as creating a magnetic compass.

In acceleration measurements, there is interest in relevant variations and avoiding noise, which is
given by acceleration’s low frequency component occurrences due to the slow changing force, the gravity.
Therefore, a high-pass filter can help isolate the linear acceleration(s), while a low-pass filter can help to
isolate the gravitational acceleration.

As accelerometers report acceleration, integration is needed to get velocity and double integration
is required to obtain position. An integral creates drift and a double integral amplifies it. Hence, the
position from an accelerometer’s data is very imprecise and not very useful.
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According to Nazarahari et al., 2021, the accelerometer readings can be modeled as:

yA = KA[a+g]+bA + vA (3.16)

Where yA is the accelerometer readout, KA is the scale factor matrix, a and g are the linear and
gravitational accelerations, respectively, bA is the bias, and vA is a white noise term. In addition, the bA

term is obtained through a calibration procedure or estimated during orientation tracking.

3.2.1.2 Gyroscope

A gyroscope senses angular velocity relative to the inertial space (i.e. its reference frame). Particu-
larly, a MEMS gyroscope measures its own rotation, making use of the Coriolis effect, which states that
in a reference frame rotating at a certain angular velocity, a given mass moving with a resultant velocity
experiences a (fictitious) (inertial) force, the Coriolis force (W3, 2017, Haslwanter, 2018).

This triaxial sensor consists of a (proof) mass, which is made to oscillate at a reasonably high
frequency and a pickoff that is provided to measure the secondary vibration mode caused by the Coriolis
force, which pushes the mass to vibrate in a direction perpendicular to the primarily driven vibration
(Foxlin, 2002).

Gyroscopes sense high frequency oscillations, which make these inertial sensors the most power
hungry and mean that they can easily be affected by other vibrations, like a vibration (rumble) motor
or speaker in the same device (W3, 2017). Conversely, this characteristic makes gyroscopes helpful in
achieving accurate orientation estimates for highly dynamic motions (Sabatini, 2011).

In order to get the rotation (angle) from the gyroscope’s angular velocity data, there is a need to
perform an integration that will turn noise into drift over time (i.e. low-frequency bias).

According to Nazarahari et al., 2021, the gyroscope readings can be modeled as:

yG = KGωk +bG + vG (3.17)

Where yG is the gyroscope readout, KG is the scale factor matrix, ωk is the true angular velocity, bG

is the bias, and vG is a white noise term.

3.2.1.3 Magnetometer

A magnetometer senses the magnetic field, meaning that it will only sense the Earth’s magnetic field
without any strong magnetic influence close by. Using that, one can obtain the absolute orientation (i.e.
with respect to Earth’s reference frame) of the sensor (Haslwanter, 2018). Magnetometers give a 3D
vector pointing to the strongest magnetic field and do not enforce a specific device orientation in order
to work. Notice that these sensors are susceptible to outside influence (W3, 2017).

As mentioned before, these devices can be used in tandem with accelerometers to isolate the gravi-
tational acceleration; magnetometers need the gravity vector, provided by a low-pass filtered accelerom-
eter’s signal, in order to determine how the device is being held. Plus, more precise pose estimates can
be achieved with an additional gyroscope, because its orientation computation update is faster than the
combination of magnetometer and accelerometer. This combination of the sensors’ signals is called tilt
compensation (W3, 2017).

Static magnetic fields (e.g. Earth’s magnetic field) in a conductor can be measured using the Hall
effect, which results from Lorentz force (i.e. the combination of the electric and magnetic forces on
a moving point charged due to electromagnetic fields). In IHMT, magnetometers sense an oscillating
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(dynamic) magnetic field as a result of the sensor’s motion. Dynamic magnetic fields are described by
the induction effect (Haslwanter, 2018).

According to Nazarahari et al., 2021, the magnetometer readings can be modeled as:

yM = KMm+d + vM (3.18)

Where yM is the magnetometer readout, KM is the scale factor matrix, m is the true geomagnetic
field, d is the magnetic distortion, and vM is a white noise term.

3.2.2 Devices Synchronisation

For most of the physical information sources (e.g. sensors), the acquired data is naturally ordered in
time, so the information assigned to virtual objects (e.g. servers) must be ordered in time with respect to
the (real) information chronology (Badihi, 2020).

Regarding devices (e.g. IMUs) synchronisation, there are three steps to take into account:

1. Querying the global time at which a specific event happened and is observed by an object;

2. Measuring the time difference between two events that are observed by different objects;

3. Relatively ordering the events that are observed by different objects.

Accordingly, if multiple sensors record or measure the same event, their data streams are coupled at
a global time. Nevertheless, data streams from different sensors set up on a system (e.g. human body)
are usually not correctly coupled. In other words, they are not synchronised.

Many of the synchronisation techniques currently used are based on wireless communication be-
tween sensors. These require: all the sensors in the network follow the same communication and syn-
chronisation protocols; often, high-power sensors, which shorten sensors’ battery life and usefulness; or
incorporation of an accurate internal real-time clock, which may not be a feasible design decision due to
the added cost and power consumption (Bennett, 2017).

In addition, there are datasets that have been collected without proper synchronisation, thus post-hoc
and data-driven synchronisation methods have been developed (Shaabana et al., 2019).

Synchronisation issues arise due to clock oscillators inaccuracies (i.e. lack of stability).
The most common data desynchronisation problems, instatiated in Figure 3.15, are:

• Drift: if the coupled sensors times are not the same, then there is some drift (i.e. error) in one or
both sensors clocks oscillators, which needs to be corrected. One essential step in the correction is
realigning or shifting the data in time to ensure the two data streams are aligned when the shared
measurements are acquired and the coupling occurs;

• Delay: if acquisition initial time is different among data streams of the coupled sensors, then there
is an initial lag of one stream relative to another.

The clock stability is affected by the oscillator type, the operating temperature and frequency shifts
(i.e. jitter). Jitter is the deviation from the true periodicity of a presumably periodic signal, often about a
reference clock oscillator signal (Bennett, 2017).

The clock stability is defined as follows:

ppm =
∆t
T
×1,000,000 (3.19)
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Where ∆t is the difference between the actual time passed and the measured time passed, i.e. delay
and drift, and T is the total time passed.
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Figure 3.15: Synchronised data streams (first row), with a time lag of 1s (second row), a linear drift (third row), a non-linear
drift (fourth row) and presenting all the data desynchronisation problems, delay and drift (fifth row). A stands for “Amplitude”
and a.u for “adimensional unit”.

3.3 Monitor Human Motion

This section explains how to implement various Sensor Fusion Algorithms (SFAs), in order to obtain
accurate and robust estimates of body segments 3D orientation.

3.3.1 Strap-Down Integration

Strap-Down Integration (SDI) is the basis of some SFAs. Remember that the term strap-down
indicates the sensor is strapped onto the rigid-body, in opposition to gimbals.

Gyroscope readout SDI is used to update the orientation of an object at t +1, taking into account a
known orientation at t (Nazarahari et al., 2021), according to:

qt+1 = exp(Ω(yG) Ts)qt (3.20)

q0 = q(0) (3.21)

Where q indicates a quaternion parametrization of orientation, Ω(yG) is a 4×4 skew-symetric matrix

which equals to 1
2


0 −yG,x −yG,y −yG,z

−yG,x 0 −yG,z −yG,y

−yG,y −yG,z 0 −yG,x

−yG,z −yG,y −yG,x 0

, Ts is the sampling rate of the IMU, exp(•) is the

matrix exponential operator and q(0) is the known initial orientation. Note that the exp(Ω(yG) Ts) term
is the result from the integration of the angular velocity data Ω(yG).
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3.3.2 Vector Observation algorithms

Vector Observation (VO) algorithms are SFAs that focus in minimising the cost function in equation
3.22, the Wahba’s problem (Nazarahari et al., 2021). The solution of the Wahba’s problem is the rotation
matrix R, that is, subsequently, used to estimate an absolute orientation of the rigid-body with respect to
E, the Earth-fixed reference frame.

J =
1
2 ∑

i
ai|bi−Rri|2 (3.22)

Where ai is the weight related to each VO (i.e. a VO is a vector in B, the body-fixed reference
frame), bi is the unit vector measured in B, R is the DCM that represents the rigid-body rotation (to be
estimated), and ri is the unit vector which correponds to bi in E (Nazarahari et al., 2021).

VO algorithms are applied to IMU accelerometer and magnetometer readouts, wherein yA and yM

are the bis (VOs), and the gravitational acceleration and the Earth geomagnetic field vectors are the ris
(Nazarahari et al., 2021).

TRi-axial Attitude Determination (TRIAD) and QUaternion ESTimator (QUEST) are VO algo-
rithms. These differ from each other as, contrarly to TRIAD, QUEST may accomodate more than two
VOs. Moreover, Factored Quartenion Algorithm (FQA) is used to decouple yA and yM and cancel the
effect of the magnetic disturbances on orientation calculation, returning a quaternion as a solution of the
Wahba’s problem (Nazarahari et al., 2021).

3.3.3 Complementary Filters

A Complementary Filter (CF) proposes an engagement between accelerometer, gyroscope and mag-
netometer properties. It involves low pass filtering of accelerometer and magnetometer data that isolates
their low-frequency components, the gravitational acceleration and the Earth geomagnetic field, respec-
tively, and high pass filtering of gyroscope data, to remove gyroscope’s low frequency component, the
bias.

Note that the filters optimal cut-off frequency kP depends on motion dynamics. Thus, a higher kP is
preferred for relatively slow motions, while for high dynamics, a smaller kP is required. In many cases, an
integrator with gain kI is added. It is relevant for the CF performance, along with the choice of kP. While
gyroscopes readings should be fairly considered in highly dynamic motion tracking, accelerometers and
magnetometers can provide stable estimates under less dynamic movement. There are a few Modified
CFs, proposed in the literature, which implement techniques in order to support gain’s choice, as CF
performance highly depends on it (Nazarahari et al., 2021).

Thus, rigid-body orientation is estimated from gyroscope, accelerometer and magnetometer data,
using the SDI (3.3.1) and VO (3.3.2) algorithms, respectively, and then fused using CF SFA (Garcia,
n.d.) as follows:

q = (1− kI)qG + kIqAM (3.23)

Where qG is the orientation estimated from the gyroscope, qAM is the orientation estimated from the
accelerometer and the magnetometer.
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3.3.3.1 Mahony filter

Proposed by the authors of Mahony et al., 2008, this filter is a non-linear CF that considers the
decoupling between the estimated orientation from the gyroscope and the estimated orientation from
the magnetometer and accelerometer and weights them according to its gain. This filter uses quater-
nion representation in rigid-body orientation estimation. Likewise, it is characterised by two parameters
that control the algorithm performance: the weighting process directly on the quaternions and the filter
proportional gain kI .

3.3.3.2 Madgwick Filter

Freed by the authors of Madgwick, 2010 (Garcia, n.a[c]), the Madgwick filter algorithm is an innova-
tive CF. This filter uses a VO algorithm, based on the Gradient Descent Algorithm (GDA) to compute the
rotation matrix R. Thus, Madgwick filter is an analytically derived and optimised GDA. The algorithm
enables a fair orientation estimation performance at low sampling rated data and (online) compensation
of magnetometer magnetic distortion (detailed in section 3.3.6). Additionally, it ensures an optimal value
of kI , controlled by a single adjustable parameter (defined by observable system’s characteristics), which
compensates gyroscope low-frequency bias (i.e. drift). Madgwick filter uses a quaternion to represent
the rigid-body orientation.

3.3.4 Kalman Filters

Kalman Filter (KF) SFA, at first proposed by Kalman, 1960, intends to estimate a state vector x,
which represents the orientation of the rigid-body, based on the knowledge of:

• System model;

• System noise input u (usually yG);

• System measurements z (usually yA and yM);

• White Gaussian noise processes (w and v) related to the system and their measurement models
covariances;

• State transition matrix and equation (F and f );

• Measurement prediction matrix and equation (H and h).

x can be estimated by solving a linear discrete-time system as follows:xt+1 = Ft +Btut +wt

zt+1 = Ht+1xt+1 + vt+1
, (3.24)

Or a non-linear discrete-time system,xt+1 = ft(xt ,ut ,wt)

zt+1 = ht+1(xt+1,vt+1)
. (3.25)

The solution of one of these systems is the state of the rigid-body in t + 1, in terms of orientation.
Thus, KF computation basically comprehends two steps (Garcia, n.a[b]):
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1. The prediction step - estimates the next state of the system and its covariance, at time t +1, given
the previous state, at time t;

2. The correction step - rectifies the estimation with a set of measurements z, at time t.

The system to be solved, i.e. system 3.24 or 3.25, is chosen accordingly to noise processes distri-
bution and in order to minimise the error between the true state and an estimated state. In systems, SDI
of the gyroscope is used to model F or f in the prediction step. Moreover, the differences between
the measured and the estimated accelerations and geomagnetic fields are used to model H or h in the
correction step (Nazarahari et al., 2021).

In the literature, a few variations of KFs have been described: the linear (i.e. linear system solution),
the extended (i.e. non-linear system solution), the complementary (i.e. considers estimates of primary
states’ errors), and the modified KFs.

Furthermore, as KF performance highly depends on an accurate definition of the system’s and mea-
surement’s models and noise covariance matrices, adaptative KFs which tune models’ gain over time
have been used (Nazarahari et al., 2021).

3.3.5 Sensor Fusion Algorithms Conclusions

SDI and VO algorithms have several drawbacks. The first requires knowing the initial orientation,
and the gyroscope bias results in an increasing cumulative error in the orientation estimation due to the
numerical integration. The latter is unsuitable for indoor orientation tracking while performing highly
dynamic tasks, as algorithms can be affected by a and d (external non-gravitational acceleration and
magnetic distortion, respectively).

CF and KF SFAs are used to compensate SDI and VO algorithms’ disadvantages. Remember that,
usually, both CF and KF algorithms use SDI of yG to propagate the orientation in time and correct the
propagated orientation with the estimated orientation by a VO algorithm, or by a corrective term obtained
with an optimisation rule (Nazarahari et al., 2021). In Figure 3.16, SFAs are briefly illustrated.
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Figure 3.16: Block diagram of the SFAs.

Moreover, in order to improve the accuracy of the SDI, authors of Nazarahari et al., 2021, suggest
the usage of a gyroscope with low bias, correction of the gyroscope’s static bias and scale factor through
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gyroscope’s offline calibration, usage of stochastic models or heuristics to estimate the time-varying bG

in real-time and use of an accurate estimation of exp(•) for the SDI.
Concerning accelerometer and magnetometer data in VO algorithms, authors of Nazarahari et al.,

2021, propose the evaluation of sensors’ calibration and usage of online stochastic models to estimate a
and d, correcting yA and yM, respectively.

Ultimately, as it was already mentioned, gain is a key component in the performance of CF and
KF SFAs. In order to better choose the gain, the same authors of Nazarahari et al., 2021, commend
the usage of an online gain tuning strategy to adaptively put more weight on the most reliable source of
information; decoupling of the gains associated with gyroscope, accelerometer and magnetometer; and
selection of the filter gain(s) rigorously by evaluating these to diverse motion patterns, intensities, and
durations.

3.3.6 Orientation Estimation Issues

In IHMT, drift, calibration and magnetic disturbances are frequent issues. Therefore, procedures
have been carried out to handle these.

In order to deal with gyroscope’s drift (i.e. to correct the cumulative error of the SDI), the fusion of
yG’s SDI with a quasi-static one, the inclusion of bG in the yG estimate, and exploitation of constraints
from the kinematics chain to avoid drift in the orientation estimates of one body segment with respect
to the others have been enforced (Filippeschi et al., 2017). Furthermore, Ribeiro et al., 2020, applied
Machine Learning (ML) techniques in order to correct accelerometer’s drift in position tracking. For
that, the author used classifiers to identify the periods in which IMUs were stopped (i.e. zero-velocity
detection) and combined these with ML regression models, capable of estimating the displacement of
the sensors during periods of movement.

For long-term acquisitions, it is crucial to consider measurements from aiding sensors (i.e. ac-
celerometer and magnetometer) to correct the gyroscope’s drift (W3, 2017, Nazarahari et al., 2021).

Calibration is usually performed at the beginning of the session for data collection, defining the
parameters used in motion reconstruction algorithms. Parameters can be related to the pose of IMU
frames with respect to B or anthropometric measures. Usually, initial calibration consists of resting in
Neutral Pose (N-Pose) or standing in T-pose. Aside from these static poses, dynamic calibration may
be required, i.e. to perform rotations around different joint axes to better align the IMU frames with
the anatomical axes (Filippeschi et al., 2017). In addition, authors have been proposing the usage of
MoCap visual systems in tandem with inertial MoCap in order to calibrate the IMU sensors over time
(Santos et al., 2020), or to compensate magnetic disturbances (Bleser et al., 2011). Pratical descriptions
of calibration procedures are provided in section 4.2.1.

Magnetic disturbances can be classified as hard or soft iron interferences, which are related to per-
manently magnetised objects or objects that are magnetised only when an external field is applied. Hard
iron’s effects cause an offset of the Earth magnetic field, whereas soft iron’s effects cause a distortion
(i.e. the change in the intensity and direction of the sensed field). In Figure 3.17, the effects of mag-
netic interferences on the coordinate sensor frame are shown. When the magnetic environment does not
change, magnetic disturbances can be corrected through internal sensor calibration. Otherwise, when
the magnetic environment changes, a policy that decides if the yM is reliable can be established, using a
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vector selection (also used to select yA reliable estimations) and/or limiting the contribution of yM, e.g.
using a CF/ KF algorithm to weigh magnetometer’s VO estimate (Filippeschi et al., 2017, Nazarahari
et al., 2021).

Figure 3.17: Magnetometer without magnetic interferences (top), with soft (middle) and hard (bottom) iron interferences
(Teslabs, n.a).

3.4 Characterise Human Motion

Mining time series data, which is the process that involves inferring of an algorithm to explore data,
develop a model and discover previously unknown patterns, has been pursued to analyse human motion
(Wang et al., 2012). Data mining taxonomy is shown in Figure 3.18.

Mining tasks compromise a query time series Q and a measurement function, D, that provides sim-
ilarity information between two time series, Q and C, D(Q,C) in order to compare both for sequence
matching, subsequence searching and motif detection/discovery (Wang et al., 2012). Note that there are
distance measurements used to compute time series shape similarity, and probabilistic measurements,
used to determine time series structural similarity (Keogh, 2006).
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Figure 3.18: Data Mining Taxonomy (based on Wang et al., 2012).
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Commonly used distance measurements are the Euclidean Distance (ED) and the Dynamic Time
Warping (DTW) (Wang et al., 2012). Motivated by distance measurement algorithms difficulty of scaling
search to large datasets, Rakthanmanon et al., 2012, depicted and introduced a few optimisation methods
for subsequences of time series under DTW. In recent years, time series similarity distance measurements
have been developed to account for amplitude differences (Brankovic et al., 2020, Gamboa, 2013, Chen
et al., 2013, Wang et al., 2012, Marteau, 2009).

The authors of Folgado et al., 2018, developed Time Alignment Measurement (TAM) which de-
scribes the behaviour in time between two signals by measuring the fraction of time distortion between
them. TAM is a distance measurement of time series similarity in the time domain and can be very useful
to measure human motion performed during repetitive work-cycles. In particular, TAM can be useful to
evaluate the temporal dissimilarity between operators that might be executing the same work process
(i.e. which enforces identical time series’ amplitude and shape) but at different working speeds.

On the other hand, towards mining time series using probabilistic measurements, a Q over uncertain
dataset assigns to each uncertain data C a probability p, indicating the likelihood that C meets the Q
predicate, p = D(Q,C) (ABfalg et al., 2009).

Eamonn Keogh and his team Keogh, n.a, have been significant contributors to mining time series
data, particularly motif discovery. Time series motif discovery can be defined as the unearthing of locally
conserved behaviour in a long time series. Note that almost every motif discovery algorithm has been
using ED. Alaee et al., 2020, present the Scalable Warping Aware Matrix Profile algorithm, which is
an efficient, scalable and exact method to find time series motifs under Subsequences DTW. It uses the
Matrix Profile (MP) representation of distances between all subsequences and their nearest neighbours.

Additionally, Yoshimura, 2019, proposes a hub motif (a type of motif) and an algorithm for finding
hub motifs, based on the MP and presented an exciting application to task classification regarding human
motion ergonomics.

3.5 Chapter Conclusions

Human body segments are linked through joints, which enable segments’ motion within a set of
DoFs and their respective RoMs. Upper body joints are shoulder, elbow, wrist and spine. In order to
track the upper body motion, MoCap systems have been deployed. As the inertial MoCap system op-
tion is the more feasible alternative in industrial contexts, its usage was explored. In IHMT, IMUs are
rigidly attached to segments to get acceleration, angular velocity and magnetic field measurements as-
sociated with the motion conducted by their user. These measures can be combined through SFAs to
estimate segments’ orientation over time. The reference frame relative to which each segment motion
is described can be changed using rotation matrix algebra and throughout kinematics representations.
Quaternions are the most common kinematics representation in human motion monitoring applications.
Stem from orientation quaternion representation, joints’ angular data can be determined using complex
numbers mathematics. In addition, biomechanical models and, particularly, kinematics models that de-
scribe joints’ real movements can be implemented to correct orientation data by applying human motion
real constraints to monitor human motion accurately. Ultimately, cceleration, angular velocity, magnetic
field, and orientation quantities can be brought together to characterise human motion by conducting
mining time series tasks.
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4. Materials and Methods

In this chapter, the materials used and methods deployed and developed during the dissertation
project are described.

Using the framework Modelling-Sensing-Analysis-Assessment-Intervention (MSAAI), developed
by the authors of Lim et al., 2020, to assess similar research, the following sections, data collection (4.2),
data pre-processing (4.3) and monitoring motion (4.4), systems comparison metrics (4.5) and ergonomic
assessment (4.6), can be adressed to sensing, modelling, analysis and assessment frames from MSAAI,
respectively. The frames from MSAAI respect to human motion modelling (M) techniques, inertial
sensing (S) usage, motion analysis (A) and ergonomic assessment (A) methods, and intervention (I)
approaches in occupational settings. Note that this dissertation project did not includ the design of an
intervention approach.

Detailed descriptions about the MoCaps used and related to the computational tools deployed are
provided in appendices C.1 and C.5, respectively.

4.1 Study Design

4.1.1 Study Type

The study conducted during the dissertation was explorative, i.e. established and validated the mo-
tion tracking system, and transversal, i.e. assessed measures at a selected time for each subject, not
compromising follow-up measurements for the same subject.

4.1.2 Study Scenarios

The study can be divided in two scenarios:

• Validation: whose results validated the motion tracking system within controlled (i.e. laboratory)
and uncontrolled (i.e. automotive assembly lines/field) settings;

• Evaluation: intended to assess the biomechanical exposure and ergonomic risk related to diverse
processes carried out in an automotive assembly line and different operators’ work-methods per-
formed.

4.1.3 Case Study

The study aimed attention at an ergonomic assessment of automotive assembly lines’ operators,
specifically, those working at fitting processes. Clarifying, automotive assembly lines are divided into
diverse processes, from parts production and rendering to their assemblage. Each set of processes con-
stitutes a group of workstations.
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Fitting processes were selected, as they were being analysed by a plant project team that aimed to
improve the working conditions under which they are performed.

There are three groups of workstations associated with automotive assembly lines’ fit shop (Figure
4.1):

• Group A: Rear and Front End, consisting in the line up of the tailgate and the hood, respectively;

• Group B: Prefit and SBBR (right and left), that is an initial alignment of the tailgate and the fitting
of the brake lights (right and left), respectively;

• Group C: Doors (right and left), which is the adjustment of both side doors, front and rear (right
and left).

For each type of alignment, different processes are established. After checking the need for fitting on
each car, the workers will perform processes of adjustments until the reference condition is achieved. In
some workplaces, on top of fitting processes, workers are also responsible for performing other processes,
such as screwing/assembling parts. The work cycle is constant within the same fitting processes type but
different between the types studied. Note that a work cycle consists of carrying a vehicle fitting process
and the worker’s transition to the next vehicle.

Front End
Doors

SBBR
Rear End

Prefit

Figure 4.1: Volkswagen model with shadows above the car parts to be aligned in each fitting process type.

4.1.4 Study Boundaries

The population of the study was purposive, i.e. volunteer participants within the scope of the study.
Moreover, and related to the study boundaries, the population compromised Portuguese citizens; thus,
the sample is geographically and culturally limited. Concerning public health boundaries, volunteers
were healthy, as no disorders were indicated. There were also industry intern policy boundaries, as the
requirement of the execution of security and safety protocol (e.g. usage of individual protective gear,
fulfilment of surveillance sheets and requisitions), and research department investigation boundaries,
as the compliance with the responsibility and confidentiality terms. Ethical/data protection boundaries
were also imposed, as each participant’s name, birthdate and body measurements were collected. Hence,
informed consents were signed in order to respect each participant’s privacy and inform them of precisely
what is going to be done with their data (Appendix C.3).

4.1.5 Study Stop Criteria

The stop criteria, i.e. the study stage in which enough data has been collected, depended on the
scenario of the data collection:

• Validation: record at least eight participants;
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• Evaluation: record at least three operators, with different body profiles (i.e. body measurements),
doing the same fitting process; for each operator, record three to six work cycles of the fitting
process performed during the work shift.

4.1.6 Participants Recruitment

Participants recruitment was a time-consuming process since participation must be voluntary. Par-
ticipants were informed of the purpose of the study, about their part in it, and how the collected data will
be handled. To boost participation, recruiting can often involve incentives (e.g. snacks and beverages,
tokens of appreciation, such as gift vouchers or movie tickets). Particularly, homemade cookies were
given to participants in controlled settings (i.e. laboratory) as incentives.

Remark that it was desired that participants, who formed (laboratory and field) population (i.e. a
group of people of interest who have been selected due to a particular characteristic, e.g. age, nationality
or gender), had different body measurements among each other.

4.1.7 Study Specific Research Questions

Next sections, target materials and methods applied to answer specific research questions of those
introduced in section 1.4:

1. Where to place sensors on the human upper body’s segments (pelvis, chest, upper arms, forearms
and hands) to avoid Soft Tissue Artifact (STA)? Is there a need to align sensors’ axes according to
specific criteria?

2. How to correct sensors data delay and drift over time?

3. How to accurately compute the upper body motion over time through IK? Which tools and input
parameters should be used in order to conduct IK?

4. What are the standards/guidelines used by Volkswagen Portugal ergonomic team to evaluate the
biomechanical exposure and consequent ergonomic risk? How can those be automatically cal-
culated using motion sensing in order to extract relevant measures to evaluate the biomechanical
exposure and consequent ergonomic risk?

5. For each workstation, is there any risk factor with greater biomechanical exposure than others?
If yes, which is it? Is there any workstation of fit shop that can be associated with an overall
high ergonomic risk? For each workstation, which is/are the operator(s) body profile(s) that is/are
associated with the lowest biomechanical exposure to risk factors and consequent ergonomic risk?

6. How to present quantitative ergonomic risk assessment results?

4.2 Data Collection

The present section addresses topics related to data collection, starting by explaining concepts re-
lated to every MoCap routine (4.2.1), followed by the description of the setup used (4.2.2) and protocol
designed (4.2.3) for data collection in laboratory and in automotive assembly lines. The design of a
motion capture routine, described within the current section, was one of the main contributions of the
dissertation to the OPERATOR.
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4.2.1 Motion Capture Fundamentals

Calibration is commonly conducted before a MoCap session, and it consists of establishing a relation
between the sensor frame and the segment frame representing the underlying bone. In order to establish
the relationship between each sensor frame and the corresponding segment, on which it is attached (i.e.
segment frame), calibration could be accomplished by three different methods (Zabat et al., 2019):

• Technical Calibration: Rigorous positioning of the sensor on the human body segment, basically
achieved by aligning the sensor edges about the anatomical segment;

• Static Calibration: By asking the subject to maintain a specific static pose. Then, all the segment
frames can be generated and aligned altogether;

• Dynamic Calibration: By asking the subject to perform a series of specific functional movements
during which each segment’s axes can be estimated.

Remember that, in IHMT, each IMU should be firmly attached to the body it represents. However, in
“real” applications, this is not always possible, which can lead to STAs, i.e. the skin motion relative to the
underlying bone. STA is regarded as a major source of error that disrupts the estimation of joint angles
when non-invasive measurement systems are used. In other words, the alignment difference between the
sensor frame and the segment frame (i.e. sensor misalignment calculated during calibration) is supposed
to be constant in time, a classical assumption made, but the sensor misalignment changes during the
movement due to STAs.

4.2.2 Setup

During the upper body motion tracking, two inertial MoCaps, described in Appendix C.1, were used
together with their recording systems.

First, the MVN Awinda system (Figure C.1) that was developed by XSens was set up and used as
a ground truth system, as it has been extensively validated with visual MoCaps (XSens, n.a). In order
to record data, during a MoCap session with the XSens’ system, there was a need to have a computer
installed with the software MVN Analyze. The software was also necessary for further reprocessing of
data.

Moreover, the XSens’ pack included a segmometer used to take each user body segment’s measure-
ments.

Second, the system in development by Fraunhofer was deployed in parallel (Figure 4.2) in order to
compare the MoCaps outputs. It requires the connection to a server (i.e. smartphone), via Bluetooth,
which is used to control the acquisition. There was a need to use two smartphones connected to Fraun-
hofer’s sensors per tracked person. The communication was established via Bluetooth, depending on the
devices bandwidth, which resulted in server saturation whenever more than four sensors were connected
to a smartphone. In addition, to calibrate the Fraunhofer’s sensors, also known as Kallistos, and to record
data, the smartphones had to have the Kallisto ToolBox (available in App Store (Sensry, n.a[b])) and the
Recorder (internal to Fraunhofer) applications instaled, beforehand.

Note that there was a need to use a camera to record the acquisitions to have a visual reference for
additional post-acquisition inspection.
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Figure 4.2: Inertial Motion Capture systems setup. MVN Awinda and Fraunhofer’s systems that consisted of 17 and 7/8 Inertial
Measurement Units, respectively. Representation of standing in the N-Pose.

4.2.3 Protocol

Recall that acquisitions were conducted in the laboratory (i.e. controlled settings), at Fraunhofer
Portugal Lisbon office, and in the field (i.e. uncontrolled settings), in Volkswagen Autoeuropa automotive
assembly lines. However, laboratory data was only used in validation, while field data was handled within
validation and evaluation scenarios.

Laboratory protocol can be consulted in Appendix C.2. The protocol sections are the objectives and
the local where the data collection was performed, the materials deployed, and the adopted procedure.
Notably, the procedure displays the five main sections, which are summarised next.

4.2.3.1 Preparation

The participant’s information about the objectives of the conducted study and how his/her data was
going to be handled subsequently. The informed consent (in the Appendix C.3) was signed. Next, the
participant’s name and birthdate were asked and his/her body segments’ measurements were taken using
the segmometer.

4.2.3.2 Devices Placement

The longest part of the data collection, in which both the MoCaps were attached to the user’s body
segments, as can be noted in Figure 4.2. The step by step for the MVN Awinda system attachment
can be consulted in this page (XSens, 2021). About Fraunhofer’s sensors placement, Figure 4.3 shows a
schema of their correct placement, in terms of each sensor orientation on the corresponding body segment
to which it was attached and of the alignment between the sensors composing the system. Note that, in
the laboratory, an extra IMU was used in the lumbar that represented the pelvis segment.
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Figure 4.3: Fraunhofer system placement schema, showing each sensor orientation on its corresponding segment. Note that
each sensor was placed with the x-axis of the sensor frame along the longitudinal axis of the respective body segment, pointing
from distal to proximal extremity. Lumbar IMU was only assembled within the laboratory data collection.

4.2.3.3 Pairing

The connection between the sensors (i.e. MVN Awinda Wireless Motion Trackers (MTw) or Kallis-
tos) and the respective MVN Analyze/Recorder App in order to start a new acquisition. First, the steps
to pair of MTw to MVN Analyze software and, next, to start a new recording session are depicted in this
page (XSens, 2021). Second, to connect Kallistos (previously charged and then calibrated using Kallisto
ToolBox) to a server, the Recorder application was used to register the user and acquisition, name each
sensor as the body segment it tracked, and start a new acquisition.

4.2.3.4 Calibration

Calibration methods were different for the two MoCap systems deployed. The MVN Awinda
system calibration (for full-body tracking) was dynamic, while the Fraunhofer’s system calibration
(for only upper body tracking) was static. The MVN Awinda system calibration is also described on
AwindaStarting. The Fraunhofer’s system calibration consisted in standing in the N-Pose for 10 sec-
onds at the beginning of each acquisition. The N-Pose is the body position pictured in Figure 4.2.

4.2.3.5 Acquisition

The acquisition is the process of conducting a new recording session, i.e. tracking the user’s body
segments motion with both MoCaps in a period.

For the XSens system tracking, after calibration, it is only necessary to start the new recording ses-
sion in the MVN Analyze software. XSens system provides the acceleration, angular velocity, magnetic
field, orientation as quaternions and segments’ DoFs angular data.

On the other hand, for Fraunhofer’s system tracking, after starting the new acquisition, there is a need
to perform the static calibration, a synchronisation sequence and, subsequently, the trial motion itself.
Fraunhofer’s system provides the acceleration, angular velocity and magnetic field signals’ components
(x, y, z) relative to the user’s body segments motion. An example of sensors’ signals from a laboratory
trial in which dynamic movements were performed is displayed in Figure C.2.

The static calibration was already described. The synchronisation sequence was designed to be
detected in a selected component of a signal of every IMU. It consisted in performing a vertical jump
plus the right arm flexion up to 90◦, in case of the laboratory acquisitions.

About the motion tracked, this was the differentiating part between laboratory and field routines. In
the laboratory, five diverse trials were idealised:
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• Two functional trials, where upper limbs’ and trunk’s joints DoFs were mobilised within their
respective RoMs;

• Three goal-oriented trials where a specific task was given to the participant, and he/she performed it
in his/her way. These were named as simulation sequences as they were based on fitting processes
and required the usage of additional materials as a few “work” tools.

In automotive assembly lines, the workers’ movements were not controlled, as in laboratory set-
tings. Each worker fit method was tracked regarding the fitting processes being conducted. During the
acquisition, for every 30 minutes, it was requested that the worker perform the synchronisation sequence.

Furthermore, at the end of each acquisition, the participant was asked to perform the synchronisation
sequence in both laboratory and field settings.

4.3 Data Pre-processing

Regarding Fraunhofer’s system data pre-processing: correction (4.3.1), resampling (4.3.2), filter-
ing (4.3.3) and synchronisation (4.3.4) between the IMUs sensors’ signals, were performed. These are
common practice in IHMT.

4.3.1 Correction

Data correction consisted in removing samples with Not-A-Number (NaN) values and sorting the
data by timestamps. The root cause of the disordered timestamps is unknown. However, the NaN values,
if observed, were at the last sample of the sensor data, which may be related to a incompleted sensor
reporting or server updating.

4.3.2 Resampling

Real acquisition systems do not collect experimental data at a constant sampling rate. Sensor signals
were resampled at 100Hz to obtain equally sampled signals in time. At this stage, a linear interpolation
was deployed.

4.3.3 Filtering

In order to reduce sensors signals’ noise, they were filtered. Sensors signals detailed descriptions
were provided in section 3.2. With respect to accelerometer and magnetometer signals, a 4th order But-
terworth low-pass filter (Butterworth Filter - an overview — ScienceDirect Topics n.a), from novainstru-
mentation Python package (Gamboa, n.a), was implemented with a cutoff frequency of 10Hz, similarly
to the authors of Zhou et al., 2007 and of Hassan et al., 2018. As regard to gyroscope signal, a 4th order
Savitzky-Golay polynomial filter (Schafer, 2011, He et al., 2019), from Scipy signal (Bell, 2021), was
used with a window size of 11 samples. Note that filter type choices were based in the literature, but
filters’ parameters were selected according to the filter effect in the frequency domain (in Hz) (Figure
4.4) and with regard to the effect in the signals’ magnitude power spectrum (Figures C.3-C.4).

In Figure 4.4, it can be observed that, concerning the low pass Butterworth (digital) filter, higher
order increases the slope’s depth for a selected cutoff frequency. About the Savitzky-Golay polynomial
filter, whose effect is identical to a smooth filter, higher polyorder increases the cutoff frequency, and
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changes on it have little effect on the slope. Contrarily, higher window length decreases the cutoff fre-
quency and changes on it have a significant effect on the slope (i.e. higher window length increases the
slope’s depth).
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Figure 4.4: Butterworth filter cutoff frequency and order effect - in purple color - and Savitzky-Golay filter polyorder and
window length effect - in coral color.

Plus, in Figures C.3 and C.4, an example of the power spectrums of sensors’ signals magnitude for
each segment is shown. The data in the example is from a laboratory trial in which dynamic move-
ments were performed. It can be seen that the selected parameters had the expected effect: cutting off
accelerometer and magnetometer data higher frequency components (i.e. the linear acceleration and the
non-gravitational magnetic field, respectively), which are not interesting for the orientation estimation,
introducing noise into it. Regarding the gyroscope, its signal low frequency component was attenuated
to avoid the gyroscope’s orientation estimates low frequency bias.

4.3.4 Synchronisation

To synchronisation, data-driven method was developed. Nonetheless, before going through its math-
ematical description, please note the theory presented in the section 3.2.2. So, in order to synchronise
data from IMUs placed in different segments, the synchronisation sequence was designed and performed
by the user in data collection. It was designed to be observed in (at least) one component of one signal
of each IMU, enabling IMUs’ signals coupling, initially and over the acquisition time.

Each structure in the selected signal and axis that represents a synchronisation sequence was named
as alignment point A. Clarifying, an alignment point is a representation of a physical event in a sensor
data stream that can be accurately distinguished and directly related to the same event in the data stream
of another sensor (i.e. coupling) (Bennett, 2017).

The developed method consisted of steps depicted in Table C.1 and illustrated in Figure 4.5. The
algorithm was not always entirely applied to synchronise various IMUs data. Thus, in Table 4.1, three
different synchronisation approaches, which derived from the whole algorithm, are compared.
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Figure 4.5: Synchronisation Method Algorithm. Input parameters are: Master signal (Accelerometer, Gyroscope or Magne-
tometer), Ms, and axis (x, y or z), Max; Peaks height minimal threshold, h, from which a peak is considered a synchronisation
opportunity O; Reference segment, Sr; Interval maximal threshold, tA, i.e. the maximal difference in time between an O in the
reference segment data stream sr and an O in another segment data stream s, defining if the O in s is or not an alignment point
A; Sampling frequency, f s. The algorithm (1-7) steps description is provided in Table C.1.

Table 4.1: Synchronisation Approaches: Basic, Delay and Drift.
Approach Inputs Steps Use conditions
Basic Filtered signals; Sampling frequency, f s. 7 No sychronisation sequence was performed;

Static acquisitions.
Delay Filtered signals; Master signal (Accelerometer,

Gyroscope or Magnetometer), Ms, and axis (x, y
or z), Max; Peaks height, h; Sampling frequency,
f s.

1-2, 7 Sychronisation sequence was only per-
formed in the beginning of the acquisition;
The acquisition had less than 30 minutes (i.e.
little drift effect).

Drift Filtered signals; Master signal (Accelerometer,
Gyroscope or Magnetometer), Ms, and axis (x, y
or z), Max; Peaks height, h; Reference segment,
Sr; Interval maximal threshold, tA; Sampling fre-
quency, f s.

1-7 Sychronisation sequence was performed in
the beginning of the acquisition and during
the acquisition; The acquisition had more
than 30 minutes (i.e. significant drift effect).

In Figure C.5, an example of usage of the complete synchronisation method (i.e. the drift approach)
is shown, for a long-term acquisition (of 2h) conducted in the office in the course of initial test acquisi-
tions.
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4.4 Monitoring Motion

At this stage, data collected by Fraunhofer’s system and further preprocessed were used to estimate
each upper body segment orientation over time, as quaternions, followed by the calculus of the angles
between body segments. The current section is divided into two sections: data preparation (4.4.1) to an-
gular extraction and angular extraction (4.4.2). The development of a motion monitoring computational
framework, described within the current section, was one of the main contributions of the dissertation to
the OPERATOR.

4.4.1 Data Preparation

Firstly, inertial data sensor fusion and orientation estimation were undertaken. Thus and so, different
algorithms implementations, by Fraunhofer and from Attitude and Heading Reference Systems library
(AHRS) (Garcia, n.a[a]), were tested and are enumerated in Table 4.2. DoF column concerns the data
used on the estimation, six DoF or nine DoF corresponding to the usage of accelerometer and gyroscope
data or accelerometer, gyroscope and magnetometer data, respectively.

Toward SFAs results comparison, execution times and a few angular estimates performance metrics
(described in section 4.5.1) were calculated. The comparison results are displayed in Figure 4.6, which
concerns about data collected in the laboratory during a dynamic trial.

According to Figure 4.6, the algorithm with the best trade-off among the measurements was the
Madgwick filter with nine DoF from the AHRS. So, this filter was used to estimate the upper body
segments’ orientation over time, as quaternions.

Secondly, as every SFA has a convergence period related to data integration, the removal of this
period was performed in order to obtain reliable motion data estimates.

Table 4.2: SFAs by Fraunhofer and from Attitude and Heading Reference Systems library tested.
Filter DoF Source
Madgwick 6 AHRS
Madgwick 9 AHRS
Madgwick 6 Fraunhofer
Madgwick 9 Fraunhofer
Mahony 6 AHRS
Mahony 9 AHRS
Mahony 6 Fraunhofer
Mahony 9 Fraunhofer
Complementary 6 AHRS
Complementary 9 AHRS
Complementary 6 Fraunhofer
Complementary 9 Fraunhofer
Extended Kalman 6 AHRS
Extended Kalman 9 AHRS
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Figure 4.6: Sensor fusion algorithms execution times, angular RMSE and R2. SFAs tested were Complementary, Madgwick
and Mahony filters by Fraunhofer, and Kalman, Complementary, Madgwick and Mahony filters from AHRS.

4.4.2 Angular Extraction

In respect to the angular extraction, OpenSim software Python’s Application Programming Interface
(API) was used to perform IK and in order to estimate angular data from orientation data (i.e. quater-
nions).

Particularly, the OpenSim API pipeline for IK, regarding IHMT, is named of OpenSense
(OpenSense, 2021) and it consists of three main steps, depicted in the next sections.

Before going through OpenSense steps, the OpenSim (kinematic) model utilised to describe the
upper body motion is briefly depicted.

Highly complex biomechanical models are being deployed to estimate the upper body motion
(3.1.4.3). However, a simpler model was selected for this dissertation’s project, the Rajagopal model. It
was developed by the authors of Rajagopal et al., 2016, and it was chosen because the final application
did not require very accurate estimates, such as in rehabilitation and sports performance. In addition,
more complex models present higher computational complexity, and their joints’ motion description and
interpretation may not be trivial.

Concerning the Rajagopal model, in Figure 4.7, it is a full-body model mainly used in gait analysis.
Nevertheless, it also provides a neat description of the joints from the human upper body, which is enough
for this project.

The tracked DoFs were the lumbar flexion/extension, lateral bending and rotation; the upper arm
extension/flexion, abduction/adduction and rotation; the elbow extension/flexion and the forearm supina-
tion/pronation; and the wrist extension/flexion and deviation. In Table 4.3, the Rajagopal model DoFs
tracked and their respective RoMs are pointed out.
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Table 4.3: Upper body joints’ DoFs and their respective RoMs. Note that forearm supination/pronation RoM is from 0◦ - 180◦,
which is equivalent to -60◦ - 90◦.

DoF RoM
Lumbar flexion/extension -90◦ - 90◦

Lumbar lateral bending to left/right -90◦ - 90◦

Lumbar rotation to right/left -90◦ - 90◦

Upper arm extension/flexion -90◦ - 180◦

Upper arm abduction/adduction -180◦ - 90◦

Upper arm outward/inward rotation -90◦ - 90◦

Elbow extension/flexion 0◦ - 160◦

Forearm supination/pronation 0◦ - 180◦

Wrist extension/flexion -90◦ - 90◦

Wrist radial/ulnar deviation -30◦ - 40◦

The three steps to the angular extraction using OpenSense are detailed next.

4.4.2.1 Convert the Orientation Data File in Storage Format

This step converts orientation files to OpenSim file format (i.e. sto.) and associates them with the
OpenSim model.

Firstly, the orientation files were converted to APDM wearable sensors (Technologies, n.a) data
format to be compatible with OpenSense. Usually, APDM exports an acquisition as a .h5 file and as a
.csv ASCII text file, i.e. comma-delimited. The OpenSense APDM Reader can only read the .csv file
type, which was the type of the file generated. In the .csv file data columns labels are associated with
OpenSim model segments.

A settings/XML file was constructed, in which each < experimental sensor > (i.e. a string iden-
tifying the columns in the .csv file that correspond to data from the sensor experimental sensor) and
< segment in model imu > (i.e. a string defining the name of the segment in the OpenSim Model
segment in model) were specified for each pair of sensor-segment.

Secondly, using the OpenSense APDM Reader and STO File Adapter Quaternion, APDM files were
converted to sto. files.

Figures C.6, C.7 and C.8 show examples of APDM .csv format, settings/XML and the resulting sto.
files, respectively, about data collected in laboratory during a dynamic trial.

4.4.2.2 Calibrate the Model

The calibration step takes the OpenSim model and the IMU calibration data (i.e. first time point in
the orientation data) and finds the initial orientation of the IMU frames on the OpenSim model segments.
Note that OpenSense calibration assumes that the pose of the subject in the calibration data matches the
default pose of the model, which can be defined beforehand on the OpenSim Graphical User Interface
(GUI). In this project, the calibration pose chosen was the N-Pose.

Toward calibration, the OpenSense IMU Placer was implemented in order to add each IMU frame
to the respective OpenSim model segment. The input parameters of IMU Placer are:

• OpenSim model filename (.osim file, i.e. OpenSim models are described in .osim file format);

• Orientation data filename (.csv file);
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• Sensor to opensim rotations, which is a vector that provides the rotation needed to convert the IMU
Earth frame to the OpenSim Earth frame (Y up, Z to the right);

• Base IMU (optional), the label of the IMU frame that represents the segment from which other
segments move as a kinematic chain (concept described in section 3.1.4.3);

• Base heading axis (optional), which is the direction (i.e. axis) the base IMU is facing in the initial
(calibration) pose. The axis can be ’x’, ’-x’, ’y’, ’-y’, ’z’ or ’-z’;

• Output model filename (.osim file). The output is the calibrated OpenSim model, where each IMU
is registered to an OpenSim model segment.

Initial pose in the orientation data, sensor to opensim rotations, base IMU and base heading axis
inputs enable to compute the angular offset between the two poses (i.e. initial calibration pose in ori-
entation data and default pose of the model). Then, sensor to opensim rotations input is used to rotate
the orientation data, so that the heading of the base IMU is redirected along the x-axis of the OpenSim
model Earth frame. If neither base IMU nor base heading axis are provided, then no heading correction
is performed.

Figure 4.7 shows an example of the input parameters selection to the initial angular offset calculation
and the sensor frames orientation on the OpenSim model segments.

Figure 4.7: An example of the OpenSense input parameters selection. Before (left) and after (right) sensor frames calibration.
The selected input parameters to the initial angular offset calculation were: pelvis as base IMU with the heading axis z, and
sensor to opensim rotations equal to - π

2 around the OpenSim x-axis, and 0 around the y- and the z-axis. The sensor to opensim
rotations were selected by observing sensor orientation data, in which pelvis x-axis acceleration is identical to the gravitational
acceleration in the initial calibration pose, so the sensors’ x-axis should be pointing in the UP direction of the sensors’ Earth
frame, i.e. the direction of the gravitational force application. As follows, the sensors’ frames were rotated by - π

2 around the
OpenSim x-axis, and 0 around the y- and the z-axis, in order to achieve it. The pelvis acceleration x-axis component in the
initial calibration pose is highlighted in the sensor orientation data sto. file (middle) - in coral color.

The base IMU and its heading axis were differently chosen for the laboratory and the field data,
being pelvis and −z, and torso and z, respectively. For both settings, sensor to opensim rotations was
−π

2 , π and 0, around the x-, y- and z-axis of the OpenSim Earth frame, respectively.

4.4.2.3 Inverse Kinematics

The IK step finds the pose of the model at each timestamp that minimises, in the least-squares sense,
the difference between the orientation data from the IMU sensors and the IMU frames on the calibrated
model. The computed kinematics results depended on both calibrated model and sensors’ orientation
data.

With regard to IK, the OpenSense IMU Inverse Kinematics Tool was deployed, whose input param-
eters are:
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• Orientation data filename;

• OpenSim calibrated model filename, the name/path to the calibrated model file to be used in track-
ing;

• Sensor to opensim rotations;

• Time range, from tstart to tend , to perform the IK tracking (in seconds);

• Results directory, that is the directory wherein the results were printed to files.

For each acquisition, the inverse kinematics results were: the orientation error, as a .sto file, and
the angular orientation data, as a .mot file (i.e. OpenSim motion file format that can be loaded in the
OpenSim GUI for visual inspection of the estimated motion).

Note that an orientation error is the orientation difference between the experimental IMU and the
corresponding IMU frame in the model, quantified by an angle when representing the orientation differ-
ence as rotation about a single axis (i.e. a coordinate rotation).

4.5 Systems Comparision

The angular data obtained through the methods formerly described was compared with the angular
data provided by the ground truth system, i.e. the MVN Awinda system plus the MVN Analyze software.
The results from this comparison are the validation scenario outputs.

Firstly, the angular data provided by the XSens’ system had to be reprocessed and its joints’ angular
estimates adjusted to the Rajagopal model joints’ RoMs. Reprocessing was necessary to obtain estimates
with higher quality, but it was a time-consuming task, especially for field data long-term acquisitions.
Furthermore, XSens joints’ angular estimates adjustments were not trivial, as there is no detailed de-
scription of the kinematic model used by XSens. However, it was noted that a few joints presented RoMs
opposite to the OpenSim model, being adjusted. In addition, RoMs of the OpenSim model DoFs were
also “extended” to match with the XSens DoFs RoMs. The extended ranges are those presented in Table
4.3.

Secondly, systems data synchronisation is required to compare the angular data provided by the
systems. It was observed that the resulting angular data streams were morphologically alike, such as the
example in Figure 4.8.
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Figure 4.8: An example of the wrist flexion DoF angular data from Fraunhofer’s - in turquoise color - and from Xsens’ - in
orange-red color - systems.
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Therefore, the maximum values of the straight and the reverse cross-correlation between the data
streams from different systems were computed to calculate the lag between the systems data streams.
Notice that, for that purpose, only systems angular data streams of a selected DoF (i.e. the reference
DoF) were used in the calculation. The reference DoF used in laboratory and field acquisitions was the
arm flexion.

The lag of the XSens system data stream with respect to the Fraunhofer’s system data stream (i.e.

FhP subscribed) was calculated by the following expression:

L = max(|lxFhP− imax|, |lxFhP− imaxr |) (4.1)

Where imax and imaxr are the indexes of the straight and reverse cross-correlation function maximum
values, respectively, and lxFhP equals to Fraunhofer’s system data stream length.

In Figure 4.9 the lag expression terms are clarified with an example.

Figure 4.9: An example of the lag expression terms with respect to angular data in Figure 4.8. Cross-correlation values (left)
and angular data streams from Fraunhofer’s - in turquoise color - and from XSens’ - in orange-red color - systems (right). In
the cross-correlation plot, imax and imaxr are represented by the vertical lines in blue color and purple color, respectively. In the
angular data plot, the points in the time-axis with the indexes of |lxFhP − imax| and |lxFhP − imaxr | are displayed by the vertical
lines in blue color and purple color, respectively. Note that the maximum cross-correlation value was observed for imax, so the
index corresponding to the lag was |lxFhP − imax|.

4.5.1 Performance Metrics

Toward joints’ angular estimates comparison, Root Mean Squared Error (RMSE), Determination
Coefficient (R2) and Cumulative Distribution Function (CDF) were computed. These performance met-
rics have been used to validate alternative inertial motion capture systems, comparing them with a ground
truth system (Pedro et al., 2021, Weygers et al., 2020, Santos et al., 2020, Bouvier et al., 2015). A few of
these authors calculated Coefficient of Multiple Correlation (CMC), which equals the square root of R2.

4.5.1.1 Mean Squared Error and Root Mean Squared Error

The Mean Squared Error (MSE) measures the average of the squares of the errors, and its estimation
over n samples is defined as:

MSE(y, ŷ) =
1
n

n−1

∑
i=0

(yi− ŷi)
2 (4.2)
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Where ŷi is the predicted value of the i-th sample (i.e. the Fraunhofer’s system data stream i-th
value), and yi is the corresponding true value (i.e. the ground truth system’s data stream i-th value).

The square root of the MSE is the RMSE, and, while MSE corresponds to the residuals’ variance,
the RMSE corresponds to the residuals’ standard deviation. Greater values of MSE and RMSE suggest
worse Fraunhofer’s system predictions.

4.5.1.2 Determination Coefficient

The R2 is a statistical measure that represents the goodness of fit of a regression model. R2 mathe-
matical expression is:

R2 = 1− SSres

SStot
(4.3)

Where SSres is the residual sum of squares, the summation of squares of perpendicular distance
between data points (i.e. Fraunhofer’s system data points) and the best-fitted line to the data (i.e. the
ground truth system’s data); and SStot is the total sum of squares, the summation of squares of perpen-
dicular distance between the Fraunhofer’s system data points and the ground truth system’s data average
line.

The ideal value for R2 is 1. The closer the value of R2 is to 1, the better is the model fitted. Note that
the R2 value can also be negative when the distance to the best-fitted model is greater than the distance
to the average fitted model (i.e. SSres > SStot).

4.5.1.3 Cumulative Distribution Function

The CDF, FX(x), is the probability that X will take a value less than or equal to x, and it can be
described as:

FX(x) = P(X ≤ x) (4.4)

CDF captures the probability distribution of the variable X , e.g. Fraunhofer’s system error (i.e. the
difference (element-wise) between the angular data calculated using the developed framework and the
angular data provided by the ground truth system).

4.6 Ergonomic Assessment

In the present section, ergonomic assessment steps are pointed out and pictured in Figure 4.10.
These were adopted taking into account the case study of automotive assembly lines, i.e. are based
on the protocols used by ergonomists at the time of the study. The computational implementations to
ergonomic risk assessment, described within the current section, were ones of the main contributions of
the dissertation to the OPERATOR.

4.6.1 Work-Cycle Annotation

Firstly, notice that the work-cycle concept was introduced in section 4.1.3. Work-cycles in each
acquisition data were annotated because there was a need to perform the ergonomic assessment, i.e.
extraction of the metrics to the ergonomic risk evaluation for each work-cycle in data.
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The annotations were performed in the NOVA software version 1.0.7.1 (Baur et al., 2021), and the
video recordings were used to annotate the data itself, previously synchronised with the respective video.
NOVA’s annotation outputs are:

1. An .annotation file, which characterises every label assigned to data, such as “<item name=“label
name” id=“label id” color=“label color” / >”;

2. A .txt file, that shows a list of “start time; end time; label id; label assignment confidence” to each
label assignment in data.

Note that each work-cycle data compromised angular data, i.e. time series, of every DoF for each
segment tracked: lumbar flexion/extension, lateral bending and rotation; upper arm extension/flexion,
abduction/adduction and rotation; elbow extension/flexion and forearm supination/pronation; and wrist
extension/flexion and deviation. As of right and left upper limbs were tracked, work-cycle data compre-
hended seventeen time series.

4.6.2 Angular Ranges Quantisation

The angular ranges quantisation consisted of downsampling the angular data, using linear interpo-
lation, from 100Hz to 1Hz and, posteriorly, assigning each data point (i.e. angular value) to an angular
range. The data downsampling was conducted as an angular value per second gives us enough detail for
the further ergonomic analysis, reducing the computational complexity.

Angular ranges of interest were selected to each DoF based on International Organisation for Stan-
dardisation (ISO) guidelines (i.e. ISO norm 11226) and the proforma sheet European Assembly Work-
sheet (EAWS).

4.6.3 Ergonomic Assessment Implementations

From angular ranged data, implementations of the ISO norm 11226 and proforma sheet EAWS were
made in order to assess the biomechanical exposure to risk factors related work and to determine the
consequent ergonomic risk, respectively.

Note that if a segment is within an angular range about one of its DoFs, it can be said that it is in the
posture defined by that angular range relative to that DoF. A segment’s or the body’s condition consists
of a segment’s or the combination of segments’ postures, respectively.

The ISO norm 11226 characterises working static postures, in terms of segments’ conditions, as “Ac-
ceptable” or “Not recommended”. Notice that being “Acceptable” or “Not recommended” can depend
on the holding time in the static posture, i.e. the duration that it is maintained. The ISO norm’s criteria
implementation is outlined in the risk assessment guidelines sheet, in Appendix C.11, for the trunk, up-
per arm, forearm and hand segments. The output from ISO implementation is the percentage of values in
a “Not Recommended” posture/condition for each DoF and work-cycle in data. This percentage reports
the biomechanical exposure to risk factors related to work about the posture being assessed. Note that,
for extreme postures, the criteria selected was the one described in EAWS, instead of the criteria depicted
in the ISO norm 11226. The EAWS considers a wider range of values as extreme postures, increasing
the biomechanical exposure to risk factors when compared to ISO norm criteria.

The ergonomic risk score can be computed according to the rating scale proposed in the proforma
sheet EAWS (Appendix C.10). In this dissertation, an “adapted” EAWS concerning its table ”Basic
Positions / Postures and movements of trunk and arms (per shift)” was implemented. In particular, the
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implementation focused on the table’s section ”Standing (and Walking)”, which evaluates the percentage
of cycle time in which the worker is at specific postural conditions. The implementation is an “adapta-
tion” of the EAWS because there are variables assessed in its sections that cannot be quantified using
the setup (section 4.2.2). This implementation is also detailed in the risk assessment guidelines sheet
in Appendix C.11. The outputs from EAWS implementation are the percentage of cycle time in each
specific condition, depicted in the EAWS’ section, and the respective risk score value. Plus, the total risk
score was calculated as the sum of the conditions risk score values. Note that, for the conditions of the
upper limbs, only the highest sum value, assigned to the right or left limb, was considered in the final
total risk score sum.
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Figure 4.10: Ergonomic Assessment Steps. Work-cycles annotations were performed from the 1st to the ith cycle in data
from an acquisition. Work-cycle angular data is a set of angular time series, one for each segment’s SN DoF θn, where N
varies from 1-7 and n from 1-3. Angular ranges quantisation: a function q was implemented for each DoF. The angular ranges
were taken as input to the ergonomic assessment. Biomechanical exposure assessment (ISO norm): each segment’s condition
was characterised over cycle time, as “Acceptable” or “Not Recommended”; Ergonomic risk determination (EAWS): each
percentage of cycle time in an EAWS condition, and the respective risk score were computed. CX or CY|CX and VX or VY|X,
denotes a single or a combined condition percentages and single or a combined risk score values, respectively. Single and
combined condition concepts are explained in the risk assessment guidelines sheet in Appendix C.11.

The biomechanical exposure and consequent ergonomic risk score assessment outputs were used to
construct an individual ergonomic report, i.e. a report for each worker and fitting process he performed,
and compare the work-method of different workers for the same fitting process. These are the evaluation
scenario outputs.
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An example of an individual ergonomic report is laid out in Appendix C.12. For each report, an
appendix was also generated. It displays the percentages of cycles times in each EAWS’ condition in
order to clarify the risk score values computed. Plus, the risk assessment guidelines sheet, which can be
consulted in Appendix C.11, was designed to support the individual ergonomic report analysis.

4.7 Chapter Conclusions

In Figure 4.11, it is shown the relationship of methods and their respective outputs. Accordingly,
the modelling framework results are the DoFs’ angular data, from Fraunhofer’s system data, and IK
errors, which enable the assessment of the impact of IK on the angular data estimation. The comparison
results are the outputs of the validation scenario and are used to evaluate the trueness and precision
of Fraunhofer’s DoFs’ angular data estimates. The biomechanical exposure and consequent ergonomic
risk measurements were used for the evaluation scenario outputs: the individual ergonomic report and
group-level analysis.
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Figure 4.11: Block diagram of the dissertation methods and their respective outputs.
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5. Results and Discussion

This section presents the dissertation’s results and raises matters of discussion. It starts with system
design recommendations (5.1), followed by the characterisation of the study population (5.2). Then, it
depicts the results related to motion tracking, the estimation’s orientation errors (5.3), i.e. differences
between the estimates with and without IK; and the system’s validation outputs (5.4), i.e. performance
metrics values associated to the angular data estimated using the developed framework when compared
to the angular data provided by the ground truth system. After that, the evaluation scenario outputs are
presented (5.5).

5.1 Design Recommendations

This section summarises recommendations considered to be crucial to the development of the design,
which is being idealised by OPERATOR’s team designers, that aim to create with a feasible, reliable and
secure solution to the IMU sensors’ placement and attachment.

Firstly, it must be remembered that IMU-based joint angles estimation is dependent on the IMU
sensors placement and attachment to segments. At the time of this project, the IMUs’ placement and
attachment were performed by the research team. However, in the future, it should be done by the
ergonomist or the operator his/herself. For this reason, the final solution should be a plug and wear
sensing wearable.

Regarding field acquisitions, motion estimates were affected by sensor falls and increased STAs
effects. The more rigidly attached an IMU is to the segment, the more rigorous and less sensitive to STAs
are its motion estimates. In order to avoid STAs, the placement on the upper arm segment is considered
the hardest. According to Zabat et al., 2019 and Alderman et al., 2018, and based on preliminary tests
conducted in the laboratory, the following placement of each IMU to the respective segment was selected:

• Torso IMU: on the flat portion of the sternum;

• Upper Arm IMU: on the central third of the upper arm, laterally (or slightly posterior if judged
useful to reduce the occurrence of STA);

• Forearm IMU: dorso-distally on the forearm;

• Hand IMU: dorsally on the hand;

• Pelvis IMU: centrally on the back and at the lumbar region.

The IMUs’ placement was reported to the designers that are presently constructing the attaching
system.
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5.2 Population Characterisation

Dataset characteristic values can be consulted in Appendix D.2. Table D.2 displays the summary
statistics for each characteristic concerning the laboratory and field populations. The boxplots in Figure
5.1 enable to visualise the body measurements distributions in consideration of both settings and allow
to compare them.
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Figure 5.1: Body measurements values distributions, concerning laboratory and field settings. Weight, height, shoulder width,
arm span, hip height, knee height, ankle height and shoe size body measurements.

As expected, as participants were not the same in both settings’ acquisitions, each body measurement
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distribution is different between laboratory and field data. Moreover, the laboratory acquisitions were
only performed to validate the motion estimation; thus, people of both genders participated in those
acquisitions.

As it can be observed in Figure 5.1, for height, shoulder width, hip height, ankle height and shoe
size, the subjects in the laboratory setting has narrower distributions of values than subjects in the field
setting. The reason is that subjects in the field setting present greater values for these body measurements
than the subjects in the laboratory setting, mainly due to field population outliers. Nonetheless, field data
were also considered in orientation errors and validation results. Hence, the body measurements differ-
ences observed between settings do not nullify the validation scenario conclusions and, subsequently, the
feasibility of the angular estimates to the subsequent ergonomic risk assessment.

Table D.1 presents the values of the body measurements for each operator that conducted one or
more fitting processes. For group A, worker 9 is larger than other operators, namely workers 5 and 6.
Regarding group B, worker 5 has smaller measures than other operators, workers 4 and 8. Concerning
group C, it is clear that worker 1 is taller than the others, workers 2 and 3 have similar body profiles, and
worker 7 is the smallest.

5.3 Orientation Errors

In this section the orientation errors results are shown, i.e. the differences between the orientation
with and without IK, in terms of coordinate rotations. These results are pictured in Figures 5.2 and 5.3.
About Figures inspection, note that: x-axis’ limits differs from laboratory (Figure 5.2) to field (Figure
5.3) results visualisations; and each figure’s diagonal shows the CDFs with regard to orientation errors
for each segment in the figure’s horizontal x-axis.

In terms of magnitude, static trials show minimal errors in both settings compared to dynamic trials,
but existing, which can be related to an initial misalignment between the calibration pose and the model’s
default pose.

Remember that, during functional trials acquisitions, a set of movements about joints’ DoFs mobil-
isation were performed, respecting the arms (i.e. shoulders, elbows and wrists joints) - part 1 - and trunk
(i.e. spine) - part 2. In Figure 5.2, it can be noticed that the least dynamic trial (i.e. functional part 2)
shows lower values of orientation errors than other dynamic trials, i.e. functional part 1 and simulation.

Functional part 1 compromised the mobilisation of the upper limbs’ joints, showing higher errors
than functional part 2 for trunk and, notably, for upper limbs segments over the acquisitions times, as it
can be observed in the CDFs in Figure 5.2. A reason for this can be that, in segments’ motion description
through a kinematic chain, there can be an “error propagation” from a moving segment to its adjacent
segments. In addition, it can be noticed that the kinematic chain’s terminal segments (i.e. hands) show
the highest errors, which, again, suggest an “error propagation” to subsequent segments in the chain.

Additionally, the results show that the effect on the estimation performed by IK about functional part
1 and simulation trials data was significant. Recall that simulation trials movements were less controlled
than functionals, as they were designed based on processes conducted by operators in the automotive
assembly lines. Thus, the results encourage the implementation of IK in order to track human motion
about industrial processes.

Moreover, the effect of IK in the angular estimates was higher, in terms of magnitude, for field
motion tracking than for laboratory. This can be related to data collection problems, e.g. sensor falls
and STAs, and orientation estimation issues (described in section 3.3.6). As it can be observed in Figure
5.3 CDFs, the orientation errors over the acquisitions times vary very much among segments, but upper
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limbs show higher errors than trunk; in general, group B’s acquisitions show lower orientation errors
than groups A’s and C’s; and the errors related to the left upper limb’s segments were higher than right’s.
No explanations were found for these observations.

In terms of correlations among IMUs’ orientation errors, successive segments (e.g. forearm and
hand of the same limb) in the model show a “positive” correlation for the effect of the IK in the segments
angular estimates. As expected, these results report that the model describes the upper body segments
movements like a kinematic chain.
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Figure 5.2: Orientation error data from laboratory data collection.
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5.4 Validation

Next, performance metrics values for laboratory and field settings acquisitions are presented.

5.4.1 Root Mean Squared Error and Determination Coefficient

In Figures 5.4 and 5.5 are represented the RMSE and R2 mean values for each DoF tracked, and
the respective standard deviations, for laboratory and field acquisitions, respectively. In Figure 5.6,
the relationship between RMSE and R2 values with regard to laboratory and field acquisitions can be
noticed and for each participant.

In general, observing mean R2 values, these fluctuate very much, as well as their standard deviation,
especially for field results. No trend was found for these measurements.

Regarding laboratory results, in Figures 5.4 and 5.6, it can be noticed that the RMSE values
were mainly located between 0◦ and 30◦. It was also noted that RMSE values for the right forearm
supination/pronation DoF were consistently the highest. No explanation was found for the specificity of
the right forearm supination/pronation. However, note that forearms supination/pronation monitoring is
highly dependent on the sensors’ attachment to the forearms in order to avoid STAs.

Functional part 1 data shows higher values of RMSE than other laboratory acquisitions, particularly
for both arms extension/flexion, rotation and forearms supination/pronation. This was already expected
because, within the functional part 1 trial, the participants performed a highly complex and extreme
series of upper limbs postures. With regard to the remaining DoFs, it was observed that RMSE and R2

values were relatively low and high, respectively.

Functional part 2 data displays the lowest values of RMSE, which could be associated with less
dynamic motion tracking, as those trials only compromised the spine’s DoFs mobilisation. It was noticed
that R2 values were not very high for most of the DoFs tracked, excluding right arm extension/flexion;
no explanation for this fact was found. Notice that lumbar’s movements have RMSE values of ≈10◦ to
20◦, and R2 values from ≈0.5 to 0.75. As the functional part 2 trial was intended to validate lumbar’s
movements, which describe spine’s DoFs, then it can be considered that those were fairly tracked (i.e.
RMSE values of ≈10◦ and R2 values from ≈0.5 for lumbar’s movements).

Simulation trials display RMSE values mostly below 20◦ and have a eleven DoFs’ R2 mean
values above 0.5. These results are satisfactory, as simulation trials replicated processes carried out in
automotive assembly lines, supporting the validation of Fraunhofer’s motion tracking system to the case
study of automotive assembly lines.

Analysing the field results, in Figures 5.5 and 5.6, it can be observed that the RMSE values were
mostly located between 20◦ and 60◦ and the R2 values strongly decreased from group C to group A and
then group B.

The group B results were the worst, notably concerning R2 values. The reason can be that the group
B’s workstations are in different locations of the shop floor, one of them being located in an elevated
platform, which can degrade the estimates as no multi-scenario tracking was pursued. Multi-scenario
tracking considers each segment position, assuming that the user can be walking on terrain or varying
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height, e.g. climbing stairs. In this dissertation, segments positions were not computed; instead, the
dissertation focused only on segments orientations.
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Figure 5.4: RMSE (left) and R2 (right) mean values and the respective standard deviation, depicted in the horizontal error bar,
for each DoF and acquisition trial conducted in laboratory setting.
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Figure 5.6: Relation plot of RMSE and R2 values for each DoF and acquisition trial conducted in laboratory (left) and field
(right) settings.

In contemplation of participants’ results (Figure 5.6), the R2 values are disperse in magnitude
between participants/workers, while the RMSE values are slightly different in magnitude but also vary
much among the DoFs tracked. Dissimilarities in results from different participants can be due to
differences in their body measurements and, afterwards, the lack of the kinematic model’s adjustment
to each participant; and marginal differences in IMU sensors’ placement on each participant’s body
segments.

For both settings, the reasons for higher RMSE and lower R2 values can be: the occurrence of STAs
during the acquisition; the model minimal DoFs description; and an existing offset between the real
initial participant’s pose and the model’s default pose. Particularly to field settings, additional reasons
are sensors falls and sampling frequency instabilities; and orientation estimation issues (described in
section 3.3.6). On the whole, concerning laboratory’s and field’s RMSE and R2 values and standard
deviations, these were worst to field due to disturbing variables that arise in uncontrolled settings.

5.4.2 Cumulative Distribution Function

Figure 5.7 shows the mean CDFs for each segment’s DoFs and set of acquisitions, i.e. in laboratory
and field.

Concerning CDFs shape, it can be observed that: for functional trials, CDFs shapes vary significantly
from segment to segment, which can be explained by the fact that each functional trial consisted of a set
of controlled movements of selected segments; about simulation trials, a more dynamic motion was
tracked and the CDFs present identical shapes among segments; respecting field results, each segment’s
CDF was different for each group.

The differences among field’s acquisitions CDFs results verify that the error depends on the fitting
process being performed. CDF can be affected by the sequence of movements that completes the tasks
conducted within each fitting process. For example, in order to estimate an extreme posture performed
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during an acquisition, if there is a slight difference between the user’s initial pose and the model’s default
pose, IK can lead to an estimate of the segment orientation that deviates in a greater extent from its actual
orientation. The model’s segment can reach its extreme posture before it is performed by the user, further
compensating on the estimates from other segments.

Regarding CDFs’ values, during 80% of the mean between total acquisitions’ times, it can be ob-
served that:

• For functional part 1, the error associated with: lumbar is lower than 10◦, shoulders and left elbow
is lower than ≈25◦, right elbow is lower than 40◦, left wrist is lower than ≈15◦, and right wrist is
lower than 20◦;

• For functional part 2, the error is lower than 20◦ respecting almost every segment, excluding right
elbow for which it is slightly higher than 20◦;

• For simulation, the error is lower than ≈40◦ concerning every segment, excluding left wrist for
that it is lower than ≈20◦;

• For group A, the error is lower than≈50◦ to every segment, excluding lumbar for which it is lower
than 20◦;

• For group B, the error associated with: lumbar is lower than≈70◦, shoulders are lower than≈120◦,
left elbow is lower than ≈50◦, as well as right wrist, right elbow is lower than 80◦, and left wrist
is lower than ≈30◦;

• For group C, the error associated with: lumbar is lower than 20◦, left shoulder and elbow are lower
than 40◦, right elbow is lower than≈50◦, wrists are lower than≈30◦, as well as for right shoulder.

Since field acquisitions were much longer than laboratory acquisitions and were conducted within
highly magnetic surroundings, it was already expected that the error values over time were higher for
acquisitions performed in field settings due to orientation estimation issues.
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Figure 5.7: Mean error CDFs with respect to laboratory (left) and field acquisitions (right) results for each segment.
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5.5 Evaluation

This section provides an ergonomic risk assessment with regard to the case study of automotive
assembly lines (described in section 4.1). Figure 5.8 shows a diagram of the analysis carried out and the
respective research questions this dissertation aimed to answer about ergonomic risk assessment. Note
that only Fraunhofer’s angular data was used to generate the results presented in this section.

Moreover, the analysis provided is divided into two components:

• Workstation-Level: comparison of the ergonomic assessment results between different fitting
processes;

• Operator-Level: comparison of the ergonomic assessment results between operators who exe-
cuted the same fitting process for each fitting process.
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operator(s) body profile(s) that is/are
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Figure 5.8: Block diagram about the risk assessment results analysis and the respective research questions.

Figure 5.9 presents the total risk score associated with each workstation and operator. The total risk
scores were calculated through the implementation of the EAWS rating scale. Observe that group B’s
workstations present higher total risk scores than groups A’s and C’s, worker 4 bearing the maximum
values.
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Figure 5.9: Total risk score values for each workstation and operator.
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Note that the sections 5.5.1 and 5.5.2 use a list of abbreviations depicted in the risk assessment
guidelines sheet in Appendix C.11, which describes the considerations taken into account to evaluate the
operators’ postures/conditions.

5.5.1 Workstation-Level

Firstly, the mean and standard deviation measurements of the ergonomic assessment metrics were
computed for each fitting process tracked and posture/condition assessed in the ergonomic implementa-
tions performed.

Appendix D.1 shows a summary of the results from a self-reported ergonomic assessment conducted
by the Volkswagen Autoeuropa team to characterise the physical effort felt by the fit shop’s operators
for each body region concerning each fitting process.

Table 5.1 indicates low to high criteria for mean values classification (i.e. low to high biomechanical
exposure/ergonomic risk).

Table 5.1: Ergonomic outputs mean values classification criteria. The biomechanical exposure refers to the percentage of the
work-cycle time in a not recommended posture and the ergonomic risk is about the score units depicted in the EAWS.

Criteria Biomechanical
Exposure

Ergonomic Risk

Low ≤20% ≤5
Medium 20%-50% 5-10
High ≥50% ≥10

Table 5.2 summarises the mean and the standard deviation of the percentages of mean work-cycle
times in not recommended ranges for postures evaluated in the ISO norm 11226, divided by workstation.
According to the ISO norm, note that for trunk flexion and upper arms elevation postures, the holding
time is accounted to classify if the posture is not recommended or acceptable.

Table 5.2: Mean and standard deviation of the percentages of work-cycle times in not recommended conditions with regard to
postures described in the ISO norm 11226 for each workstation. Values in bold present high biomechanical exposure. The list
of abbreviations used is in the risk assessment guidelines sheet in Appendix C.11.

Fitting process
Condition

Doors Left Doors Right Front End Prefit Rear End SBBR Left SBBR Right

TSymRot 28 ± 8 30 ± 12 21 ± 7 46 ± 10 29 ± 15 82 ± 13 59 ± 48
TSymBend 8 ± 5 9 ± 7 7 ± 6 28 ± 24 3 ± 3 78 ± 29 51 ± 69
TFlex 14 ± 4 29 ± 14 12 ± 9 24 ± 3 21 ± 4 30 ± 10 21 ± 19
left AwkUA 23 ± 11 41 ± 22 22 ± 5 49 ± 19 32 ± 10 91 ± 13 62 ± 54
right AwkUA 31 ± 21 33 ± 11 58 ± 11 55 ± 7 43 ± 16 60 ± 57 77 ± 32
left UAElev 20 ± 3 25 ± 21 20 ± 10 34 ± 30 21 ± 9 85 ± 17 57 ± 59
right UAElev 23 ± 5 20 ± 7 18 ± 3 46 ± 25 17 ± 5 43 ± 61 5 ± 7
left ExtElbFE 23 ± 17 44 ± 15 23 ± 3 33 ± 18 38 ± 16 40 ± 37 16 ± 11
right ExtElbFE 35 ± 5 36 ± 12 29 ± 18 46 ± 27 40 ± 18 19 ± 22 14 ± 15
left ExtElbPS 18 ± 19 17 ± 15 15 ± 2 16 ± 11 13 ± 7 15 ± 3 8 ± 1
right ExtElbPS 26 ± 24 19 ± 13 24 ± 9 29 ± 14 26 ± 30 39 ± 14 33 ± 17
left ExtWr 58 ± 22 65 ± 25 75 ± 12 66 ± 4 63 ± 19 77 ± 2 56 ± 13
right ExtWr 74 ± 13 79 ± 15 66 ± 16 72 ± 11 70 ± 25 61 ± 12 54 ± 3
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Table 5.3 shows the mean and standard deviation of the ergonomic risk score values related to each
condition evaluated in the EAWS section ”Standing (and Walking)” (i.e. the components of the total risk
scores displayed in Figure 5.9), and for each workstation. Note that the ergonomic risk score values were
assigned according to the percentage of mean work-cycle times spent in the condition. The ergonomic
risk score value depended on the condition’s number of occurrences and intensity for some conditions.

Table 5.3: Mean and the standard deviation of the score for the mean work-cycle with regard to conditions described in the
EAWS section ”Standing (and Walking)” for each workstation. Values in bold present high ergonomic risk. Note that conditions
showing null values among workstations were excluded. The list of abbreviations used is in the risk assessment guidelines sheet
in Appendix C.11.

Fitting process
Condition

Doors Left Doors Right Front End Prefit Rear End SBBR Left SBBR Right

U 1 ± 0 1 ± 0 1 ± 0 1 ± 0 2 ± 2 - 1 ± 0
BF 13 ± 4 11 ± 3 9 ± 2 13 ± 7 3 ± 2 20 ± 9 12 ± 2
BS 3 ± 4 1 ± 1 0 ± 1 5 ± 5 - 5 ± 4 0 ± 1
left AbduOS - 3 ± 6 - 2 ± 4 - 13 ± 17 16 ± 22
left FlexOS 1 ± 1 4 ± 6 6 ± 3 4 ± 4 9 ± 4 3 ± 4 1 ± 1
right AbduOS - - - 2 ± 3 - 3 ± 4 -
right FlexOS 4 ± 4 2 ± 2 4 ± 2 4 ± 3 3 ± 3 3 ± 5 -
right OH - - 1 ± 1 - - - -
TR x U 1 ± 2 - 1 ± 1 2 ± 1 2 ± 1 9 ± 8 7 ± 9
TR x BF - 1 ± 1 - 2 ± 3 - 9 ± 1 5 ± 6
TR x BS - - - 3 ± 2 - 2 ± 3 -
TR x left
FlexOS

- - - - 1 ± 1 0 ± 1 -

TR x right Ab-
duOS

- - - - - 0 ± 1 -

TR x right
FlexOS

- - - - - 1 ± 1 -

TB x U - - 1 ± 1 4 ± 2 - 9 ± 8 7 ± 10
TB x BF - 0 ± 1 - 3 ± 3 - 9 ± 8 7 ± 10
TB x BS - - - 1 ± 1 - 2 ± 0 0 ± 1
TB x right Ab-
duOS

- 0 ± 1 - - - - -

left FR x U 1 ± 1 1 ± 0 2 ± 1 2 ± 1 1 ± 1 1 ± 1 1 ± 1
left FR x BF 1 ± 2 - - 1 ± 1 - 1 ± 0 2 ± 2
left FR x BS 1 ± 2 - - 2 ± 3 - 2 ± 2 -
right FR x U 2 ± 1 1 ± 1 1 ± 1 2 ± 1 1 ± 1 6 ± 7 3 ± 3
right FR x BF - - 3 ± 4 1 ± 1 0 ± 1 4 ± 4 5 ± 7
right FR x BS - - - 1 ± 1 - 1 ± 0 -
right FR x right
FlexOS

2 ± 1 1 ± 1 - - - - -

Respecting group A fitting processes (i.e. front and rear end), it was observed that:

• Front end accommodates high biomechanical exposure to risk factors of right upper arm awkward
posture and wrists’ extreme postures. It also compromises low valued ergonomic risk score for
work over the shoulder with respect to right upper arm flexion and medium valued ergonomic risk
score for bent forward and left upper arm flexion over the shoulder.

• Rear end carries high biomechanical exposure to risk factors of wrists extreme postures. It shows
an ergonomic risk score higher than for the front end fitting process to left upper arm flexion over
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the shoulder.

These workstations are associated with an overall medium biomechanical exposure to risk factors
related to work. However, the degree of the exposure must be evaluated individually, mainly concerning
the rear end fitting process, as standard deviation values are greater for it, supporting the presence
of more significant differences among operators. According to Appendix D.1, it was expected that
the front end had consistently higher ergonomic risk score values than the rear end, but it not always
happened, i.e. it depended on each operator’s work-method. Generally, the risk score associated with
these workstations is medium/low.

About group B fitting processes (i.e. prefit and SBBR, right and left), it can be noticed that:

• Prefit shows a medium to high biomechanical exposure to risk factors of almost all the conditions
assessed by the ISO norm, and the highest values are observed about right upper arm awkward
posture and wrists extreme postures. It displays positive risk score values for most of the conditions
described in the EAWS section, which makes it a high-risk workstation. The condition with the
highest risk score value is bent forward, followed by strongly bent forward.

• SBBR fitting process biomechanical exposure to risk factors highly depends on the SBBR’s side,
the left side presenting a higher exposure than the right side, especially to the trunk and most
of the upper arms conditions. However, SBBR right biomechanical exposure to risk factors is
significantly higher than other fitting processes, excluding SBBR left, mainly for trunk symmetries
and upper arms awkward postures. As prefit, SBBRs are also high-risk workstations, with SBBR
left as the fit shop’s riskiest workstation for almost all risk score values. However, SBBR right
fitting process is riskier than the left concerning left upper arm abduction over the shoulder.

These workstations are associated with the highest biomechanical exposure and risk score values.
As it was expected, i.e. from results in Appendix D.1, prefit is a high-risk workstation, as well as
SBBR’s, left and right. Nonetheless, it was expected that prefit was the riskiest instead of SBBR left.
Nevertheless, the ergonomic assessment results show to be very much dependent on the operator who
performed the fitting processes, as standard deviation values are very high among group B’s workstations.

Regarding group C fitting processes (i.e. doors, left and right), it can be noted that:

• Doors fitting processes are identical but flipped; thus and so, as expected, these display similar
ergonomic assessment results. Regarding biomechanical exposure to risk factors related to work,
it is high for both wrists’ postures regarding both doors sides. Concerning ergonomic risk score
results, the doors left fitting process shows a higher risk score value for bent forward than the doors
right fitting process. Plus, while the doors left fitting process shows a higher risk score value for
the right arm’s flexion over the shoulder than doors right’s, the doors right fitting process shows a
higher risk score value for the left arm’s flexion over the shoulder. This difference was expected,
as operators frequently used the arm opposite (to the doors side) to support their body within their
work-method.

These workstations are associated with medium biomechanical exposure to risk factors related to
work. The similarity between the processes can be the reason for their similar results among conditions.
Besides, there are also differences between operators’ work-methods to account. Also, these are
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associated with medium/low values of ergonomic risk score.

Notice that, for front end and prefit fitting processes, which consisted of bilateral tasks, the biome-
chanical exposure and consequent ergonomic risk mean values for both body’s segments sides are sim-
ilar. Additionally, at the time of the field’s acquisitions, the rear end and SBBRs fitting processes were
carried out by two operators in a kind of collaborative work, each having tasks on the right and left
side. No distinction between rear end left and right side tasks were made because those were not easily
distinguishable.

5.5.2 Operator-Level

Regarding operator-level analysis, heatmaps were constructed in order to inspect the ergonomic
assessment results with respect to each operator tracked. Heatmaps are displayed in Figures 5.10 and,
5.11 and 5.12, about ISO and, EAWS implementations’ results, respectively.

TS
ym

R
ot

TS
ym

Be
nd

TF
le

x

le
ft 

Aw
kU

A

rig
ht

 A
w

kU
A

le
ft 

U
AE

le
v

rig
ht

 U
AE

le
v

le
ft 

Ex
tE

lb
FE

rig
ht

 E
xt

El
bF

E

le
ft 

Ex
tE

lb
PS

rig
ht

 E
xt

El
bP

S

le
ft 

Ex
tW

r

rig
ht

 E
xt

W
r

Doors_Left/Worker 1
Doors_Left/Worker 2
Doors_Left/Worker 7

Doors_Right/Worker 1
Doors_Right/Worker 2
Doors_Right/Worker 3
Doors_Right/Worker 7

Front_End/Worker 5
Front_End/Worker 6
Front_End/Worker 9

Prefit/Worker 4
Prefit/Worker 5
Prefit/Worker 8

Rear_End/Worker 5
Rear_End/Worker 6
Rear_End/Worker 9

SBBR_Left/Worker 4
SBBR_Left/Worker 8

SBBR_Right/Worker 4
SBBR_Right/Worker 8

34 15 19 30 26 23 17 9 33 39 14 83 59
32 5 14 10 14 20 27 17 32 10 11 49 80
19 6 10 30 54 17 25 42 41 4 54 41 83
47 18 23 22 39 55 16 46 20 32 3 83 60
23 3 22 40 17 18 31 23 36 4 18 35 89
25 7 50 72 37 6 17 61 47 27 20 90 92
24 6 19 29 40 20 17 47 42 6 35 54 77
27 12 9 17 70 22 18 22 12 14 31 87 83
14 8 4 25 50 9 21 27 47 13 13 64 52
24 1 22 25 54 28 16 21 29 18 26 74 64
54 45 28 30 62 68 60 26 45 25 25 68 61
35 1 23 49 49 15 17 54 74 3 18 69 83
50 38 21 68 53 19 60 20 19 19 45 62 72
45 6 20 30 55 31 22 20 20 5 60 82 75
15 1 17 24 49 13 14 46 51 14 12 44 43
28 1 25 44 25 19 14 49 50 19 5 62 91
91 99 37 100 100 97 0 13 4 16 49 79 70
72 57 23 82 20 73 86 66 35 13 30 76 52
93 100 34 100 100 99 0 8 3 7 45 65 56
24 2 8 23 54 15 11 23 25 9 22 47 51

ISO Norm 11226

0

20

40

60

80

100

%
N

R

Figure 5.10: Biomechanical exposure outputs with regard to postures described in the ISO norm 11226 for each workstation
and operator. Percentage of the mean work-cycle time in a not recommended condition.

U BF BS

le
ft 

Ab
du

O
S

le
ft 

Fl
ex

O
S

le
ft 

O
H

rig
ht

 A
bd

uO
S

rig
ht

 F
le

xO
S

rig
ht

 O
H

Doors_Left/Worker 1
Doors_Left/Worker 2
Doors_Left/Worker 7

Doors_Right/Worker 1
Doors_Right/Worker 2
Doors_Right/Worker 3
Doors_Right/Worker 7

Front_End/Worker 5
Front_End/Worker 6
Front_End/Worker 9

Prefit/Worker 4
Prefit/Worker 5
Prefit/Worker 8

Rear_End/Worker 5
Rear_End/Worker 6
Rear_End/Worker 9

SBBR_Left/Worker 4
SBBR_Left/Worker 8

SBBR_Right/Worker 4
SBBR_Right/Worker 8

1 17 7 0 0 0 0 0 0
1 13 2 0 0 0 0 4 0
1 8 0 0 2 0 0 7 1
1 14 2 12 12 0 0 0 0
1 11 1 0 0 0 0 3 0
0 8 0 0 0 0 0 1 0
1 9 0 0 5 0 0 5 0
1 8 1 0 6 0 0 6 0
1 10 0 0 2 0 0 5 2
1 7 0 0 8 0 0 2 0
0 18 5 7 7 0 1 5 0
1 5 0 0 0 0 0 0 0
1 15 10 0 6 0 5 6 0
4 5 0 0 13 0 0 6 0
1 2 0 0 5 0 0 4 0
1 2 0 0 9 0 0 0 0
0 13 2 25 0 0 0 0 0
0 26 8 1 5 0 5 7 0
0 11 1 31 0 0 0 0 0
1 13 0 0 2 0 0 0 0

EAWS Part a) Single Conditions

0

20

40

60

80

100

Sc
or

e

Figure 5.11: Ergonomic risk score outputs with regard to conditions described in the EAWS section ”Standing (and Walking)”
- Part a (corresponding to single conditions) - for each workstation and operator. Score with respect to each condition.
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Figure 5.12: Ergonomic risk score outputs with regard to conditions described in the EAWS section ”Standing (and Walking)”
- Part b (corresponding to combined conditions) - for each workstation and operator. Score with respect to each condition.

Next, a comparison among operators was undertaken for conditions that satisfied the minimum
standard deviation threshold of ≥20% for biomechanical exposure assessment and ≥5 for ergonomic
risk determination. Also, consider the distributions from operators’ body measurements, in Figure 5.1,
and the total risk score values, in Figure 5.9.

Respecting group A fitting processes, note that results do not significantly vary among workers, i.e.
standard deviations of percentages ≤20% and scores ≤5.

For the front end, about biomechanical exposure to risk factors related to work, right extreme el-
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bow flexion/extension and right extreme wrist posture percentages vary to a greater extent than others’
postures, workers 6 and 5 bearing the highest values, respectively. About ergonomic risk score results,
workers 5 and 6 present higher total risk scores than worker 9. Worker 9 is the highest and has the
greatest arm span, followed by worker 6 and worker 5; but note that workers 5 and 6 have similar body
profiles and total risk score values (i.e. higher than worker 9’s total risk score value). Also, notice that
worker 9 is an experienced operator in group A’s fitting processes.

For the rear end, about biomechanical exposure to risk factors, right elbow extreme prona-
tion/supination and right wrist extreme posture vary substantially between workers, being the greatest
for workers 5 and 9, respectively. These results were not expected as worker 6, the less proficient,
showed lower biomechanical exposure to risk factors than others. A reason for this can be that, as the
rear end is conducted in collaborative work and worker 6 was learning how to perform the workstation,
he did not perform a few tasks, because he was learning how to perform them from his buddy. Worker 5
shows the greatest overall ergonomic risk score value concerning ergonomic risk score results, but these
do not vary much among workers.

For prefit, about the biomechanical exposure to risk factors, it can be seen that values considerably
vary for: trunk bending symmetry and upper arms elevation postures, which are the highest for worker
4; and right elbow extreme flexion/extension that is the highest for worker 5. Regarding ergonomic
risk score results, worker 5 presents a total risk score value smaller than others, which can be due to
the worker’s expertise in group B’s fitting processes. Worker 4 displays the highest risk score for bent
forward, while worker 8 displays the greatest risk score value for strongly bent forward. Nonetheless,
considering both trunk and arm’s conditions, worker 4 work-method reports the highest total risk score
among the operators.

SBBR left and right workstation results exhibit more significant differences between workers than
other workstations’. Worker 4 supports the highest values of biomechanical exposure to risk factors
respecting trunk, awkward upper arms’ postures and left upper arm elevation. Notice that worker 4’s
height and arm span is greater than worker 8. Concerning ergonomic risk score results, these highly
depend on the condition analysed. SBBR left shows a larger degree of positive risk score values for
worker 8 among conditions when compared to worker 4’s. However, both workers present a high total
risk score associated with the SBBR left fitting process. Otherwise, worker 4 distinctly shows the
highest total risk score related to SBBR right fitting process, mainly due to the high risk score values
about the single condition of left arm abduction over the shoulder and the combined conditions of trunk
rotation and bending asymmetries.

As it was noted before, fitting processes of left and right doors are identical. Furthermore, regarding
biomechanical exposure to risk factors, the most significant gaps between operators are:

For doors left, with regard to right upper arm awkward posture, right extreme elbow prona-
tion/supination and left wrist extreme posture, having the highest percentage in a not recommended
postures for workers 7, 7 and 1, respectively;

For doors right, about left upper arm awkward posture and elevation, and left wrist extreme posture,
bearing the highest percentage in a not recommended postures for workers 3 and 1, and 3, respectively.

Concerning ergonomic risk score results, worker 1 presents the highest values for doors fitting
processes. Nevertheless, worker 2 displays high risk scores for bent forward, and worker 7 shows
medium risk scores for upper arms flexion over the shoulder.
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According to the criteria presented in Table 5.1, Figure 5.13 shows a summary of the operator-level
results. In Figure 5.13, note that: regarding biomechanical exposure, the mean between the percentages
in not recommended conditions was calculated for each segment’s postures; concerning ergonomic risk,
for trunk and full arms, right and left, the sum of risk score values was calculated.
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Figure 5.13: Operator-level biomechanical exposure and ergonomic risk results.

Note that, when observing Figure 5.13, there is not always a linear and positive relationship between
the biomechanical exposure and the ergonomic risk results. Nevertheless, possibly the criteria used to
judge the ergonomic risk value was too harsh. Another reason for the mismatch can be that: biomechan-
ical exposure assessment results presented take into account the holding time in the assessed posture,
while the ergonomic risk score calculation only considers the number of times the operator reaches the
condition; in other words, the first assess the duration in the posture, while the latter evaluates the con-
dition’s number of occurrences. In addition, according to the ISO norm 11226, the percentage of values
in a not recommended condition of trunk flexion considers trunk flexion below 0◦ (i.e. trunk extension),
while EAWS does not consider it.

72



5.6 Study Limitations

5.6 Study Limitations

Several study limitations should be considered, as it follows:

• Hardware and design issues: both Fraunhofer’s hardware and case design are in development.
Thus, there were some technical issues, reported in sections C.1 and 5.1, that affected the accuracy
of the methods developed during this dissertation, as the results highly depend on the integrity of
the collected data.

• Low complexity kinematic model: as a low complexity kinematic model was deployed, it may
have failed on upper body segments’ motion estimation, particularly concerning extreme seg-
ments’ postures. In the future, the usage of a more complex upper body model that uses ISB
standards to describe the upper body’s joints’ motion can be a valuable approach to obtain better
motion estimates, whose accuracy is captured through validation.

• Small sample size in the field setting: sample size is too small to generalise the results to the
fit shop’s population. Remark that only two to four operators with different body profiles were
tracked by workstation, while the real population size is ≈100 workers. Plus, a sample size closer
to the population’s would enable a significant statistical analyses about variables correlation and/or
cause-effect.

• Reduced and naive body measures collection: the upper body motion was tracked; thus, the
collection of more measures of the upper body segments is relevant to the definition of the most
suitable body profile for each process, specifically, the collection of the trunk and upper limbs
anthropometric measurements.
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5.7 Chapter Conclusions

In the course of this dissertation, design recommendations were provided to the designers’ team for
the IMU sensors placement/attachment.

With respect to population characterisation, it was noted that participants from laboratory data col-
lection present narrower distributions of body measurements than participants from field data collection,
mainly due to disruptive body profiles. Moreover, it was observed that, for each workstation, there
are not more than two operators with distinct body profiles, which limited the ergonomic assessment
operator-level analysis.

Concerning orientation errors results, for every IMU, static trials compromise lower errors values
than dynamic trials; the highest errors values were observed to upper limbs DoFs; field’s data errors
were higher than laboratory’s. Additionally, the kinematic model, used to the IK is describing joints’
movements as a kinematic chain since relations between segments errors were exposed.

Toward validation outputs analysis, and inspired by the authors of Bouvier et al., 2015, the concepts
of trueness - ”close to a reference system”, i.e. RMSE and R2 values closeness to 0◦ and 1, respectively
- and precision - i.e. similarities of RMSE and R2 values among different participants’ acquisitions –
can be used. RMSE and R2 values show that, generally, RMSE and R2 values trueness and precision
are fair for laboratory’s results, while field’s show lower trueness and precision. As expected, over the
acquisitions times, the errors also increased in a greater extent for field than for laboratory results.

Regarding evaluation results and group-level analysis, the biomechanical exposure to risk factors
related to work of extreme wrists’ postures is the highest; prefit and SBBR left workstations present a
higher overall ergonomic risk than other workstations. Regarding operator-level analysis, as the sample
size is too small to generalisations, it can be only pointed out the worker with presenting the work-
method, at the time of the acquisition, that represents the lowest biomechanical exposure to risk factors
and consequent ergonomic risk for each workstation: for front end, worker 5/6; for the rear end, worker
6; for prefit, worker 5; for SBBR, left and right, worker 8; for doors right, worker 3; and for doors left,
worker 2. Plus, please note that an example of an individual ergonomic report is provided in Appendix
C.12.
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This chapter summarises the developed work and the obtained results throughout this dissertation.
Guidelines for future research are also proposed.

6.1 Conclusions

Nowadays, in industrial contexts, ergonomic risk assessment is conducted using self-reported or
observational methods. Notwithstanding, there has been an exponential growth of wearable technologies
used to directly measure the biomechanical exposure to risk factors and the related ergonomic risk;
currently available solutions have several weaknesses, as those do not offer a good trade-off between
system’s explainability, scalability and invasiveness. Often, whereas a system requires many elements,
its explainability is fair, though its scalability and invasiveness are not.

Therefore, to provide a preferable solution, under the sphere of the ongoing R&D project, entitled
OPERATOR, this dissertation answer the research question of “how to quantify the ergonomic risk and
biomechanical exposure in automotive assembly lines?” throughout the application and development of
computational tools in tandem with inertial MoCap technology.

Firstly, as the study focused on upper body motion tracking, the sensors should be rigidly attached
to the user’s upper body segments to prevent them from falling. IMUs best placement location is usually
the flattest and most regular segment’s surface portion, minimising the STAs.

Secondly, the data-driven synchronisation technique designed cannot be extended to data already
collected because it demands the execution of a pre-defined synchronisation sequence, which should
be ”equally” identified in data streams from different sensors. However, using common patterns/events
displayed in data streams coming out of different sensors can be the answer to a post-hoc and data-driven
synchronisation solution. Regarding the data collected, the synchronisation sequences were remarkably
detected and used to synchronise sensors’ data streams with respect to short- and long-term acquisitions.
Depending on the acquisition duration, the synchronisation sequence should be performed at least one
to three times.

Thirdly, the usage of a biomechanical model, in order to apply real motion constraints to the
orientation data, calculated from IMUs signals, corrects orientation errors through IK; it enables
monitoring the user’s upper body segments motion as a chain, connecting adjacent segments’ motion
and computing their relative movements with respect to each other. These relative movements are
translated into angular data of DoFs from the upper body segments’ joints. In fact, IK affected the
orientation estimates and, mainly, about the field’s data collection, whose orientation errors were greater
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than laboratory’s. Additionally, Fraunhofer’s system validation results show that it fairly tracked its
user’s upper body segments’ motion, especially in controlled settings.

The following topics are related to the case study of automotive assembly lines about fit shop’s
workstations ergonomic analysis and assessment.

Fourthly, implementations of the ISO norm 11226 and the EAWS proforma sheet were done, in
order to provide biomechanical exposure and consequent ergonomic risk assessment by workstation
and operator, in terms of the percentages of work-cycle time spent in a not recommended posture for
each upper body segment, defined in the ISO norm; and the ergonomic risk scores, associated with each
condition evaluated in the EAWS. Biomechanical exposure and consequent ergonomic risk assessments’
results were computed for each work-cycle in data. Also, mean and standard deviation values were
calculated among operators’ acquisitions for each fitting process.

Fifthly, evaluation results were exploited in a group-level analysis, divided into workstation-level
and operator-level, and it was found out that: generally, among workstations and operators, the
biomechanical exposure to risk factors related to work of extreme wrists postures was the highest; the
workstations associated with greater biomechanical exposure and ergonomic risk are from group B,
particularly, prefit and SBBR left; and, for each workstation, different operators (i.e. with different body
profiles) are associated with different ergonomic assessment outputs; thus and so, at the time of the
acquisitions, specific work-methods lead to lower biomechanical exposure and consequent ergonomic
risk than others, but no further generalisations can be made.

Lastly, for each workstation and operator, an individual ergonomic report was automatically gener-
ated, wherein biomechanical exposure and consequent ergonomic risk assessment results are provided
for each work-cycle. It enables ergonomists to focus their analysis on each operator work-method and
assess its variability over the monitored work-cycles.
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6.2 Future Work

This dissertation leaves some unsolved problems and opens new research questions to which it will
be devoting additional research effort in the future. Topics to explore are pointed out in Figure 6.1, and
their descriptions are detailed next.

Study Follow-up
Improve Motion

Tracking
Techniques

Extend Methods of
Ergonomics
Quantitative
Analysis and
Assessment

Figure 6.1: The main research topics for future work.

Improvements in motion tracking techniques Throughout the (1) comparison of the angular esti-
mates using the simplest and a complex biomechanical model to describe joints’ motion, the (2) compar-
ison of angular estimates using a reduced number of inertial sensors, the (3) tracking of position, and the
(4) usage of a visual MoCap to provide an extra validation of the angular estimates.

Extension of the ergonomic quantitative analysis and assessment The analysis can consist of (1)
characterising the ergonomic risk as a multi-dimensional approach, through the design of concrete mea-
sures to assess duration, repetition and intensity, using multi-time series data (acceleration, angular ve-
locity, magnetic field, orientation), (2) coming up with an elegant solution to visualise the ergonomic risk
assessment outputs over a work-cycle to target the periods that contribute the most to high ergonomic risk
values, (3) conducting machine learning techniques to multiclass classification task of simplest move-
ments (e.g. picking, placing) performed in industrial contexts which increased occurences can be re-
lated to a greater ergonomic risk value. Additionally, other mining time series tasks can be carried out,
namely: event detection and pattern recognition, which can hold advanced synchronisation techniques to
detect synchronisation opportunities; methods to characterise industrial movements that can be related to
greater ergonomic risk, such as hard fits (i.e. tasks carried out in fitting processes which experts classify
as the most harmful).

Study follow-up Compromise the (1) data collection for a larger sample size in order to provide repre-
sentative relationships among body measures, other variables and the ergonomic risk assessment outputs,
and the (2) crossing of quantitative and qualitative data collected within a longitudinal study, and medical
department’s back data.
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A. State of the Art

Table A.1: Proforma sheets used whilst observational ergonomic risk assessment (based on OSHwiki, 2020).

Method Description
Ovako Working posture
Assessment System
(OWAS) (O et al., 1977)

• Developed and introduced in Finland in a steel production company (Ovako) in the 1970s;
• Aspects to be observed include the weight of the load and postures of the back, arms, and
lower extremities.

Key Indicator Methods
(KIM) (Klussmann et al.,
2010)

• Developed in Germany by the Federal Institute for occupational safety and health;
• The screening methods cover six types of workload: lifting, holding and carrying; push-
ing and pulling; manual handling operations; whole body forces; awkward postures and body
movements.

Manual handling As-
sessment Chart (MAC)
(Monnington S.C. et al.,
2003)

• Developed in United Kingdom (UK) by the Health and Safety Executive (HSE);
• Addresses lifting and carrying, and manual handling operations;
• Based on a checklist, sets out 11 items of manual handling to be evaluated.

Assessment of Repetitive
Tasks (ART) (Ferreira et
al., 2009)

• Developed in UK by the HSE;
• Assesses repetitive tasks associated with upper limb disorders;
• Uses a numerical score to indicate the level of risk for twelve factors grouped into four cate-
gories (frequency/repetition of movements, force, postures and additional factors, such as dura-
tion).

Risk Assessment of
Pushing and Pulling
(RAPP) (Executive et al.,
2016)

• Developed in UK by the HSE;
• Assesses pushing and pulling operations;
• Makes a distinction between pushing and pulling associated with moving loads on wheeled
equipment and moving loads without wheels.

Rapid Upper Limb As-
sessment (RULA) (L et
al., 1993)

• Based on the observation of the postures of individual body segments;
• Consists in giving a numerical value about how far the body segments deviate from their
neutral pose;
• Additional weights are given to the postures according to forces/loads handled and the occur-
rence of static/repetitive muscular activity.

Occupational Repetitive
Action (OCRA) (OC-
CHIPINTI, 2010)

• Based on the observation of actions and, then, the attribution of weights for six risk factors
(movements, posture, external force, vibration, contact forces and others).

Hand Activity Level
(HAL) (JM et al., 2017,
JM et al., 2018)

• Developed by the American Conference of Governmental Industrial Hygienists;
• Evaluates job risk factors associated with MSDs of the hand and wrist;
• Based on an assessment of hand activity and the level of effort for a typical posture while
performing a short cycle task.

Exertion Atlas • Developed under the supervision of the Institute of Ergonomics of Darmstadt Technical Uni-
versity (IAD);
• Involves physical exertion and/or exposure to force.

Automotive Assembly
Worksheet (AAWS)
(Schaub, 2004) and
European Assembly
Worksheet (EAWS)
(Schaub et al., 2013)

• Both developed by the IAD;
• Assess different types of workload and particularly for cyclic activities in the automotive and
supply industry;
• EAWS resulted from a revision of AAWS, performed to increase the field of application of the
later.
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Table A.3: Examples of countries/entities codes, standards and guidelines primarily aimed to prevent WRMSDs. Table from
Berlin et al., 2017 p. 152-153.

Country / Entity Document
Australia • National Code of Practice for Manual Handling [NOHCs: 2005(1990)];

• National Code of Practice for the Prevention of Occupational Overuse Syndrome [NOHCs:
2013 (1994)];
• Manual Tasks Advisory Standard 2000 – Queensland;
• Code of Practice for Manual Handling 2000 – Victoria.

China • Law on Prevention and Control of Occupational Diseases (Article 13 of Chapter II Preliminary
Prevention). 2002;
• Occupational exposure limits for hand-transmitted vibration in the workplace (GBZ 2.2-2007),
Measurement methods (GBZ/T 189.9), and Diagnostic criteria of occupational hand-arm vibra-
tion disease (GBZ 7);
• Hygienic Standards for the Design of Industrial Enterprises (GBZ1) on workplace lighting
and illumination;
• Guidelines for occupational hazards prevention and control (GBZ/T 211-2008).

European Community • Directive 89/391 Introduction of measures to encourage improvements in the safety and health
of workers at work;
• Directive 90/269/EEC Minimum health and safety requirements for the manual handling of
loads where there is a risk, particularly of back injuries to workers;
• Directive 2002/44/EC Minimum health and safety requirements regarding the exposure of
workers to the risks arising from physical agents (vibration).

ISO • ISO 11228-1 Ergonomics – Manual Handing – Part 1: Lifting and Carrying;
• ISO 11226 Ergonomics – Evaluation of static working postures;
• ISO/FDIS 6385:2003 Ergonomic Principles in the Design of Work Systems.

Japan • Guidelines on the prevention of lumbago in the workplace (1994).
Netherlands • Working Conditions Act 1998.
New Zealand • Code of Practice for Manual Handling;

• Approved Code of Practice for the Use of Visual Display Units in the Place of Work;
• Occupational Overuse Syndrome (OOS) – Guidelines for prevention and management (1991)
and Occupational Overuse Syndrome. Checklists for the evaluation of work (1991).

Norway • Act Relating to Worker Protection and Working Environment (2003).
South Africa • Occupational Health and Safety Act 1993.
Spain • Royal Decree 487/1997 Minimum health and safety provision relating to manual load handling

involving risks for workers, particularly to the dorsolumbar region and the associated technical
guide for the evaluation and prevention of risks associated with manual load handling;
• Royal decree 488/1997 Minimum health and safety dispositions relating to work with equip-
ment fitted with visual display units and the associated technical guide for evaluating and pre-
venting risks associated with the use of equipment with visual display units.

Sweden • AFS 2001:1 – Provisions of the Swedish Work Environment Authority on Systematic Work
Environment Management, together with General Recommendations on the Implementation of
the Provisions;
• AFS 1998:1 – Provisions of the Swedish National Board of Occupational Safety and Health on
Ergonomics for the Prevention of Musculoskeletal Disorders, together with the Board’s General
Recommendations on the Implementation of the Provisions.

UK • The Manual Handling Operations Regulations 1992;
• The Health and Safety (Display Screen Equipment) Regulations 1992;
• Upper limb disorders in the workplace. HSE, 2002;
• Aching arms (or RSI) in small businesses, HSE, 2003;
• Manual Handling Assessment Charts. HSE, 2003.
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USA • OSHA, 2003: Ergonomics for the Prevention of Musculoskeletal Disorders. Guidelines for
Poultry Processing;
• NIOSH: Simple Solutions: Ergonomics For Farm Workers, 2001;
• California Dept of Industrial Relations, 1999: Easy Ergonomics. A Practical Approach for
Improving the Workplace;
• California Dept of Industrial Relations, 2000: Fitting the Task to the Person: Ergonomics for
Very Small Businesses;
• State of Washington, Dept of Labor: WAC 296-62-051. Ergonomics;
• State of Washington, Dept of Labor: Fitting the Job to the Worker: An Ergonomics Program
Guideline,

Figure A.1: Inertial Systems Setups used in Occupational Ergonomics (Lim et al., 2020).
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B. Theoretical Background

Figure B.1: The major branches of mechanics used in most biomechanical studies (Arus, 2018).

Figure B.2: The nine principles of biomechanics (Arus, 2018).
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C. Materials and Methods

C.1 Motion Capture Systems

The MVN Awinda system (Figure C.1), developed by XSens, includes 17 (plus 1 prop) Wireless
Motion Trackers (MTw) with battery inside, an Awinda Station (1 per person tracked), a full body strap
set (3 T-shirts + straps), charging stations for Awinda sensors, a BNC connector to synchronisation and
a sturdy backpack. Its main characteristics are an update rate (in its software) of 60Hz, a wireless range
(i.e. wireless coverage) up to ∼50m, battery life of 6h, wireless communication using a radio protocol
(Awinda protocol), a system latency, i.e. the amount of time the audio signal takes to travel from the
sensor (the source) to the computer, of 30ms, and an on-body buffering, i.e. the amount of time it takes
for the computer to process any incoming audio signal, of 30 s (Xsens, 2015).

The MVN Analyze software non-payed version only allows the usage of very basic features. As
follows, for this work, the paid version, provided by Volkswagen Autoeuropa, as a 1-year license, was
used. It was used the MVN Analyze Pro software 2020.2.0 version.

Figure C.1: MVN Awinda XSens system setup (source: Cdn.bitrix24.ru 2021).

The Fraunhofer’s system compromised the set up of 8 to 9 wireless and low-cost IMU kallisto sen-
sors, formerly developed by Fraunhofer and currently sold by Sensry (Sensry, n.a[a]), using the attaching
system in development.
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Notice that the communication protocol between the sensors and one or more the servers, the hard-
ware for data storage and update, and the software features are also in development. The servers update
rate was changeful, as it depended on the distance of the sensors to the smartphones, and if the distance
to the smartphone was higher than ∼10m, they disconnected. At the time, Wi-Fi connection and local
storage were being considered to solve these problems.

A Kallisto has its battery inside and is charged through induction. Meanwhile, tests are being held
to evaluate sensor battery life accurately, but it is certainly longer than a MTw.
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PROTOCOLO DE RECOLHA 

Validação – Laboratório 

OBJETIVOS 

✓ Avaliação da integridade dos sinais recolhidos com sistema de sensorização inercial desenvolvido pela 

Fraunhofer; 

✓ Validação da montagem dos sensores e do algoritmo na reconstrução de movimentos funcionais, 

conjuntos de movimentos de mobilização articular; 

✓ Validação da montagem dos sensores e do algoritmo na reconstrução de movimentos mais dinâmicos, 

simulando processos levados a cabo em linha de montagem da Volkswagen Autoeuropa pelos seus 

operadores. Os trials realizados nesta fase serão orientados por objetivos que os participantes deverão 

completar ao longo do trial. 

LOCAL DA RECOLHA: Fraunhofer AICOS, Lisboa 

MATERIAL 

▪ Sistema inercial de captura de movimento XSens - MVN Awinda: 

- 17(+1) Wireless Motion Trackers (MTw) e respectivo material de colocação; 

- 1 Estação Awinda; 

- 2 Estações de Carregamento Awinda; 

- 1 Segmómetro. 

▪ PC com o software MVN Analyze instalado; 

▪ Sistema inercial de captura de movimento desenvolvido pela Fraunhofer: 

- 8 Kallistos (sensores inerciais, wireless) e respectivo material de colocação; 

- 2 smartphones com as Apps Recorder (App interna da Fraunhofer) e a Kallisto ToolBox 

(disponível na App Store) instaladas. 

▪ Camêra; 

▪ Ferramentas que integram os trials relativos à Simulação: 

- Chave de roquete; 

- Carrinho de ferramentas/mesa com rodas; 

PROCEDIMENTO 

Preparação 

1. Verificação da concordância do participante com o consentimento informado; 

2. Registo dos dados pessoais do participante; 

3. Recolha e registo das medidas corporais do participante, usando o segmómetro; 

4. Explicação dos próximos passos ao participante; 

Montagem 

5. Montagem do sistema XSens; 

6. Montagem do sistema desenvolvido pela Fraunhofer; 

7. Captura fotográfica da montagem inicial dos sistemas; 

Emparelhamento 

8. Registo do participante e da aquisição na App Recorder; 

9. Começo de uma nova sessão no software MVN Analyze, preenchendo o campos afetos às medidas 

corporais obrigatórias; 

C.2 Laboratory Protocol

C.2 Laboratory Protocol
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Calibração 

10. Explicação dos procedimentos de calibração; 

11. Calibração do sistema XSens, seguida da calibração estática do sistema desenvolvido pela Fraunhofer; 

Ensaio 

12. Explicação do procedimento de sincronização sistemas-vídeo e entre sistemas, e dos movimentos a 

realizar em contexto: 

a. Postura anatómica ou N-pose (10 s); 

b. Salto vertical; 

c. Postura anatómica ou N-pose (5 s); 

d. Flexão do braço direito a 90º (5 s); 

e. Postura anatómica ou N-pose (10 s). 

 

Figure 1: Ilustração dos movimentos integrantes do procedimento de sincronização. 

13. Posicionamento da câmera de registo de vídeos; 

14. Explicação dos conjuntos de movimentos a realizar a cada trial; 

15. Realização de um treino dos movimentos explicados - movimentos realizados “em espelho” com o 

conductor(a) da recolha; 

AQUISIÇÃO 

16. Inicialização da gravação vídeo; 

17. Inicialização da gravação com o sistema XSens; 

18. Inicialização da gravação com o sistema desenvolvido pela Fraunhofer; 

19. Realização os movimentos de sincronização, descritos na secção Ensaio; 

20. Realização dos movimentos descritos no trial em questão; 

21. Realização os movimentos de sincronização, descritos na secção Ensaio; 

22. Paragem da gravação com o sistema desenvolvido pela Fraunhofer; 

23. Paragem da gravação com o sistema XSens; 

24. Paragem da gravação vídeo; 

TRIALS 

Funcional – Parte 1 – Membro Superior 

Começar com o membro superior direito e permanecer 2 segundos em cada posição: 

1. N-pose; 
2. Abdução do ombro a 90º; 
3. Abdução do ombro a 180º;  
4. Adução do ombro a 90º; 
5. Flexão do cotovelo a 90º; 
6. Flexão do pulso a 70º; 
7. Rotação do ombro no sentido horário cerca de 90º; 
8. Pulso em postura neutra; 

C. MATERIALS AND METHODS
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9. Pronação do antebraço cerca de 90º; 
10. Rotação do ombro no sentido anti-horário cerca de 90º; 
11. Extensão do pulso a 70º; 
12. Pulso em postura neutra; 
13. Supinação do antebraço cerca de 90º; 
14. Adução do ombro a 0º; 
15. Supinação do antebraço cerca de 90º; 
16. Rotação do ombro no sentido anti-horário cerca de  90º; 
17. Pronação do antebraço cerca de 90º; 
18. Rotação do ombro no sentido horário cerca de 90º; 
19. Desvio radial do pulso a 25º; 
20. Pulso em posição neutral; 
21. Desvio ulnar do pulso a 35º; 
22. Pulso em posição neutra; 
23. Flexão do ombro a 90º; 
24. Flexão do pulso a 70º; 
25. Pulso em posição neutral; 
26. Supinação do antebraço cerca de 90º; 
27. Rotação do ombro no sentido anti-horário a 90º; 
28. Extensão do cotovelo a 0º; 
29. Flexão do ombro a 180º; 
30. Extensão do ombro a 90º;  
31. N-pose; 
32. Repetir os pontos 2-30 com o membro superior esquerdo. 

C.2 Laboratory Protocol
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Figure 2: Ilustração do trial funcional - mobilização articular do membro superior. 

Funcional – Parte 2 – Tronco 

Permanecer 5 segundos em cada posição: 

1. Postura anatómica ou N-pose; 
2. Flexão do tronco a 45º; 
3. Postura anatómica ou N-pose; 
4. Extensão do tronco 15º; 
5. Postura anatómica ou N-pose; 
6. Curvar o tronco lateralmente para o lado direito a 20º; 
7. Postura anatómica ou N-pose; 
8. Curvar o tronco lateralmente para o lado esquerdo a 20º; 
9. Postura anatómica ou N-pose; 
10. Rotação do tronco no sentido horário (direita) a 35º; 
11. Postura anatómica ou N-pose; 
12. Rotação do tronco no sentido anti-horário (esquerda) a 35º; 
13. Postura anatómica ou N-pose. 

 

Figure 3: Ilustração do trial funcional - mobilização articular do tronco (“em espelho”). 

Simulação - Sequência 1 

1. Empurrar o carrinho de ferramentas para perto do armário; 

2. Escolher uma chave de roquete; 

3. Simular a ação de desaparafusar numa prateleira acima do nível da cabeça (3x); 

4. Pousar a chave de roquete; 

5. Inspecionar o armário; 

6. Escolher uma chave de roquete; 

C.2 Laboratory Protocol
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7. Simular a ação de desaparafusar numa prateleira ao nível do diafragma (3x); 

8. Pousar a chave de roquete; 

9. Inspecionar o armário; 

10. Escolher uma chave de roquete; 

11. Simular a ação de desaparafusar numa prateleira abaixo do nível da cintura (3x), realizando a flexão 

do tronco; 

12. Pousar a chave de roquete; 

13. Inspecionar o armário. 

Simulação - Sequência 2 

1. Empurrar o carrinho de ferramentas para perto do armário; 

2. Segurar extremidades do armário com as mãos acima do nível da cabeça e realizar um movimento de 

torsão (1x); 

3. Inspecionar o armário; 

4. Segurar extremidades do armário com as mãos ao nível do diafragma e realizar um movimento de 

torsão (1x). 

Simulação - Sequência 3 

1. Empurrar o carrinho de ferramentas para perto da mesa; 

2. Aplicar pressão sobre o tampo com ambas as mãos (1x, 5 s); 

3. Inspecionar a mesa; 

4. Aplicar pressão sobre o tampo com a mão direita (1x, 5 s); 

5. Inspecionar a mesa; 

6. Aplicar pressão sobre o tampo com a mão esquerda (1x, 5 s); 

7. Inspecionar a mesa. 

C. MATERIALS AND METHODS

102



 
 

CONSENTIMENTO PARA PARTICIPAÇÃO EM INVESTIGAÇÃO 
PROJECTO OPERATOR – FASE 1 

 

ESTE DOCUMENTO É FEITO EM DUPLICADO: UM PARA O PARTICIPANTE E OUTRO PARA O INVESTIGADOR. 1 / 2 
 

O projeto “Operator - Transformação Digital na Indústria com foco no Operador 4.0” pretende realizar 

um estudo de investigação para o desenvolvimento de tecnologia que seja capaz de promover o bem-

estar físico e mental dos trabalhadores sem comprometer a produtividade.  

Neste estudo participam as seguintes entidades: Zenithwings (empresa privada), Associação 

Fraunhofer Portugal Research (Fraunhofer), Faculdade de Psicologia e de Ciências da Educação da 

Universidade do Porto (FPCEUP), Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 

(NOVA), Volkswagen Autoeuropa, NST Apparel (Europe) Lda., ControlConsul (empresa privada), 

Universidade do Minho e MIT – Institute for Medical Engineering and Science. 

No âmbito deste estudo, pretendemos colocar sensores sobre os membros superiores para recolha de 

dados de movimento.  

Objetivos da atividade 

Com a colocação de sensores sobre os membros superiores procuraremos medir movimentos durante 

a execução das tarefas. O objetivo principal visa a comparação da estimativa de movimento obtida 

através de ferramentas computacionais desenvolvidas ao longo do projeto, com dados de movimento 

fornecidos por um sistema de referência. 

Materiais usados 

Nesta atividade iremos proceder à recolha de dados sociodemográficos, medidas corporais e dados de 

sensores inerciais, que serão utilizados durante o período de recolha de dados. Serão, adicionalmente, 

gravados vídeo, som e imagem, com vista à construção de um registo que ajudará o trabalho de 

processamento dos dados resultantes da aquisição. A análise dos dados recolhidos será realizada pela 

Fraunhofer (Portugal). 

Procedimentos 

Iremos equipar os seus braços e tronco com um conjunto de sensores de movimento, o que pode 

tardar 30 a 40 minutos. Em seguida, iremos pedir-lhe que execute conjuntos de movimentos, 

desenhados pelos investigadores da Fraunhofer, durante cerca de 30 a 40 minutos. Os sensores 

estarão a medir os seus movimentos. 

Os seus dados pessoais serão analisados pelos investigadores da Fraunhofer. Os dados recolhidos são 

confidenciais. As entidades envolvidas no estudo tomarão todas as medidas necessárias à salvaguarda 

e proteção dos dados recolhidos, evitando que venham a ser acedidos por terceiros não autorizados. 

Gostaríamos de contar com a sua participação. A participação não envolve qualquer prejuízo ou dano 

material, nem qualquer benefício. Todo o material necessário para este estudo será fornecido. A sua 

participação não envolve qualquer tipo de pagamento, não terá consequências no seu trabalho ou 

avaliação, nem terá custos para si ou para a empresa para quem trabalha. 

A sua participação é voluntária, podendo em qualquer altura cessá-la sem qualquer tipo de 

consequência. Também poderá pedir a retificação ou destruição da informação recolhida a qualquer 

momento. Para isso, basta que nos contacte através do e-mail fornecido abaixo. 

Agradecemos muito o seu contributo, fundamental para a nossa investigação. 
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CONSENTIMENTO PARA PARTICIPAÇÃO EM INVESTIGAÇÃO 
PROJECTO OPERATOR – FASE 1 

 

ESTE DOCUMENTO É FEITO EM DUPLICADO: UM PARA O PARTICIPANTE E OUTRO PARA O INVESTIGADOR. 2 / 2 
 

 

O/A participante: 

Declaro ter lido e compreendido este documento, bem como as informações verbais fornecidas e aceito 

participar nesta investigação. Permito a utilização dos dados que forneço de forma voluntária, 

confiando que apenas serão utilizados para investigação e com as garantias de confidencialidade e 

anonimato que me são dadas pelas investigadoras. Autorizo a comunicação de dados de forma 

anónima a outras entidades parceiras do estudo para fins académicos e de investigação científica. 

Nome da/o participante: _____________________________________________________ 

Assinatura: __________________________________________________         Data ___ / ___ / ______ 

 

Investigador responsável: 

Nome: Maria Lua Nunes 

Assinatura: __________________________ 

Telefone: 220 430 345 

E-mail: maria.nunes@fraunhofer.pt 
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Figure C.2: An example of Fraunhofer’s sensors signals’ components - acceleration (upper right), angular velocity (upper left) and magnetic field (bottom) - for each IMU attached to a body
segment.
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C.5 Computational Tools

This section provides a widely description of the computational tools used. The tasks described in
sections 4.3 to 4.6 were mainly carried out in Python 3.7, using PyCharm 2020.2.3 (Community Edition)
as the Integrated Development Environment (IDE), with the Anaconda 3.0 distribution.

C.5.1 Python Packages

Next, are listed the Python packages basis requirements to the framework developed during the
dissertation project.

Data Structure

numpy==1.17.5

pandas==1.0.5

Signal/Data Processing/Analysis

biosignalsnotebooks==0.6.3

novainstrumentation==0.4

scipy==1.6.1

statsmodels==0.10.0

Sensor Fusion

AHRS==0.3.0

pyquaternion==0.9.9

Inverse Kinematics

opensim===4.2-2021-01-13-642235a

Reporting

html5lib==1.0.1

htmlmin==0.1.12

Jinja2==2.11.2

Markdown==3.3.3

Visualisation

matplotlib==3.1.3

seaborn==0.11.1

streamlit==0.80.0

xhtml2pdf==0.2.5

106



C.6 Filtering Example

C.6 Filtering Example
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Figure C.3: An example of IMU sensors signals magnitude power spectrum for each body segment tracked before (left) and
after (right) filtering. Hand, right and left, chest and arm right body segments.
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Figure C.4: An example of IMU sensors signals magnitude power spectrum for each body segment tracked before (left) and
after (right) filtering. Arm right and forearm, right and left, body segments.
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C.7 Synchronisation Method Algorithm

Table C.1: Synchronisation Method Algorithm.

Input parameters: Master signal, Ms, and axis, Max; Peaks height, h; Reference segment, Sr; Interval maximal threshold, tA;
Sampling frequency, f s.
1. Identify the synchronisation opportunities Os in the Ms and Max for each segment. It uses Scipy signal function find peaks
(Roy, 2021) to detect the peaks with a height equal or higher to h (i.e. Os).
2. Alignment of segments’ time series by their initial O. It consists in cutting off the samples with an index anterior to the first
O’s index for each signal of each segment data.
3. Match the Os in the time series from the reference segment with the Os in time series from another segments, and drop Os
without matching. Matching Os consists in pointing out Os in the Ms and Max from a segment S time series (to be synchronised)
that correspond to the Os in the Ms and Max from the Sr time series, using the tA as the maximal threshold for the time interval
between an O in S and an O in Sr. Matched Os are named as alignment points, As.
4. Compute the correction times between a S time series and the Sr time series. The result is an array c of the differences in
time between each A in S and the corresponding A in Sr. The array describes S’s sensor drift over time.
5. Determine the linear regression that translates each S’s sensor drift over time L, using scikit learn linear model Linear
Regression class (Fan, 2021).
6. Remove the linear regression L element-wise to each S sensor time axis tS.
7. Interpolate correction of each segment data (Sr data included). It searches in time-axes from all the segments data which one
ends up earlier in time, and uses its last point in time, t f , to arrange a vector T starting at 0 and finishing in t f , from 1/ f s to
1/ f s. T is the selected time-axis for all the segments data and it is used to interpolate sensors signals data.
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C.8 Synchronisation Example
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Figure C.5: An example of usage of the synchronisation method for a long-term acquisition (of 2h). The input parameters
chosen were: Accelerometer as Ms and z as Max, h of 16, ”Server” as r, tA of 0.2s and f s of 100Hz. Zoom in into the first (top),
a middle and the last (bottom) As in Accelometer z data, from Server - in turquoise color - and Forearm right - in purple color.
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C.9 OpenSim Files Format Examples

Figure C.6: APDM format file example.

Figure C.7: settings/XML file example.
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Figure C.8: sto. format file example.
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RISK ASSESSEMENT GUIDELINES

Introduction
This document provides the guidelines used to assess the ergonomic risk associated to the work-method of the operators in Volkswagen Autoeuropa automotive assembly lines. These are based on and adapted from the
International Organisation for Standardisation (ISO) norm 11226, used for the evaluation of static working postures, and the pro-forma sheet European Assembly Worksheet (EAWS), used in ergonomic risk rating.

Abbreviations
Henceforth, abbreviations, associated to conditions defined in the ISO
norm and in the EAWS pro-forma sheet, are adopted in the ergonomic
report.

Table 1: Abbreviations adopted in the ergonomic report with regard to
ISO norm and EAWS pro-forma sheet.
Note that bent forward is equivalent to trunk flexion.

Abbreviation Denotation Based on
TSymRot Trunk symmetry - rotation ISO

TSymBend Trunk symmetry - bending ISO
TFlex Trunk flexion ISO

AwkUA Awkward upper arm posture ISO
UAElev Upper arm elevation ISO

ExtElbFE Extreme elbow flexion ISO
ExtElbPS Extreme elbow pronation/supination ISO

ExtWr Extreme wrist posture ISO

U Standing upright EAWS
BF Bent forward - 20◦-60◦ EAWS
BS Strongly bent forward - over 60◦ EAWS

AbduOS Arm abduction over shoulder level EAWS
FlexOS Arm flexion over shoulder level EAWS

OH Hand above head level EAWS
TR Trunk rotation EAWS
TB Trunk bending EAWS
FR Far reach EAWS

SliNS Slightly not symmetric EAWS
MedNS Medium not symmetric EAWS
StrNS Strongly not symmetric EAWS
ExtNS Extreme not symmetric EAWS

S Symmetric EAWS
100R 100% reaching EAWS
80R 80% reaching EAWS
60R 60% reaching EAWS
ND Not described (No reaching) EAWS

UAAbdu Upper arm abduction over 60◦

UAFlex Upper arm flexion over 60◦

ISO Norm 11226 Assessment
The ISO Norm 11226 characterises conditions of the upper body
segments, in terms of static postures, as ”Acceptable” or ”Not
recommended”. Note that being ”Acceptable” or ”Not recommended”,
can depend on the holding time in the static posture, i.e. the duration that
it is maintained.
The ISO Norm’s criteria was considered to be a safe biomechanical
exposure characterisation method. Next, the criteria is outlined for trunk,
upper arm, forearm and hand segments.

Trunk

Table 2: Conditions for trunk postures.
Trunk symmetry criteria applies to trunk rotation and bending.

Posture Condition Characterisation

Trunk Symmetry
Symmetric < 10◦ Acceptable
Slightly Not Symmetric ≥ 10◦ ∧ < 15◦ Acceptable
Medium Not Symmetric ≥ 15◦ ∧ < 25◦ Acceptable
Strongly Not Symmetric ≥ 25◦ ∧ < 30◦ Not Recommended
Extreme Not Symmetric ≥ 30◦ Not Recommended

Trunk Flexion
< 0◦ Not Recommended
≥ 0◦ ∧ > 20◦ Acceptable
≥ 20◦ ∧ ≤ 60◦ Depends on holding time
> 60◦ Not Recommended

RANGES OF CONDITIONS FOR TRUNK POSTURES

Figure 1: Ranges of conditions for trunk postures: trunk symmetry - bend-
ing (top left), trunk flexion (top right) and trunk symmetry - rotation (bot-
tom). Trunk symmetry color scale as symmetric and slightly, medium,
strongly and extreme not symmetric. Trunk flexion color scale as Accept-
able, Not Recommended and Depends on holding time.

The trunk flexion characterisation for trunk flexion static posture

between 20◦ and 60◦ depends on holding time as it follows:
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Figure 2: Holding time, and its respective condition that evaluates a static
posture. The color scale is as Acceptable and Not Recommended.

Upper Arm

Table 3: Conditions for upper arm postures.
Awkward upper arm posture can be:
1) Arm retroflexion, i.e. elbow behind the trunk when viewed from the
side of the trunk;
2) Upper arm adduction, i.e. elbow not visible when viewed from behind
the trunk;
3) Extreme upper arm external rotation (90◦), i.e. in which ”external”
refers to an outward rotation around the longitudinal axis of the upper
arm with respect to the trunk.
Upper arm elevation refers to upper arm flexion or abduction, which is
calculated as the difference between the flexion/abduction angle in the
reference posture and the flexion/abduction angle in the static working
posture.

Posture Condition Characterisation

Awkward Upper Arm Posture
1) Arm retroflexion Not Recommended
2) Upper arm adduction Not Recommended
3) Extreme upper arm external rotation Not Recommended

Upper Arm Elevation
≥ 0◦ ∧ > 20◦ Acceptable
≥ 20◦ ∧ ≤ 60◦ Depends on holding time
> 60◦ Not Recommended
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RANGES OF CONDITIONS FOR UPPER ARM POSTURES

Figure 3: Ranges of conditions for upper arm postures: upper arm abduc-
tion/adduction (top left), upper arm extension/flexion (top right) and upper
arm inward/outward rotation (bottom). Upper arm rotation color scale as
Acceptable. Upper arm abduction/adduction and extension/flexion color
scale as Acceptable, Not Recommended and Depends on holding time.

The upper arm elevation (abduction/flexion) characterisation for upper
arm elevation (abduction/flexion) static posture between 20◦ and 60◦

depends on holding time as in Figure 2.

Forearm and Hand

Table 4: Conditions for forearm and hand postures.
Extreme elbow flexion equals to ≥ 150◦, according to the ISO norm
11226, instead it is used the extreme posture defined in the EAWS (≥
60◦).
Extreme forearm pronation/supination equals to ≥ 90◦/ ≥ 60◦, according
to the ISO norm 11226, instead it is used the extreme posture defined in
the EAWS (≥ 60◦).
Extreme wrist posture is defined in the ISO norm 11226 norm as:
Wrist flexion: ≤ -90◦ (i.e. extension) ∧ ≥ 90◦ (i.e. flexion);
Wrist deviation: ≤ -20◦ ∧ ≥ 30◦;
instead it is used the extreme posture defined in the EAWS as:
Wrist flexion: ≤ -45◦ (i.e. extension) ∧ ≥ 45◦ (i.e. flexion);
Wrist deviation: ≤ -15◦ ∧ ≥ 20◦.

Posture Condition Characterisation

Extreme Elbow Flexion
Elbow flexion < 60◦ Acceptable
Elbow flexion ≥ 60◦ Not Recommended

Extreme Forearm Pronation/Supination
Forearm pronation/supination < 60◦ Acceptable
Forearm pronation/supination ≥ 60◦ Not Recommended

Extreme Wrist Posture
Wrist deviation > -15◦ ∧ < 20◦ Acceptable
Wrist deviation ≤ -15◦ ∧ ≥ 20◦ Not Recommended
Wrist flexion > -45◦ ∧ < 45◦ Acceptable
Wrist flexion ≤ -45◦ ∧ ≥ 45◦ Not Recommended

RANGES OF CONDITIONS FOR FOREARM POSTURES

Figure 4: Ranges of conditions for forearm postures: forearm supina-
tion/pronation (top left) and elbow flexion (bottom right). Elbow flexion
and forearm supination/pronation color scales as Acceptable and Not Rec-
ommended.

RANGES OF CONDITIONS FOR HAND POSTURES

Figure 5: Ranges of conditions for hand postures: wrist extension/flexion
(left) and wrist ulnar/radial deviation (right). Wrist flexion and wrist de-
viation color scales as Acceptable and Not Recommended.
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EAWS Pro-forma Sheet Assessment
The risk score can be computed according to the rating scale proposed in the pro-forma sheet EAWS.
It was implemented an adapted EAWS of the table ”Basic Positions / Postures and movements of trunk and arms (per shift)”, particularly of its section ”Standing (and Walking)”.

BASIC POSITIONS / POSTURES AND MOVEMENTS OF TRUNK AND ARMS (PER SHIFT), STANDING (AND WALKING) SECTION

Figure 6: Basic positions / postures and movements of trunk and arms - standing (and walking) section.
Note that it was not possible to assess conditions of a few postures, such as static postures with support.

The EAWS’s section provides the risk score value for each single condition (row) described in it. Single condition score depends of the percentage of values in data that verify the condition.

SINGLE CONDITIONS

Table 5: Single conditions.

Row Single Condition
2 Standing upright Trunk flexion between 0◦ and 20◦

3 Bent forward Trunk flexion between 20◦ and 60◦

4 Strongly bent forward Trunk flexion over 60◦

5 Arm abduction over shoulder level Standing upright × Upper arm abduction over 60◦

5 Arm flexion over shoulder level Standing upright × Upper arm flexion over 60◦

6 Hand above head level Standing upright × Upper arm flexion over 60◦ × Extreme elbow extension
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Moreover, on section’s right side, there is a part related to combined conditions. Combined condition score depends of the percentage of values in data that verify a condition C, if a single condition is already verified. Besides,
the intensity of the condition C is also rated. Combined condition final score is given by the product of both ”duration” (i.e. percentage of values in data) and intensity of C, as it can be noticed in Figure 7.

RATING SCALE FOR COMBINED CONDITIONS

Figure 7: Rating scale for combined conditions.

COMBINED CONDITIONS

Table 6: Combined conditions entail the evaluation of: trunk symmetry, in terms of rotation and bending, and arm far reaching.
Trunk symmetry is assessed as symmetric or slightly, medium, strongly or extreme not symmetric (can be consulted in Figure 1).
Far reach is determined through the evaluation of the angle between the upper arm and the forearm, e.g. 100% arm far reaching corresponding to the extreme elbow extension (i.e. elbow flexion of 0◦).

Row Column Combined Condition
2 1 Standing upright × Trunk rotation
2 2 Standing upright × Trunk bending
2 3 Standing upright × Far reach
3 1 Bent forward × Trunk rotation
3 2 Bent forward × Trunk bending
3 3 Bent forward × Far reach
4 1 Strongly bent forward × Trunk rotation
4 2 Strongly bent forward × Trunk bending
4 3 Strongly bent forward × Far reach
5 1 Arm abduction over shoulder level × Trunk rotation
5 2 Arm abduction over shoulder level × Trunk bending
5 3 Arm abduction over shoulder level × Far reach
5 1 Arm flexion over shoulder level × Trunk rotation
5 2 Arm flexion over shoulder level × Trunk bending
5 3 Arm flexion over shoulder level × Far reach
6 1 Hand above head level × Trunk rotation
6 2 Hand above head level × Trunk bending

Resources
European Assembly Worksheet: EAWS
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Fraunhofer AICOS
Av. Prof. Gama Pinto 3
1649-003 Lisboa

Operator: 1
Workstation: Doors_Left
Total mean score: 46.0 ± 7.0

ISO Norm 11226 Results

Table 1: ISO Norm 11226 Results. Percentage of values in each cycle, from 0 to N, N being the total number of cycles, in which the condition assessed is within its
Not Recommended range.

TSymRot TSymBend TFlex
left

AwkUA
right

AwkUA
left

UAElev
right

UAElev
left

ExtElbFE
right

ExtElbFE
left

ExtElbPS
right

ExtElbPS
left ExtWr

right
ExtWr

0 44.6% 8.3% 26.4% 29.5% 17.1% 14.2% 15.3% 10.1% 28.2% 24.4% 29.8% 88.6% 37.6%
1 36.0% 15.2% 12.9% 36.0% 27.3% 26.9% 14.0% 8.7% 13.6% 47.0% 4.5% 99.6% 47.3%
2 21.5% 20.7% 16.8% 25.0% 33.2% 26.6% 21.2% 8.2% 57.3% 45.7% 7.3% 61.1% 92.7%

mean 34.0% 14.7% 18.7% 30.2% 25.8% 22.6% 16.8% 9.0% 33.1% 39.0% 13.9% 83.1% 59.2%
std 9.5% 5.1% 5.7% 4.5% 6.6% 5.9% 3.1% 0.8% 18.2% 10.4% 11.3% 16.2% 24.0%

EAWS Pro-forma Sheet Results

Table 2: EAWS Pro-forma Sheet Results. Risk score assign to each condition in EAWS section "Basic positions / postures and movements of trunk and arms -
standing (and walking)", part a). A risk score is given for each cycle data, from 0 to N, N being the total number of cycles.

U BF BS left AbduOS left FlexOS left OH right AbduOS right FlexOS right OH
0 1.0 11.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0
1 1.0 18.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 22.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0

mean 0.7 17.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0
std 0.5 4.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0

Table 3: EAWS Pro-forma Sheet Results. Risk score assign to each condition in EAWS section "Basic positions / postures and movements of trunk and arms -
standing (and walking)", part b), particularly with regard to trunk rotation symmetry evaluation. A risk score is given for each cycle data, from 0 to N, N being the total
number of cycles.

TR x U TR x BF TR x BS
TR x left
AbduOS

TR x left
FlexOS

TR x left OH
TR x right
AbduOS

TR x right
FlexOS

TR x right OH

0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mean 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
std 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4: EAWS Pro-forma Sheet Results. Risk score assign to each condition in EAWS section "Basic positions / postures and movements of trunk and arms -
standing (and walking)", part b), particularly with regard to trunk bending symmetry evaluation. A risk score is given for each cycle data, from 0 to N, N being the
total number of cycles.

TB x U TB x BF TB x BS
TB x left
AbduOS

TB x left
FlexOS

TB x left OH
TB x right
AbduOS

TB x right
FlexOS

TB x right OH

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5: EAWS Pro-forma Sheet Results. Risk score assign to each condition in EAWS section "Basic positions / postures and movements of trunk and arms -
standing (and walking)", part b), particularly with regard to far reach evaluation. A risk score is given for each cycle data, from 0 to N, N being the total number of
cycles.

left FR x U left FR x BF left FR x BS
left FR x left

AbduOS
left FR x left

FlexOS
right FR x U

right FR x
BF

right FR x BS
right FR x

right
AbduOS

right FR x
right FlexOS

0 0.0 8.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 4.0
1 0.0 0.0 8.0 0.0 12.0 0.0 0.0 0.0 0.0 4.0
2 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0

mean 0.0 2.7 3.0 0.0 6.3 0.3 0.3 0.0 0.0 2.7
std 0.0 3.8 3.6 0.0 4.5 0.5 0.5 0.0 0.0 1.9
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Fraunhofer AICOS
Av. Prof. Gama Pinto 3
1649-003 Lisboa

Operator: 1
Workstation: Doors_Left

Appendix

EAWS Pro-forma Sheet Detailed Conditions Percentages

Part a) - Conditions percentages

U BF BS left AbduOS left FlexOS left OH right AbduOS right FlexOS right OH
0 50.5% 23.8% 6.5% 0.5% 2.3% 0.0% 0.0% 4.7% 0.0%
1 48.5% 39.0% 11.7% 1.1% 3.8% 1.1% 0.0% 4.2% 0.4%
2 35.9% 49.2% 13.9% 0.5% 2.2% 0.0% 0.0% 3.0% 0.3%

mean 45.0% 37.3% 10.7% 0.7% 2.8% 0.4% 0.0% 3.9% 0.2%
std 6.5% 10.4% 3.1% 0.3% 0.7% 0.5% 0.0% 0.7% 0.2%

Part b) - Trunk rotation percentages

Table A.1: Trunk Rotation Extreme Not Symmetric. Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x ExtNS BF x ExtNS BS x ExtNS
left AbduOS x

ExtNS
left FlexOS x ExtNS left OH x ExtNS

right AbduOS x
ExtNS

right FlexOS x
ExtNS

right OH x ExtNS

0 22.3% 1.8% 0.0% 0.5% 0.8% 0.5% 0.0% 0.5% 0.0%
1 17.0% 11.0% 0.0% 0.8% 4.5% 1.5% 0.0% 1.9% 0.8%
2 6.2% 6.2% 1.1% 1.9% 1.6% 0.5% 0.0% 2.4% 0.0%

mean 15.2% 6.3% 0.4% 1.1% 2.3% 0.9% 0.0% 1.6% 0.3%
std 6.7% 3.7% 0.5% 0.6% 1.6% 0.5% 0.0% 0.8% 0.4%

Table A.2: Trunk Rotation Strongly Not Symmetric.Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x StrNS BF x StrNS BS x StrNS
left AbduOS x

StrNS
left FlexOS x StrNS left OH x StrNS

right AbduOS x
StrNS

right FlexOS x
StrNS

right OH x StrNS

0 3.6% 0.5% 0.5% 0.0% 0.3% 0.0% 0.0% 0.3% 0.0%
1 3.4% 2.7% 1.1% 0.0% 0.8% 0.0% 0.0% 0.8% 0.0%
2 2.7% 4.3% 0.8% 0.5% 0.8% 0.0% 0.0% 1.4% 0.3%

mean 3.3% 2.5% 0.8% 0.2% 0.6% 0.0% 0.0% 0.8% 0.1%
std 0.4% 1.6% 0.3% 0.3% 0.2% 0.0% 0.0% 0.4% 0.1%

Table A.3: Trunk Rotation Medium Not Symmetric.Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x MedNS BF x MedNS BS x MedNS
left AbduOS x

MedNS
left FlexOS x

MedNS
left OH x MedNS

right AbduOS x
MedNS

right FlexOS x
MedNS

right OH x MedNS

0 6.0% 4.9% 2.8% 0.0% 3.1% 0.0% 0.0% 4.1% 0.3%
1 11.0% 10.6% 3.4% 0.0% 6.8% 1.5% 0.0% 3.0% 1.5%
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2 6.5% 9.5% 3.5% 0.5% 4.9% 0.0% 0.0% 4.3% 0.3%
mean 7.8% 8.3% 3.3% 0.2% 4.9% 0.5% 0.0% 3.8% 0.7%

std 2.2% 2.5% 0.3% 0.3% 1.5% 0.7% 0.0% 0.6% 0.6%

Table A.4: Trunk Rotation Slightly Not Symmetric.Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x SliNS BF x SliNS BS x SliNS left AbduOS x SliNS left FlexOS x SliNS left OH x SliNS
right AbduOS x

SliNS
right FlexOS x

SliNS
right OH x SliNS

0 6.2% 5.7% 1.0% 0.3% 2.1% 0.5% 0.0% 3.4% 1.0%
1 6.4% 4.9% 2.7% 0.4% 5.3% 1.5% 0.0% 3.0% 1.1%
2 4.1% 9.2% 4.3% 0.3% 4.6% 0.0% 0.0% 3.0% 0.3%

mean 5.6% 6.6% 2.7% 0.3% 4.0% 0.7% 0.0% 3.1% 0.8%
std 1.1% 1.9% 1.4% 0.1% 1.4% 0.6% 0.0% 0.2% 0.4%

Table A.5: Trunk Rotation Symmetric.Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x S BF x S BS x S left AbduOS x S left FlexOS x S left OH x S right AbduOS x S right FlexOS x S right OH x S
0 12.4% 10.9% 2.1% 0.3% 5.7% 1.8% 0.0% 5.2% 2.6%
1 10.6% 9.8% 4.5% 0.0% 6.8% 0.4% 0.0% 3.4% 0.8%
2 16.3% 19.8% 4.1% 0.0% 9.2% 1.6% 0.0% 6.0% 1.9%

mean 13.1% 13.5% 3.6% 0.1% 7.3% 1.3% 0.0% 4.9% 1.8%
std 2.4% 4.5% 1.1% 0.1% 1.5% 0.6% 0.0% 1.1% 0.8%

Part b) - Trunk bending percentages

Table A.6: Trunk Bending Extreme Not Symmetric. Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x ExtNS BF x ExtNS BS x ExtNS
left AbduOS x

ExtNS
left FlexOS x ExtNS left OH x ExtNS

right AbduOS x
ExtNS

right FlexOS x
ExtNS

right OH x ExtNS

0 0.3% 3.6% 0.5% 0.3% 1.0% 0.3% 0.0% 1.6% 0.0%
1 0.8% 8.7% 1.1% 0.0% 6.4% 0.4% 0.0% 1.5% 0.0%
2 1.6% 8.7% 1.6% 0.8% 4.6% 0.0% 0.0% 3.3% 0.0%

mean 0.9% 7.0% 1.1% 0.4% 4.0% 0.2% 0.0% 2.1% 0.0%
std 0.6% 2.4% 0.5% 0.3% 2.2% 0.2% 0.0% 0.8% 0.0%

Table A.7: Trunk Bending Strongly Not Symmetric.Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x StrNS BF x StrNS BS x StrNS
left AbduOS x

StrNS
left FlexOS x StrNS left OH x StrNS

right AbduOS x
StrNS

right FlexOS x
StrNS

right OH x StrNS

0 1.0% 2.8% 0.0% 0.0% 0.5% 0.0% 0.0% 1.0% 0.0%
1 1.9% 2.3% 0.4% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0%
2 1.1% 6.8% 0.8% 0.0% 2.4% 0.0% 0.0% 0.8% 0.0%

mean 1.3% 4.0% 0.4% 0.0% 1.1% 0.0% 0.0% 0.6% 0.0%
std 0.4% 2.0% 0.3% 0.0% 0.9% 0.0% 0.0% 0.4% 0.0%

Table A.8: Trunk Bending Medium Not Symmetric.Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x MedNS BF x MedNS BS x MedNS
left AbduOS x

MedNS
left FlexOS level x

MedNS
left OH x MedNS

right AbduOS x
MedNS

right FlexOS level x
MedNS

right OH x MedNS

0 4.7% 3.9% 1.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.5%
1 4.9% 9.1% 5.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%
2 3.8% 11.4% 1.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5%

mean 4.5% 8.1% 2.7% 0.0% 0.0% 0.1% 0.0% 0.0% 0.5%
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std 0.5% 3.1% 1.8% 0.0% 0.0% 0.1% 0.0% 0.0% 0.1%

Table A.9: Trunk Bending Slightly Not Symmetric.Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x SliNS BF x SliNS BS x SliNS left AbduOS x SliNS
left FlexOS level x

SliNS
left OH x SliNS

right AbduOS x
SliNS

right FlexOS level x
SliNS

right OH x SliNS

0 5.4% 3.9% 1.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1 4.9% 8.7% 3.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 4.6% 4.9% 1.1% 0.3% 0.0% 0.3% 0.0% 0.0% 0.3%

mean 5.0% 5.8% 2.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.1%
std 0.3% 2.1% 0.8% 0.1% 0.0% 0.1% 0.0% 0.0% 0.1%

Table A.10: Trunk Bending Symmetric.Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x S BF x S BS x S
left AbduOS

x S
left FlexOS

level x S
left OH x S

right
AbduOS x S

right
FlexOS level

x S
right OH x S

left FlexOS
x MedNS

left FlexOS
x SliNS

left FlexOS
x S

right
FlexOS x
MedNS

right
FlexOS x

SliNS

right
FlexOS x S

0 39.1% 9.6% 3.1% 0.8% 0.0% 2.3% 0.0% 0.0% 3.4% 1.8% 2.6% 6.0% 1.8% 1.6% 7.5%
1 36.0% 10.2% 1.9% 1.1% 0.0% 4.5% 0.0% 0.0% 3.8% 6.8% 3.4% 7.2% 3.4% 1.9% 5.3%
2 24.7% 17.4% 8.4% 2.2% 0.0% 1.9% 0.0% 0.0% 1.9% 3.5% 1.4% 9.2% 1.9% 1.4% 9.8%

mean 33.3% 12.4% 4.5% 1.4% 0.0% 2.9% 0.0% 0.0% 3.0% 4.1% 2.5% 7.5% 2.4% 1.6% 7.5%
std 6.2% 3.5% 2.8% 0.6% 0.0% 1.2% 0.0% 0.0% 0.8% 2.1% 0.8% 1.4% 0.7% 0.2% 1.8%

Part b) - Far reach percentages

Table A.11: Far Reach Not Described. Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x left FR - ND U x right FR - ND BF x left FR - ND
BF x right FR -

ND
BS x left FR - ND

BS x right FR -
ND

left AbduOS x left
FR - ND

left FlexOS level x
left FR - ND

right AbduOS x
right FR - ND

right FlexOS level
x right FR - ND

0 3.1% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0%
1 4.5% 1.5% 0.8% 0.0% 0.0% 0.0% 0.8% 0.4% 0.0% 0.0%
2 2.2% 1.4% 0.5% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

mean 3.3% 1.0% 0.6% 0.1% 0.0% 0.0% 0.3% 0.2% 0.0% 0.0%
std 1.0% 0.7% 0.1% 0.1% 0.0% 0.0% 0.4% 0.2% 0.0% 0.0%

Table A.12: Far Reach of 60% Reaching. Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x left FR - 60R U x right FR - 60R BF x left FR - 60R
BF x right FR -

60R
BS x left FR - 60R

BS x right FR -
60R

left AbduOS x left
FR - 60R

left FlexOS level x
left FR - 60R

right AbduOS x
right FR - 60R

right FlexOS level
x right FR - 60R

0 3.9% 17.6% 3.1% 5.7% 0.0% 1.3% 0.3% 0.0% 0.0% 1.8%
1 6.4% 11.0% 2.3% 10.6% 0.0% 3.0% 0.0% 0.4% 0.0% 1.1%
2 8.7% 14.9% 6.5% 19.6% 1.1% 7.9% 0.0% 2.4% 0.0% 6.8%

mean 6.3% 14.5% 4.0% 12.0% 0.4% 4.1% 0.1% 0.9% 0.0% 3.2%
std 2.0% 2.7% 1.8% 5.7% 0.5% 2.8% 0.1% 1.1% 0.0% 2.5%

Table A.13: Far Reach of 80% Reaching. Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x left FR - 80R U x right FR - 80R BF x left FR - 80R
BF x right FR -

80R
BS x left FR - 80R

BS x right FR -
80R

left AbduOS x left
FR - 80R

left FlexOS level x
left FR - 80R

right AbduOS x
right FR - 80R

right FlexOS level
x right FR - 80R

0 9.1% 8.3% 4.4% 6.7% 1.3% 2.3% 0.0% 1.8% 0.0% 2.6%
1 9.1% 10.6% 8.0% 9.1% 0.8% 3.8% 0.4% 3.4% 0.0% 2.7%
2 13.3% 10.3% 19.8% 17.4% 6.2% 4.1% 0.0% 9.0% 0.0% 6.0%

mean 10.5% 9.7% 10.7% 11.1% 2.8% 3.4% 0.1% 4.7% 0.0% 3.7%
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std 2.0% 1.0% 6.6% 4.6% 2.5% 0.8% 0.2% 3.1% 0.0% 1.6%

Table A.14: Far Reach of 100% Reaching. Percentage of values in each cycle, from 0 to N, N being the total number of cycles.

U x left FR -
100R

U x right FR -
100R

BF x left FR -
100R

BF x right FR -
100R

BS x left FR -
100R

BS x right FR -
100R

left AbduOS x
left FR - 100R

left FlexOS x
left FR - 100R

right AbduOS
x right FR -

100R

right FlexOS x
right FR - 100R

left FlexOS
level x left FR -

100R

right FlexOS
level x right FR

- 100R
0 34.5% 24.6% 15.8% 11.4% 5.2% 2.8% 0.8% 0.0% 0.0% 0.0% 9.8% 9.1%
1 28.4% 25.4% 28.0% 19.3% 11.0% 4.9% 0.0% 0.0% 0.0% 0.0% 20.1% 8.3%
2 11.7% 9.2% 22.3% 12.0% 6.5% 1.9% 3.3% 0.0% 0.0% 0.0% 9.8% 4.3%

mean 24.8% 19.7% 22.0% 14.2% 7.6% 3.2% 1.3% 0.0% 0.0% 0.0% 13.2% 7.2%
std 9.6% 7.4% 5.0% 3.6% 2.5% 1.3% 1.4% 0.0% 0.0% 0.0% 4.8% 2.1%

C
.12

IndividualE
rgonom

ic
R

eportE
xam

ple

125



126



D. Results and Discussion

D.1 Self-Report Results

2. A minha perceção do esforço para cada uma das regiões corporais, é:

Creation date: 07.05.21 | Responsible department for filing: AGIP | CSD-Class: 0.2 – 4 years14

Resultados do Questionário

Exaustivo

Muito intenso

Intenso

Moderadamente 
intenso

Moderado

Moderadamente leve

Leve

Muito leve

Muito, muito leve

Demasiado leve

Repouso

Rear end 

Esq.

Rear end 

Dto.
Front End Pre-fit SBBR1 Esq. SBBR1 Dto. Portas Esq. Portas Dto. MPV

Pescoço

Reg. dorsal

Reg. lombar

Ombros

Braços

Cotovelos

Punhos/Mãos

Anca

Coxas

Joelhos

Tornezelos/pés

H2 H3 H4
Escala de Borg
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Cotovelos
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Resumo

Figure D.1: Summary results of a self-reported ergonomic assessment, conducted by Volkswagen Autoeuropa.
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D.2 Dataset

Table D.1: Study participants’ characteristics values.

Id Study
scenario

Activity URQ Gender Age
(years)

Height
(cm)

Weight
(kg)

Shoe
size
(cm)

Hip
height
(cm)

Arm
span
(cm)

Ankle
height
(cm)

Knee
height
(cm)

Shoulder
width
(cm)

Worker 1 field Doors C M 38 203 95 34,2 113,7 180,2 13,5 55,1 45,5
Worker 2 field Doors C M 39 177 77 30,7 101,2 168,5 11,4 53,2 40,3
Worker 3 field Doors Right C M 30 178 79 30,6 97,6 165,1 11,3 48,3 41,6
Worker 4 field Prefit SBBR Right Left B M 38 184 78 33,3 110,3 173,2 13,1 48,9 45,2
Worker 5 field Rear and Front End A M 36 169 65 26,9 94,8 164,8 9,4 53,6 37,9
Worker 6 field Rear and Front End A M 47 170 76 30,4 98,2 170,4 11,9 53,2 42,6
Worker 7 field Doors C M 40 173 75 29,9 91,1 167,5 11,7 50,9 42,7
Worker 8 field Prefit SBBR Right Left B M 42 170 78 29,1 83,9 166,3 12,5 47,4 44,4
Worker 5 field Prefit B M 36 169 65 26,9 94,8 164,8 9,4 53,6 37,9
Worker 9 field Rear and Front End A M 47 180 92 30,4 98,2 181,8 10,4 55,1 38,1
Participant 1 laboratory Functional & Simulation - M 26 183,5 83 30,4 102,4 185,1 10,8 55,4 39,1
Participant 2 laboratory Functional & Simulation - M 27 187 97 32,1 103,3 192,7 11,1 58,4 42,6
Participant 3 laboratory Functional & Simulation - F 31 171 55 26,1 104,4 170 10,4 54,6 32,1
Participant 4 laboratory Functional & Simulation - M 34 185 72 29,4 105,4 182,8 10,9 53,2 36,9
Participant 5 laboratory Functional & Simulation - M 24 183 75 29,1 104,9 183,1 10,8 56,1 38,1
Participant 6 laboratory Functional & Simulation - F 22 164 48 26,2 93,5 164 10 46,8 34,4
Participant 7 laboratory Functional & Simulation - M 23 162 55 27,1 89,1 171,1 9,4 45,6 33,9
Participant 8 laboratory Functional & Simulation - M 23 162 55 27,1 89,1 171,1 9,4 45,6 33,9
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D.2 Dataset

D.2.1 Summary Statistics

Table D.2: Study participants’ characteristics values summary statistics.

Characteristic Study Scenario Counts Mean Std Min 5% 50% 95% Max
Male/Female laboratory 6/2 - - - - - - -
Male/Female field 9/0 - - - - - - -
Age (years) laboratory - 26,6 4,1 22 22,35 26 32,95 34
Age (years) field - 39,7 5,3 30 32,4 39 47 47
Height (cm) laboratory - 177,6 10,2 162 162,7 183,3 186,3 187
Height (cm) field - 178,2 10,6 169 169,4 177 195,4 203
Weight (kg) laboratory - 70,9 16,9 48 50,5 73,5 92,1 97
Weight (kg) field - 79,4 9 65 69 78 93,8 95
Shoe size (cm) laboratory - 29,0 2,4 26,1 26,1 29,3 32 32,1
Shoe size (cm) field - 30,6 2,1 26,9 27,8 30,4 33,8 34,2
Hip height (cm) laboratory - 100,7 6 89,1 90,6 103,1 105,2 105,4
Hip height (cm) field - 98,8 9,1 83,9 86,8 98,2 112,3 113,7
Arm span (cm) laboratory - 179,9 10,3 164 166,1 183 191,8 192,7
Arm span (cm) field - 170,9 6,3 164,8 164,9 168,5 181,2 181,8
Ankle height (cm) laboratory - 10,4 0,6 9,4 9,6 10,6 11,03 11,1
Ankle height (cm) field - 11,7 1,3 9,4 9,8 11,7 13,3 13,5
Knee height (cm) laboratory - 53,4 4,8 45,6 46 55 58,1 58,4
Knee height (cm) field - 51,7 3 47,4 47,8 53,2 55,1 55,1
Shoulder width (cm) laboratory - 36,6 3,3 32,1 32,7 36,3 41,4 42,6
Shoulder width (cm) field - 42,0 2,8 37,9 38 42,6 45,4 45,5
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