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Abstract 41 

Cities are challenging environments for human life, because of multiple environmental issues driven 42 

by urbanization. These can sometimes be mitigated through ecosystem services provided by different 43 

functions supported by biodiversity. However, biodiversity in cities is affected by numerous factors, 44 

namely habitat loss, degradation, and fragmentation, as well as pollution, altered climate, and new 45 

biotic challenges. To better understand the link between biodiversity and ecosystem functions and 46 

services, we need to improve our mechanistic knowledge of these relationships. Trait-based ecology 47 

is a promising approach for unravelling the causes and consequences of biodiversity filtering on 48 

ecosystem processes and underlying services, but large gaps remain unexplored. 49 

Here, we present a series of research directions that are aimed at extending the current knowledge 50 

of the relationship between trait-based biodiversity and ecosystem functions and services in cities. 51 

These directions are based on: (1) improving urban habitat mapping; (2) considering often neglected 52 

urban habitats and ecological niches; (3) integrating multiple urban gradients; (4) using trait-based 53 

approaches to improve our mechanistic understanding of the relationships between biodiversity and 54 

ecosystem functions and services; and (5) extending the involvement of citizens. 55 

Pursuing these research directions may support the sustainable management of urban ecosystems 56 

and the long-term provision of ecosystem services, ultimately enhancing the well-being of urban 57 

populations.  58 

  59 
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Introduction 60 

Humans and their activities have been transforming the Earth and its ecosystems in multiple ways, 61 

including alterations of the landscape, disturbance regimes, species distributions and interactions 62 

(Boivin et al. 2016). Urbanization is one such global trend within the Anthropocene, impacting people, 63 

biodiversity and consequently ecosystem functions (EF) and services (ES). 64 

Cities are socio-ecological systems mostly dominated by the grey infrastructure (built-up area, 65 

including buildings and roads) and the green and blue infrastructure, which include all natural, semi-66 

natural and artificial (i.e. entirely human-made) habitats within a city, such as parks, rivers and green-67 

roofs. Despite their socio-economic benefits, urban areas are a challenging environment for city-68 

dwellers (Engemann et al. 2019). For instance, cities typically have higher temperatures and more air 69 

pollution than rural areas (Munzi et al. 2014). To mitigate these urban problems, cities can rely on a 70 

mixture of technological and nature-based solutions to provide key services , including climate and 71 

water regulation, noise reduction, air filtration and recreational and aesthetic value (Diaz et al. 2018; 72 

IPBES 2019; Capotorti et al. 2019). Recently, the added value of green spaces to ameliorate the 73 

multiple negative impacts of pandemic situations (such as the CoVid-19) on human well-being is being 74 

heighted by a sharp increase in visitation to such green areas (Grima et al., 2020). Nature-based 75 

solutions are intended to benefit both people and nature, with the added advantage of promoting 76 

biodiversity and fostering cities as socio-ecologically resilient systems (Elmqvist et al. 2019).  77 

Biodiversity faces multiple challenges in cities, including habitat fragmentation and high spatio-78 

temporal disturbances when compared to non-urban areas. Changes in biodiversity and species 79 

composition due to these stressors often cascade down to shifts in EF and ES provisioning, including 80 

the potential loss of key ES (e.g., Tresch et al. 2019b). These stressors can also impact species 81 

composition with knock-on effects on ES provisioning due to species-specific responses depending on 82 

species traits, for example causing a decline in pollination service (measured by flower visitation) 83 

through favouring Hymenoptera in cities compared to Diptera and Lepidoptera (Theodorou et al. 84 
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2020). The need for ES provisioning differs across cities, depending on cultural, political, socio-85 

economical, and historical aspects, as well as topographic, climatic, and geological conditions (Ossola 86 

et al. 2019). Nonetheless, biodiversity is universally shaped by a set of factors that filter the regional 87 

species pool and select for adapted species that might result in functionally similar species 88 

assemblages (Fournier et al. 2020). In this regard, research approaches based on traits, i.e. phenotypic 89 

features of organisms that affect their fitness (Violle et al. 2007), have been proposed. Still, the relative 90 

contribution of different components of biodiversity and the mechanisms behind the provision of ES 91 

remains understudied (Schwarz et al. 2017). Moreover, studies about urban ecology, as in other fields 92 

of ecology (Meyer et al. 2016), have some major spatial and taxonomic biases. Many studies can only 93 

cover a subset of the existing ecological components (e.g. through targeting specific habitats or times 94 

of the day) and taxonomic groups, ultimately limiting the knowledge on the relationship between 95 

biodiversity and EF.  96 

Since cities are socio-ecological systems driven by human perceptions and needs, citizen science 97 

programs can provide important contributions to biodiversity data and promote awareness among 98 

city residents. Citizen science programs could ultimately help fill gaps in the knowledge of species’ 99 

distributions and their relationships to ES in cities (Serret et al. 2019). To overcome these knowledge 100 

gaps a comprehensive overview on trait-based biodiversity EF and ES research in cities is needed as a 101 

solid basis for future research agendas including academic and citizen sciences approaches. Building 102 

on extensive literature research focussed on the relationships between biodiversity, EF and ES 103 

provision, and on the questions raised during the development of the European research project 104 

BioVeins (Connectivity of green and blue infrastructures: living veins for biodiverse and healthy cities, 105 

BiodivERsA3201510), we identified multiple knowledge gaps for biodiversity, EF and ES research in 106 

cities. Acknowledging that these gaps could be tackled using an approach based on the quantification 107 

of EF and ES and their relationships with biodiversity, and with the ultimate objective of promoting 108 

resilient cities, we present a series of research directions that point towards: (1) improving urban 109 

habitat mapping; (2) considering neglected urban habitats and ecological niches; (3) integrating 110 
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multiple urban environmental gradients; (4) using trait-based approaches to improve our mechanistic 111 

understanding of biodiversity and its relationship with EF and ES; and (5) extending the involvement 112 

of citizens in biodiversity, EF and ES research. A conceptual scheme of the research agenda is 113 

presented in Fig. 1. 114 

  115 

Research agenda to assess biodiversity, EF and ES in cities 116 

Improving urban habitat mapping 117 

Urban biodiversity research needs detailed knowledge of the habitat types and their spatial 118 

distribution in cities. Habitat composition in the Natura 2000 network of protected areas is being 119 

characterized through a coordinated effort at the European level (EC 2020), but this work remains 120 

limited to case studies and does not provide extensive mapping of urban areas. Some cities, such as 121 

Zurich or Paris, map their habitats at a very fine spatial resolution, and city-scale studies can make use 122 

of these resources. However, thematic and temporal resolutions are not compatible, and standard 123 

habitat mapping is currently not available at the European level (Kabisch et al. 2016). Although the 124 

European Urban Atlas (EEA 2012) uses a consistent set of rules for mapping, its habitat definition is 125 

limited to only three classes: ‘Green Urban Areas’, ‘Forest’, and ‘Herbaceous Vegetation Association’, 126 

and it omits key attributes, such as vegetation structure and management, which are critical for linking 127 

them to biodiversity (Pinho et al. 2016) and ES provisioning (Mexia et al. 2018). Moreover, small 128 

habitat patches, such as green roofs and walls, flower beds and domestic gardens, as well as linear 129 

elements, such as green belts and ecotones, are often omitted even though they are novel urban 130 

habitats with critical features for biodiversity and ES provision (Hand et al. 2017).  131 

Remote sensing data can be an important source for mapping urban land use. Unlike land-cover maps, 132 

remote sensing data is continuous over space, can be continuously updated, and has been used in 133 

urban areas to assess e.g. carbon stocks, urban heat island hotspots (Dobbs et al. 2018) and patterns 134 
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of urban biodiversity (Pellissier et al. 2017). An added value of remote sensing is that it enables rapid 135 

collection of data that can be used for monitoring and as part of an early warning system, i.e. signalling 136 

areas that are currently unchanged but that are likely to undergo changes in the future, such as 137 

drought-induced tree mortality, based on time-series analysis (Yanlan et al. 2019). This area of 138 

research remains unexplored regarding biodiversity changes. 139 

To avoid the pitfalls of using linear city-centre to peri-urban gradients to characterize polycentric cities 140 

(Ramalho et al. 2012), future studies should consider the characteristics of each habitat patch and its 141 

surroundings, irrespective of its geographical position and distance from the city centre. This can be 142 

done, for example, by stratifying sampling to the environmental factor of interest or to a proxy of 143 

environmental factors (e.g. dense urban landcover as a proxy for air pollution) (Pinho et al. 2016). 144 

Future work using spatially complete analyses (Pinho et al. 2008) could provide further insights into 145 

species-specific mechanisms (such as dispersion) or the spatial structure of underlying socio-ecological 146 

factors (such as management intensity, urban heat-island effect and equity in the distribution of ES). 147 

 148 

Research directions - urban habitat mapping: 

1. Create ecologically meaningful habitat-based maps of cities, including the full range of land uses, 

management strategies and habitat sizes. 

2. Use remote sensing data series to create a spatially complete and temporally replicated sampling 

design, enabling better characterization of urban habitats and long-term processes. 

 149 

Considering neglected urban habitats and ecological niches 150 

Typically, urban areas contain three main land cover types: artificial built-up area, e.g. houses and 151 

roads (grey infrastructure), terrestrial and aquatic habitats (green and blue infrastructures, 152 

respectively). Although these land covers are intermingled in cities in space and time, they are often 153 
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studied separately regarding: (1) their identity (green, blue, grey); (2) their vertical distribution (above 154 

vs. below the surface), (3) the time of day when the investigation occurs (day vs. night) and (4) 155 

typology (e.g. green roof vs. meadow). However, urban habitats are perceived and used by most 156 

animals as a continuum, since they often depend on more than one habitat to complete their life cycle 157 

or to perform important activities, such as reproduction, nesting, and foraging (Colding 2007). 158 

Moreover, it is important not to minimize the importance of the below-ground habitat to many 159 

organisms, including bacteria, arthropods, fungi, and snails. Belowground biodiversity is tightly 160 

connected with the aboveground compartment through processes such as leaf litter decomposition, 161 

nutrient exchange, and soil formation. Participating in shaping primary productivity, the roles of 162 

belowground biodiversity thus cascades into the next trophic levels, ultimately determining other ES 163 

such as pest control, pollination, and food production (Tresch et al. 2019a). Such nutrient and energy 164 

transfers across neighbouring habitats are expected to be intense but remain largely unexplored.  165 

Day and night provide two contrasting habitat spaces and ecological niches for nocturnal and diurnal 166 

organisms. Nocturnal habitats are key for species such as bats, ground-dwelling arthropods, moths 167 

and a myriad of other insects that carry out a range of under-studied ES in cities, such as pollination 168 

of night-flowering plants (Knop et al. 2017) and pest control. While other animals such as birds share 169 

the same space during the day, only by looking at both, nocturnal and diurnal organisms, we can have 170 

a complete perspective on the local food webs (Villarroya-Villalba et al. 2021).  171 

To balance the impossibility of investigating all ecological niches and habitats during the whole life 172 

cycle of organisms, we can focus on traits related to daily and annual activity time, voltinism (number 173 

of generations an organism completes within a year), and ontogeny (the developmental history of an 174 

organism during its lifetime; see Moretti et al. (2017) for terrestrial invertebrates, Pérez-Harguindeguy 175 

et al. (2013) for plants, and Dawson et al. (2019) for fungi). Moreover, by investigating trait variation 176 

at the individual rather than species level, one could consider phenotypic plasticity and possible 177 

adaptations to the particular environmental conditions in cities, thereby shedding light on important 178 
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eco-evolutionary mechanisms that need to be explored further at the genetic level (Uchida et al., 179 

2021). 180 

Research directions - neglected habitats and niches:  

1. Use trait-based approaches to understand species’ responses to unexplored niches and to 

compare responses across taxa, cities and regions. 

2.  Investigate intraspecific trait variability to quantify phenotypic plasticity and adaptations to the 

urban environmental conditions. 

 181 

Integrating multiple environmental gradients  182 

The processes related to urbanization are associated with a multitude of socio-ecological drivers, such 183 

as the management intensity of green areas, air, light, and noise pollution, and climatic conditions 184 

(temperature, humidity). Because these drivers act simultaneously with different spatio-temporal 185 

dynamics, it is increasingly important to study their effects jointly to identify potential non-additive 186 

effects on EF and trade-offs on ES. 187 

Urban green space management (e.g. plant and vegetation composition, configuration, structure, and 188 

management) affects biodiversity and EF, and can cause trade-offs on ES provision. For example, slow-189 

growing, open-crowned trees such as oaks and maples can increase the aesthetic value and 190 

microclimate regulation more than fast-growing narrow-crowned trees (de Abreu-Harbich et al. 2015), 191 

but these effects can be limited during the cold season due to leaf loss, in comparison with evergreen 192 

species. Differences among vegetation traits and species composition also affect leaf litter 193 

(de)composition, which, in turn, affects environmental conditions for ground-dwelling organisms and 194 

their associated ES, such as protection against soil erosion (Li et al. 2014), habitat provision for 195 

biodiversity (Smith et al. 2014), organic matter decomposition, and nutrient cycling (Tresch et al. 196 

2019a).  197 
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Choices of plant species featuring specific traits by both home gardeners and by managers of public 198 

green spaces, has major impacts on biodiversity and multi-trophic interactions. For instance, replacing 199 

intensively managed lawns with extensively managed meadows has been shown to enhance pollinator 200 

diversity (Baldock et al. 2019) and cultural services (Home et al. 2019), but meadows are less suitable 201 

for other recreational activities and may increase a sense of insecurity in people (Home et al. 2019, 202 

Fischer et al. 2020). An unintended consequence of plant selection by gardeners and managers of 203 

public green spaces is the introduction of exotic and potentially invasive species, and the associated 204 

animals (such as herbivore insects) and pathogens (such as fungi and bacteria). While cultivar and 205 

exotic species provide ES and may benefit native biodiversity, especially under extensive management 206 

and appropriate densities and distributions (Ramírez-Cruz et al. 2019), the risk of species becoming 207 

invasive must not be minimized, even if these species are particularly appreciated by people, e.g. for 208 

their aesthetic value (Marija et al. 2020). Consequences of invasive species may include e.g. being 209 

diseases vectors and homogenizing the biotic communities (see Gaertner et al., 2017). One important 210 

open question is whether exotic and invasive species traits ranges fall within the native species ranges  211 

(Finerty et al. 2016) and what are the consequences to Es and EF. 212 

Vegetation can mitigate the effects of urban pollution (e.g. air pollution, Grote et al. 2016, Matos et 213 

al. 2019) but is simultaneously affected by it. For instance, tree morphological, physiological and 214 

phenological traits influence the removal of tropospheric ozone (Manes et al. 2012), while volatile-215 

emitting species can contribute to air pollution, providing an ecosystem disservice (Uan et al. 2020). 216 

At the same time, reduced air pollution in European cities (EEA 2018) has positively influenced 217 

sensitive taxa, such as lichens, and nitrogen-tolerant species have recolonized cities after the decline 218 

in SO2 (Van Dobben & ter Braak 1998). Nonetheless, water, noise and light pollution are still high in 219 

many urban areas (Gaston & Holt 2018), impacting biodiversity by adding additional environmental 220 

filters (Aronson et al. 2016). However, we have limited knowledge of how changing pollution levels 221 

can affect the assembly of urban species (by modifying extinction and colonization rates) and 222 

subsequently the ES provided. For example, the shift towards electric vehicles will likely decrease the 223 
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emissions of NOx in cities. This in turn could potentially reduce acidification and eutrophication, boost 224 

the biodiversity of plant communities, and increase the associated ES (Jones et al. 2014). 225 

The urban heat-island effect, i.e. the higher temperature observed in cities than in surrounding rural 226 

areas, selects for heat- and drought-tolerant species (Fournier et al. 2020; Piano et al. 2017) and 227 

increases primary productivity (Shochat et al. 2006), with possible effects on biotic interactions, leaf 228 

litter decomposition (Jochner & Menzel 2015; Tresch et al. 2019a) and tree transpiration (Zölch et al. 229 

2016). There are several open questions regarding the effects of climate change superimposed on 230 

local urban heat-island effects (Grilo et al. 2020), with birds and plants showing contrasting responses 231 

between species (Wohlfahrt et al. 2019). 232 

All the environmental factors listed above act simultaneously on urban biodiversity and associated EF 233 

and ES. Their joint effects remain understudied but could be effectively explored by using both an 234 

adequate sampling design (de Keyzer et al. 2017) and a trait-based approach. The latter may allow us 235 

to identify and predict which socio-ecological filtering mechanisms drive species assembly and key ES 236 

in urban areas.  237 

 238 

Research directions - multiple environmental gradients:  

1. Quantify the multiple environmental drivers of biodiversity and EF, and the trade-offs on ES, 

considering the ecological, cultural, social, and economic dimensions.  

2. Assess the new species assemblages, including exotic species,  and individual adaptations 

resulting from changing environmental conditions, including ongoing climate change 

superimposed on the urban heat-island effect, and its consequences for ES. 

 239 

 240 
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Using trait-based approaches to improve our mechanistic understanding of biodiversity 241 

relationships with EF and ES  242 

Trait-based approaches make it possible to identify biotic, abiotic and socio-cultural control 243 

mechanisms acting on community assemblages and the resulting consequences for EF within and 244 

across trophic levels (Diaz et al. 2007), as well as synergies and trade-offs among ES associated with 245 

the traits involved (Lavorel & Grigulis 2012). Syntheses of empirical studies conducted in non-urban 246 

systems have shown that both trait dominance and trait complementarity, although not mutually 247 

exclusive (Dias et al. 2013), can be important drivers of EF and ES. As socio-ecological systems, cities 248 

challenge our traditional understanding of how species assemblages are filtered and how this, in turn, 249 

influences ecosystem functioning, stability and service delivery (Aronson et al. 2016). Which traits and 250 

functional components of biodiversity drive EF and ES, and how these can be translated into planning 251 

and management guidelines that can be implemented in restoration or conservation activities remains 252 

unknown (Luederitz et al. 2015, Schwarz et al. 2017). For example, what type of socio-ecological filters 253 

are working during a pandemic situation and that lead people to visit more a given green space than 254 

other (Grima et al., 2020) remains unexplored. Investigation of the types of filters, traits and functional 255 

components (including those related to socio-economic factors) could therefore unravel the 256 

mechanisms linking biodiversity with EF and ES in cities. By understanding these mechanisms 257 

predictions of ES under global change and restoration strategies could be improved, e.g. by promoting 258 

species assemblages that are able to provide the desired ES (Laughlin 2014). 259 

Recent studies have highlighted the importance of long-term research (Weisser et al. 2017). While 260 

species composition is temporally variable (e.g. due to stochastic processes), functionally redundant 261 

species may be abundant in different years, thereby contributing to the overall stability of EF and ES 262 

(Isbell et al. 2011; Winfree et al. 2018). Thus, research conducted over long timescales and multi-263 

service provision is an important research direction, due to their paramount importance to 264 

understand ecosystem resilience in ES provisioning.  265 
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 266 

Research directions - trait-based approaches:  

1. Identify relevant socio-environmental filters, species traits and functional components to unravel 

the mechanisms linking biodiversity and EF with ES. 

2. Identify traits that will become important given future global changes and include them in studies 

and restoration and conservation guidelines. 

 267 

Involving citizens in biodiversity, EF and ES research  268 

Public participation is the involvement of stakeholders (mostly citizens) in public consultations or 269 

scientific inquiries and ranges from information exchanges to active decision-making processes 270 

(Ambrose-Oji et al. 2017). Citizen scientists can become involved in management and conservation 271 

and often improve their urban ecology knowledge in doing so (Deguines et al. 2018, 2020). Citizen 272 

science projects target a broad range of taxa (vertebrates, invertebrates, plants, bacteria, fungi, and 273 

protozoa) in many marine and terrestrial ecosystems, many of which are normally inaccessible, such 274 

as private gardens. Citizen scientists can also investigate and map the (spatio-temporal dynamics of) 275 

urban filters such as air pollution and air temperature (Sauermann et al. 2020). Cities encompass most 276 

of the world’s human population; consequently, enhancing the collection of data on urban biodiversity 277 

in future projects using citizen science will improve the ability of citizens and policy-makers to respond 278 

to a wide range of ecological and environmental questions related to e.g. air quality, climate change, 279 

invasive species, conservation biology, population ecology, ecosystem functioning, and ecosystem 280 

service delivery by increasing the number and size of datasets (Silvertown 2009; Martin et al. 2019). 281 

Thus, the involvement of citizens in observing and sampling biodiversity has expanded to the fields of 282 

urban governance and planning (Buijs et al. 2016), often driven by global and national policy agendas 283 

(e.g. EC 2013, UN-HABITAT 2016). 284 
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The usefulness of citizen science projects in science is, however, dependent on the quality of the 285 

collected data (Serret et al. 2019) and can be limited by the non-random distribution of sampling effort 286 

and poorly classified species (Crall et al. 2011). Future studies in citizen science must ensure that 287 

standard protocols developed with statisticians are used (Bird et al. 2014). Another open question 288 

regarding citizen science is related to error propagation through complex chains of data collection, 289 

because data is collected in very different conditions, by multiple people, and in multiple events. 290 

Future research should attempt to identify the main steps of data collection while validating each step 291 

along the chain (Snyder et al. 2019). 292 

One way to boost the participation of citizens in future studies is to promote bottom-up initiatives 293 

that engage citizens with local green spaces. It is important to ground such initiatives using a 294 

combination of social and environmental objectives, rooted in environmental stewardship that goes 295 

beyond immediate personal benefit and incorporates wider cultural values (Buijs et al. 2016), thus 296 

contributing to science and helping fulfil the aim of monitoring through indicators, as set out in the 297 

Sustainable Development Goals (SDG). A powerful tool available to do so is the public participation 298 

geographic information system (PPGIS), a method combining spatially explicit data with local 299 

knowledge, perceptions and values of individuals or groups of people (Brown & Fagerholm 2015). This 300 

method should be used in future studies to map ES (Burkhard & Maes 2017), identify cultural and 301 

meaningful green spaces (Rall et al. 2017), model residents’ visits to green spaces (Luz et al. 2019), 302 

and identify potential land use conflicts (Brown & Raymond, 2014) and environmental justice issues 303 

(Raymond et al. 2016), among many other uses (Rall et al. 2018).  304 

 305 

Research directions - involving citizens:  

1. Use standard sampling protocols, include error reporting and analysis, and frame future work 

within international initiatives, such as the Sustainable Development Goals. 



16 
 

2. Support bottom-up initiatives of citizen science. 

 306 

Conclusions 307 

Here, we identified five major research gaps in urban ecology research and put forth suggestions for 308 

future research directions, including habitat mapping, neglected habitats and ecological niches, 309 

multiple urban gradients, trait-based approaches, and citizens engagement. Overall, trait-based 310 

approaches emerged as a common ground to integrate all research directions, from remote sensing 311 

detection, measuring impacts of disturbance to targets of citizen science. In fact, trait-based metrics 312 

are expected to provide the link of biodiversity with ecosystem functions (EF) and thus ecosystem 313 

services (ES). Since these approaches remain poorly investigated in urban environments, especially 314 

within the identified research directions, focussing on those directions can help overcome the 315 

current knowledge gaps and enable us to make cities more resilient for both nature and human life.   316 
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Fig. 1. Conceptual research agenda to improve our understanding of relationships between 564 

biodiversity and ecosystem functions and services (B-EF/ES) in cities. The five topics highlighted by 565 

text sections are discussed in detail in the main text. 566 
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