
On the power of vanishing value measurements

Edwin Beggsa, José Félix Costab,c, Diogo Poçasb,c, John V tuckera

aSchool of Physical Sciences, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, U.K.
bInstituto Superior Técnico, Universidade de Lisboa, Portugal

cCentro de Matemática e Aplicações Fundamentais da Universidade de Lisboa

Abstract

We consider the measurement of physical quantities that vanish in some experimental conditions. In
[7], and definitely in [10], we speculated that physical experiments of measurement can be classified
in three categories: two-sided, threshold and vanishing. The computational power of two-sided and
threshold experiments, as dialogue between the discrete and analogue parts of an hybrid system,
were analised elsewhere, namely in [1, 2, 3, 5, 10]. In this paper we consider the vanishing protocol
and prove lower and upper bounds of its computational power in two variants. We end with a
suitable version of the Church-Turing postulate for analogue computation.

1. Introduction

Most of the work addressing the computational capabilities of dynamic systems with real valued
parameters in discrete polynomial time is based on a measurement: part of the control structure
of the system reads in linear time, bit by bit, the binary expansion of some parameter, possibly
encoding an advice function to a Turing machine in some class F? (in most cases = F). Inter alia,
this construction is found in the Analog Recurrent Neural Net (ARNN) model of Hava T. Siegelmann
and Eduardo Sontag (see [20]), in the Optical Computer of Damien Woods and Thomas J. Naughton
(see [21]), and in the mirror system of Olivier Bournez and Michel Cosnard (see [13]). E.g., in the
ARNN case, a subsystem of about eleven neurones performs a measurement of the unique non-
rational weight of the network, approximating its value both from above and from below. Once
the measurement is done, up to some precision, the computation resumes to a Turing machine
computation with advice simulated by a system of a thousand rational neurones interconnected
with integer and a few rational weights. Thus, we concluded that,

Different models of analogue computation “execute” a measurement assisted by a Turing
like computation followed by a Turing computation of arbitrary complexity.

The theory of dynamic system capabilities can then be reduced to Turing machines with the
ability of making measurements. One way of doing so is by considering the measurement as an
oracle consulting algorithm. This oracle have a cost function T of type N→ N that gives the number

Email addresses: E.J.Beggs@Swansea.ac.uk (Edwin Beggs), fgc@math.ist.utl.pt (José Félix Costa),
diogopocas1991@gmail.com (Diogo Poças), J.V.Tucker@swansea.ac.uk (John V tucker)

Preprint submitted to Elsevier July 22, 2013

of time steps allowed to perform the measurement of the next bit. The common dynamic systems
in the computational literature, having real parameters, perform non-physical measurements, i.e.,
measurements that, even in the Platonic world, can not be done in linear time unless they are
done through non-analytic functions. E.g., in a balance scale the pans move with acceleration that
depends on the difference of masses placed in them, in a way such that the time needed to detect a
mass difference increases exponentially with the precision of the measurement, no matter how small
(yet fixed) that difference can be made. This measurement has an exponential cost that should be
considered in the complexity of the decision problem. In the (non-analytic piecewise linear) neural
net case the cost function is like the common oracle Turing machine: one step consultation device,
since any further bit has the constant cost of k transitions, for some constant k ∈ N (see [20]). This
is due to the fact that the activation function is piecewise linear instead of the common analytic
sigmoid.

Dynamic systems that are able to read approximations to real numbers behave as hybrid systems:
they perform digital computations, but occasionally they access some external values, let us say
the temperature of the room. At that moment the “computer” / Turing machine has to execute
some task on the analogue devices such like to test for a given value of some concept such that
of temperature. In the perfect platonic world, this test is performed with infinite precision, in the
sense that the real is taken as a whole entity, or with unbounded precision, in the sense that the
machine can obtain as many bits of the real number as needed, or with fixed precision defined once
and for all for that equipment in use. In any of these scenarios we are still in the platonic world.
Such a model of computation requires a theory of computation with oracles that are stochastic (for
the precision) and have a cost(for the measurement or consultation).

A possible objection of a more practical point of view is that a measurement is always limited
in precision, for even if it is enough precise, it soon or later find the obstacle of the atomic structure
of the involved materials. But, even quantum theory is infested with real-valued parameters and
concepts. In fact, classical measurement (the one that is done even after a quantum measurement)
has its own theoretic domain (see [4, 14, 16, 18]) and can only be conceived as a limiting procedure
as stated by Geroch and Hartle in [15]:

Regard number w as measurable if there exists a finite set of instructions for performing an
experiment such that a technician, given an abundance of unprepared raw materials and an allowed
error ε, is able by following those instructions to perform the experiment, yielding ultimately a
rational number within ε of w [...] Imagine that one had access to experiments in the physical world,
but lacked any physical theory whatsoever. Then no number w could be shown to be measurable,
for, to demonstrate experimentally that a given instruction set shows w measurable would require
repeating the experiment an infinite number of times, for a succession of εs approaching zero. One
could not even demonstrate that a given instruction set shows measurability of any number at all,
for it could turn out that, as ε is made smaller, the resulting sequence of experimentally determined
rationals simply fails to converge. It is only a theory that can guarantee otherwise. The situation
is analogous to that of trying to demonstrate that a given [...] program shows some number to be
computable. There is no general algorithm for deciding this. In particular, it would not do merely
to run the program for a few selected values of ε.

It means that measurement is such like complexity that can only be conceived asymptotically.
Once we limit space or time resources, complexity as we know it disappears: all (now finite) sets can
be decided in linear time and space 1. We could well say that tapes can have as many cells as the
number of particles in the universe. But in that conditions no interesting theory of computability
can be defined.

2

Any oracle can be encoded in a real number just by concatenating in lexicographic order all
the words of the oracle. A real number is the right way of incorporating an oracle in an algebraic
system making computations by sums, products and application of, let us say, piecewise linear
maps, such as in the ARNN case. Then the oracle replaces the measurement: the neural model, the
optical computer, the mirror system, etc., all these systems perform some measurement in linear
time. However, the general oracle answers to queries in a time T : N→ N, on the size of the query,
modeling the fact that successive approximations have a cost that is not necessarily linear in the
number of bits of precision obtained (as we will see in the next section).

Our framework introduces another novelty that changes the mathematics of [1]-[2] and [3]: not
all measurements can be considered two-sided such like the balance scale. In [3], we considered
threshold measurements, such like the measurement of a threshold of a neurone. This value can be
approximated just from one side, since from the other side the neurone is always firing. Different
types of measurements may reveal different complexity classes.

A typical experiment settled to measure some concept x (the mass of a particle, the position
of a wedge, etc.) consists of performing the experiment with a test value z, for which we could
test one or both of the comparisons “z < x” and “x < z”. In this paper we provide the theory
of a possible third class of measurements: the vanishing value type in which we are only able to
test the condition “z 6= x”. Instead of performing at each oracle consultation one instance of the
experiment, two instances will be needed (two simultaneous queries in the sense of the previous
types of experiments).

A measurement can be fundamental or derived. Measuring distance is fundamental, but mea-
suring velocity is derived. Fundamental measurement (cf. [16]) is based on a partial order of com-
parisons that, taken to the limit, can identify a real number. Comparisons in the sense of Hempel
(cf. [16]) are based on events in the experimental setup. The collection of oracles/measurements
we described in [1, 3, 5, 6, 9] provide answers that are independent of the time. In this way, the
stochasticity is related with the precision of the answers obtained from the oracles. The answers
from the oracle are timed. Our devices are Turing machines consulting stochastic oracles possibly
with a stochastic cost.

To sum up: experiments in physics provide the intuitions about these types of oracles, namely
(a) that they are comparison concepts working by approximation, (b) that they have a cost and
that the cost comes in diverse versions, (c) that they can be consulted with error, and (d) that
they are stochastic. Experiments can be replaced by mathematical oracles of some kind. How-
ever, experiments provide valuable intuitions to reason about hybrid systems and analog-digital
communication.

In the new model of vanish value oracle, we consider two types of precision: precision in the
concept to be measured, such as mass, and precision in the time of oracle consultation. Since the
events happening in the experimental apparatus define a timed comparative concept (see [4]), the
order of events involves some precision. The precision ε in time is not asymptotic as the precision
in the concept (i.e., ε → 0), but rather a time tolerance that can be quantified as a polynomial
or an exponential or other in the size of the query. Thus, in this paper, besides the precision in
the concept that can be (a) infinite, (b) unbounded or (c) finite (fixed), we consider also a time
tolerance for the events happening in the experimental apparatus. The vanishing value experiment
can be taken as oracle to a Turing machine in two protocol variants boosting differently the power
of deterministic Turing machines clocked in polynomial time.

Note that the Turing machines considered are deterministic, but they can use the oracle both
to get advice and to simulate the toss of a coin.

3

Theorem 1. 1. If a set A is decided in polynomial time by a deterministic oracle Turing ma-
chine coupled with a type I vanishing value experiment of infinite or unbounded precisions,
then A ∈ P/poly. If a set A is in P/poly, then A is decided by a deterministic oracle Turing
machine coupled with a type I vanishing value experiment of infinite or unbounded precisions.

2. If a set A is decided by an oracle Turing machine coupled with a vanishing value experiment
of fixed precision, then A ∈ BPP//log?. If a set A is in BPP//log?, then A is decided in
polynomial time by an oracle Turing machine coupled with a vanishing value experiment of
fixed precision.

Theorem 2. 1. If a set A is decided in polynomial time by a deterministic oracle Turing ma-
chine coupled with a type II vanishing value experiment of infinite precision, then A ∈ P/poly.
If a set A is in P/log?, then A is decided by a oracle Turing machine coupled with a vanishing
value experiment of infinite precision.

2. If a set A is decided in polynomial time by a deterministic oracle Turing machine coupled
with a type II vanishing value experiment of unbounded precision, then A ∈ P/poly. If a
set A is decided in polynomial time by a deterministic oracle Turing machine coupled with
a type II vanishing value experiment of unbounded precision and exponential protocol, then
A ∈ BPP//log?. If a set A is in BPP//log?, then A is decided by a oracle Turing machine
coupled with a vanishing value experiment of unbounded precision.

3. If a set A is decided by a deterministic oracle Turing machine coupled with a type II vanishing
value experiment of fixed precision, then A ∈ BPP//log?. If a set A is in BPP//log?, then
A is decided in polynomial time by a oracle Turing machine coupled with a vanishing value
experiment of fixed precision.

Vanishing oracles have not yet been considered in the literature (e.g., in [1, 8]) and the results
about two-sided and threshold oracles do not apply to these systems. The upper bound known so
far for the two-sided oracles with non-infinite precision is P/poly (except for particular types of
two-sided oracles considered in [2] and [8] for which the upper bounds are P/poly and BPP//log?,
respectively). The upper bound known so far for the threshold oracles with non-infinite precision

is BPP//log
2
? (see [3]).

We will begin by introducing in Section 2 the vanishing value type of experiments focusing on
the Vanishing Balance Experiment (VBE for short). In Sections 3 and 7, we discuss the operating
protocols between Turing machines and stochastic oracles, as well as the procedures of using the
oracles to generate fair coin tosses. In Sections 4, 5 and 6, we will introduce the VBE machines
together with measurement algorithms for the three types of precision. Finally, for each type of
precision, we will characterize the complexity classes decided by such machines in polynomial time.
Lower bounds are proved in Section 9 and upper bounds in the following Section 10.

2. Examples of vanishing value experiments

We will now present two vanishing value experiments and adopt the second for simplicity.

2.1. The Brewster Angle Experiment

The Brewster Angle Experiment is an experiment based on the principles of classical optics.
It was first described as an example of vanishing value experiment in [7]. The book [12] provides
an useful reference for the experiment that we will now describe. When a plane wave falls on to

4

a boundary between two homogeneous media, it is split into two: a transmitted wave propagating
into the second medium and a reflected wave propagated back into the first medium. Figure 1
provides a illustration of this phenomenon.

(incident ray) (reflected ray)

(transmitted ray)

medium (1)

medium (2)

O
X

Z

~Ei,⊥ ~Er,⊥

~Et,⊥

ϕ

ψ

~Ei,‖ ~Er,‖

~Et,‖

Figure 1: Elements of incident, reflected, and transmitted light rays. The indexes of the electrical field E denote the
incident, I , reflected, R, and transmitted, T , rays, together with the normal, N , and the parallel, P , components of
the field. The black circle denotes the normal component pointing forward and the white circle denotes the normal
component pointing backwards.

The experimental apparatus consists of a surface dividing two media, projector and a light
detector. We can send a light beam into the surface with a certain incidence angle ϕ. The electric
field is perpendicular to the direction of propagation and can be decomposed into components
parallel (subscript ‖) and perpendicular (subscript ⊥) to the plane of incidence. Let Ei,‖ and Ei,⊥
denote the components of the incident ray, Er,‖ and Er,⊥ the components of the reflected ray, and
Et,‖ and Et,⊥ the components of the transmitted ray. Let ϕ be the angle of incidence and ψ be the
angle of transmission. From optics we can deduce several relations between the components of the
electric field, called Fresnel formulas:

Et,‖ =
2 sinψ cosϕ

sin(ϕ+ ψ) cos(ϕ− ψ)
Ei,‖, Et,⊥ =

2 sinϕ cosψ

sin(ϕ+ ψ)
Ei,⊥

Er,‖ =
tan(ϕ− ψ)

tan(ϕ+ ψ)
Ei,‖, Er,⊥ = − sin(ϕ− ψ)

sin(ϕ+ ψ)
Ei,⊥

The Brewster law states that for some value of the angle of incidence, the reflected light is totally
polarized in the direction normal to the plane of incidence. From the Fresnel formulae we see that
it occurs when ϕ + ψ = π

2 , so that Er,‖ = 0. Our objective is to measure the Brewster angle ϕB .
For the sake of simplicity we assume some scale such that 0 < ϕB < 1. In this type of experiments,
we cannot infer any information about the Brewster angle simply by sending a ray with desired
angle ψ. The reason is that, as ϕ approaches ϕB , the intensity of the electric field decreases to 0,
either if ϕ < ϕB or if ϕ > ϕB .

Consider that an instance of the experiment begins by sending a light beam, polarized in the
horizontal direction, with angle incidence ϕ so that Ei,⊥ = 0, so that the reflected ray is also
polarized. Furthermore, as ϕ approaches ϕB , the reflected ray vanishes completely. Denote by Hr

the magnetic field produced by the reflected ray. We know that Hr is perpendicular to Er and

5

to the direction of propagation of the reflected ray; this implies that Hr = Hr,⊥. Furthermore
we have the following relation between the amplitudes of the magnetic field and of the electric
field: Hr = ncε0Er, where n is the index of refraction of the first medium, c is the light speed
in the vacuum and ε0 is the vacuum permitivity. We assume the existence of a light detector on
the reflection side that absorbs the energy of the reflected ray. This detector can be seen as a
photovoltaic detector that reacts when it has absorbed energy above a threshold limit Ω. The
directional energy flux of the reflected ray is then given by the Poynting vector, Sr = Er × Hr

with the average magnitude of 〈S〉 = ncε0E
2
r/2. Finally, let α be the cross section area of the light

beam. The time taken for the light detector to absorb the threshold energy is given by

Texp =
Ω

α〈S〉
=

2Ω

nαcε0Er
2 .

Even though the above expression seems very detailed, the important point is that the exper-
imental time is proportional to the inverse of the square of the electric field of the reflected ray.
Thus we get the following experimental time, Texp, given in some abstract units,

Texp(z, ψ) =
tan(ϕ+ ψ)2

tan(ϕ− ψ)2
.

2.2. The Vanishing Balance Experiment

The following experiment (depicted in Figure 2) is a variation of the balance scale. The balance
has two pans with a pressure stick below each pan. On the right pan there is a body with the
unknown mass y. To measure y we place a test mass z on the left pan. If z = y, then the scale will
not move since the lever is in equilibrium. But, if z 6= y, then one of the pans will move down and
soon or later it will press one of the pressure sticks. However, when z 6= y, there is no information
about which of the pans sank, only that one of them did.

z y
O

Figure 2: Schematic depiction of the vanishing balance experiment.

There are also other assumptions that can be made explicit about the experiment: (a) y is a
real number in [0, 1], (b) the mass z can be set to any dyadic rational in the interval [0, 1], (c) a
pressure-sensitive stick is placed below each side of the balance, such that, when one of the pans
touches the pressure-sensitive stick, it reacts producing a signal, (d) the mass z can be set so that
the procedure starts from absolute rest, (e) the friction between the masses and the pans is large
enough so that these will not slide away from their original position once the scale is in motion,
and (f) the bar on which the masses are placed is made of an homogeneous material, so that the
two pans have exactly the same weight. Assuming that the test mass weighs z and the unknown
mass weighs y, the cost of the experiment, Texp(z, y), which is the time taken for one of the pans
to touch the pressure stick, in some abstract units of time, is given by:1

1This expression for the time, namely exhibiting an exponential growth on the precision of z with respect to the
unknown y, is typical in physical experiments, regardless the concept being measured.

6

Texp(z, y) =

√
z + y

|z − y|
. (1)

3. Protocols

How do we make the connection between the digital computer (modeled as a Turing machine)
and the analog device (modeled as an oracle)? The arguments so far developed (such as in [1, 5, 6, 9])
do not differ substantially from the classical analog-digital protocol that we can find in books on
hybrid computation (see [11]).

The main device for the transference of data from the digital component to the analog component
is a query tape. However, we have been working in a situation where the analog oracle device
furnishes to the digital computer two bits of information: yes/first/left, no/second/right,
timeout, and possibly indistinguishable. This is a restriction to the general analog-digital
converter (as in [11]), but it makes our theory closer to the realizability of hybrid machines: an
answer tape is not needed and the result of the consultation of the oracle is encoded immediately
after in the resulting state of the Turing machine.

The protocols that we will adopt for the vanishing experiments will be different from the proto-
cols considered in previous papers such like [1, 3, 5, 6, 8, 9]. It seems that performing one instance
of the experiment does not give much information about the relationship between the test mass z
and the unknown mass y. On the other hand, when we were studying two-sided experiments in [1]
we saw that result “left” would imply that z < y and result “right” would imply that z > y.
Also, when we were studying threshold experiments in [3] we saw that result “yes” would imply
that z > y. But now, with vanishing experiments, we only have result “yes” and this only implies
that z 6= y.2

We have to consider two instances of the experiment instead of one, with two different dyadic
rationals, z1 and z2 and their respective experimental times Texp(z1, y) and Texp(z2, y). Now suppose
that we can determine which of the instances of the experiment ends first. That is, suppose that,
for any two dyadic rationals, we can determine whether Texp(z1, y) < Texp(z2, y), Texp(z1, y) =
Texp(z2, y), or Texp(z1, y) > Texp(z2, y). Then we could also determine, for a finite increasing
sequence z1 < z2 < . . . < zn, which of the zi corresponds to the instance that ends last. This
would then imply something about y, thanks to the simple fact that y should be closer to dyadic
rationals that consume more experimental time. This conclusion is a consequence of the fact that
Texp is increasing in the interval [0, y) and decreasing in the interval (y, 1]. Now we ponder on the
assumption we made: given two dyadic rationals z1 and z2, corresponding to different instances of
the experiment, how can we determine which of the instances ends last? There are two possible
implementations of the experiment that can answer the question:

• To perform two experiments simultaneously, that is, to use two copies of the balance with the
same unknown mass y in the right pan. We can place masses z1 and z2 at the left pans of
the balances and start both experiments at the same time. If Texp(z1, y) < Texp(z2, y), then
the experiment with test mass z1 sends a first signal and if Texp(z1, y) > Texp(z2, y), then the
experiment with test mass z1 calls back first.

2Of course, “timeout” occurs very rarely, and may even not occur at all for some choices of unknown mass and
time schedule.

7

• Suppose we only have one balance, but now we can count the machine steps during an experi-
ment until the end. In this way we can begin by performing an instance of the experiment for
test mass z1, and counting the number T1 of machine transitions that the experiment takes.
Then we repeat the experiment for test mass z2, obtaining a number T2 of machine transi-
tions. Finally, we compare T1 and T2. If T1 < T2, then we conclude that Texp(z1) < Texp(z2);
if T1 > T2, then we conclude that Texp(z1) > Texp(z2).

The first solution overlooks a simple practical aspect. We are basically attempting to decide
which of two events occurs first, but can we actually do it if the difference in times becomes very
small? We could answer this question in the negative, and argue that there is a minimum time gap
below which two events may appear simultaneous, so that we can not tell which of them happens
first. The second solution also introduces a problem. First recall that we should set a bound on
the time that we consider acceptable to wait for a response, the time schedule concept. If the
experimental time exceeds the time schedule, then the count of steps and the experiment should
be interrupted. This means that, when performing two instances of the experiment, any of them
may result in a timeout. If one experiment times out and the other does not, we can still decide
which of them ends first; nothing can be said when both experiments time out. However it is not a
great deal to solve this problem, since we can in principle increase the time schedule (padding the
query z with 0s) until one of the experiments ends. There is another subtler situation in which we
cannot decide which of the instances takes more time, if the number of machine transitions is the
same, that is, when T1 = T2. In this situation the two instances are indistinguishable. Increasing
the time schedule will not help us at all, nor will do padding 0s.

We shall use these assumptions:

• In the first implementation, we assume that we can in fact distinguish the two events from
one another.3 In this way, when we perform two instances of the experiment, there are three
possible results: the first instance ends first; the second instance ends first; or both instances
time out;

• In the second implementation, we assume that it is possible for two experiments to consume
the same number of machine steps. In this way, when we perform two instances of the
experiment, there are four possible results: the first instance ends first; the second instance
ends first; both instances time out; or we could not decide which instance ends first (although
none of them times out).

We must take into account the imprecision associated with placing a test mass in the left pan.
We do this in the same way as we have done in the previous papers (e.g. [1, 8]), by considering
three types of precision: (a) infinite precision (see Figures 3 and 4): when the dyadic z is read in
the query tape, a test mass z is simultaneously placed in the left pan, (b) unbounded precision (see
Figures 3 and 4): when the dyadic z is read in the query tape, a test mass z′ is simultaneously
placed in the left pan such that z − 2−|z| ≤ z′ ≤ z + 2−|z| and (c) fixed precision ε > 0 (to be
discussed later on): when the dyadic z is read in the query tape, a test mass z′ is simultaneously
placed in the left pan such that z − ε ≤ z′ ≤ z + ε.

3This is, as we said, infeasible, but we are willing to consider it because it will provide us with some interesting
results later on.

8

Protocol “Compare[1, IP]”

“Mass”: Infinite precision case

Receive as input the binary description of two dyadic rationals z1 and z2 of size n
(possibly padded with 0s);

Place a mass z1 in the left pan of the first balance;
Place a mass z2 in the left pan of the second balance;
Start both experiments at the same time;
Wait T (n) units of time;
Check which pressure stick have sent a signal first:

If the first balance calls back first Then Return “first”;
If the second balance calls back first Then Return “second”;
If neither instance calls back, Then Return “timeout”.

Figure 3: Procedure that describes the VBE with the first implementation and infinite precision, for some unknown
mass y and some time schedule T .

Protocol “Compare[2, IP, g]”

“Mass”: Infinite precision case

Receive as input the description of two dyadic rationals z1 and z2 of size n
(possibly padded with 0s);

Place a mass z1 in the left pan;
Wait T (n) units of time, while

counting the number of steps before receiving a signal from a pressure stick, T1;
If the experiment does not call back, Then set T1 := T (n) + 1;
Place a mass z2 in the left pan;
Wait T (n) units of time,

Whilecounting the number of steps before receiving a signal from a pressure stick, T2;
If the experiment does not call back, set T2 := T (n) + 1;
Compare T1 and T2:

If T1 < T2, Then Return “first”;
If T1 > T2, Then Return “second”;
If T1 = T2 > T (n), Then Return “timeout”.
If T1 = T2 ≤ T (n), Then Return “indistinguishable”.

Figure 4: Procedure that describes the VBE with the second implementation and infinite precision, for some unknown
mass y and some time schedule T .

In the second implementation, there is also a different notion of imprecision, that appears
when we count the number of machine transitions while the oracle is being consulted. We are
making also the assumption that all machine transitions take the same amount of physical time.
However, this is not necessarily true. This means that, when we count T machine transitions, the
actual time taken for the experiment may not be in (T − 1, T]. To formalize this consideration,
we define a new kind of imprecision, now related with time: (d) time precision g, given a map
g : N → N: when an experiment settled for the query word z takes an amount of time t, the
number of machine transitions counted is T , where T is a natural number uniformly sampled in

9

[dte − g(|z|), dte + g(|z|)]. Good examples for g are g(n) = 0 (full precision and we get back the
assumption that all machine transitions take the same amount of time), g(n) = c (constant time
precision), g(n) = cnk (polynomial time precision) and g(n) = c2kn (exponential time precision).

Thus, we have to consider six different types of protocols, three for the first implementation and
three for the second implementation. However, there are more than six possible protocols; observe
that, after choosing the implementation and the concept precision, there is still a lot of different
possible choices for the function g abstracting the time precision. There will be many similarities
between the six types of protocols, so we start by defining the protocols for the first implementation
with infinite precision and for the second implementation with full precision.

To obtain alternative protocols for the first implementation, simply reinterpret the instructions
in Figure 3, depending on whether you are considering unbounded precision or fixed precision ε. In
the first case, we place the masses z′1 and z′2 in the left pans where z′1 ∈ (z1 − 2|z1|, z1 + 2|z1|) and
z′2 ∈ (z2−2|z2|, z2+2|z2|); in the second case, we consider z′1 ∈ (z1−ε, z1+ε) and z′2 ∈ (z2−ε, z2+ε). In
this way we obtain protocols Compare[1, UP] and Compare[1, FP (ε)]. To obtain alternate protocols
for the second implementation, simply reinterpret the instructions of the second protocol in Figure
4, depending on whether you are considering unbounded precision or fixed precision ε. In the
first case, we place the masses z′1 and z′2 in the left pans, where z′1 ∈ (z1 − 2|z1|, z1 + 2|z1|) and
z′2 ∈ (z2−2|z2|, z2+2|z2|); in the second case, we considerz′1 ∈ (z1−ε, z1+ε) and z′2 ∈ (z2−ε, z2+ε). In
this way we obtain protocols Compare[2, UP, g] and Compare[2, FP (ε), g]. Finally, the protocols for
the second implementation and different choices of time precision do not differ, since the precision
is implicitly present in counting machine transitions.

4. Measuring with the VBE machine with infinite precision

In what follows the suffix operation�n on a word w, w�n, denotes the prefix sized n of the ω-word
w0ω, no matter the size of w.

We motivated in the previous section that comparing the experimental times relative to two
different query words provides information about y. Consider calls with protocol Compare[1, IP]
for input (z1, z2) such that z1 < z2 and assume that no timeout occurs. The result of the experiment
depends only on the relationship between z1, z2 and y: (a) if y < z1 < z2, then the second
experiment will end first, (b) if z1 < y < z2, then any of the two experiments can end first, and
(c) if z1 < z2 < y, then the first experiment will end first. We can then deduce the relationship
between z1, z2 and y.

Proposition 1. Let s be the result of Compare[1, IP](z1, z2), for an unknown mass y and time
schedule T , such that |z1| = |z2| = n and z1 < z2. Then, (a) if s =“first”, then y > z1,
(b) if s =“second”, then y < z2, and (c) if s =“timeout”, then |y − z1| < 2T (|m|)−2 and
|y − z2| < 2T (|m|)−2.

The idea for the measurement is the following: suppose that y lies on the interval [z0, z4], where
z0 and z4 are dyadic rationals. Split the interval in four parts by considering the points z1, z2,
and z3 where z2 = (z0 + z4)/2, z1 = (z0 + z2)/2 and z3 = (z2 + z4)/2. Consider protocol calls for
the pairs (z1, z2) and (z2, z3) with experimental times t1, t2 and t3. Depending on the result we
will obtain a new interval where y may belong: (a) if t1 > t2 (i.e., the first protocol call returns
“second”), then y < z2 and thus y ∈ [z0, z2], (b) if t2 < t3 (that is, the second protocol call returns
“first”), then y > z2 and thus y ∈ [z2, z4], (c) if t1 < t2 and t2 > t3 (that is, the first protocol
call returns “first” and the second protocol call returns “second”), then z1 < y < z3 and thus

10

y ∈ [z1, z3]. Note that the new interval has half the length of the original one and so repeating this
process will enable us to obtain approximations to y.

Algorithm “BinarySearch[1, IP]”

“Mass”: Infinite precision case

Input a natural number ` – number of places to the right of the left leading 0;
x0 := 0; x4 := 1; x2 := (x0 + x1)/2;
While x4 − x0 > 2−` Do Begin

x1 := (x0 + x2)/2;
x3 := (x2 + x4)/2;
s1 := Compare[1, IP](x1�`, x2�`);
s2 := Compare[1, IP](x2�`, x3�`);
If s1 = “second” Then (x0, x2, x4) := (x0, x1, x2);
Else If s2 = “first” Then (x0, x2, x4) := (x2, x3, x4);
Else If s1 = “first” And s2 = “second” Then (x0, x2, x4) := (x1, x2, x3);
Else If s1 = “timeout” Or s2 = “timeout” Then x0 := x2; x4 := x2

End While;
Output the dyadic rational denoted by x2.

Figure 5: Procedure to obtain an approximation of an unknown mass y placed in the right pan of the balance.

Proposition 2. For any unknown mass y and any time schedule T , (a) the time complexity of
the algorithm of Figure 5, for input `, is O(`T (`)), (b) for all k ∈ N, there exists ` ∈ N such that
T (`) ≥ 2(k+1)/2 and the output relative to the input ` is a dyadic rational m such that |y−m| < 2−k,
moreover, ` is at most exponential in k, and (c) if T (k) is exponential in k, then the value of `
witnessing T (`) ≥ 2(k+1)/2 can be taken to be linear in k.

Proposition 3. For any real number y ∈ (0, 1), the VBE machine M(y) operating with the type I
protocol with infinite precision and exponential schedule is such that: (a) for all size n ∈ N, M(y)
halts for the input word 1n and the content of the output tape is a dyadic rational z such that
|z − y| < 2−n and (b) the number of steps of M(y) is bounded by an exponential in n.

Proof: For any y ∈ (0, 1), we take the VBE machineM(y) with unknown mass y and any exponential
time schedule T , operating with type I protocol with infinite precision. According with Proposition
2 (b) and (c), there is a constant b such that, for all n, with ` = bn, we have that T (`) ≥ 2(n+1)/2.
The machine M(y), on input 1n, just calls the binary search procedure of Figure 5 with input
` = bn. Since T (n) is exponential in n and ` is linear in n, the number of steps of the VBE
machine, also in agreement with Proposition 2 (a), is in O(`2a`) ⊆ O(2(a+1)`), for some a ∈ N. �

The next step is to provide a measurement algorithm for the type II protocol. We will try to
adapt the same algorithm, but now we have to deal with the possibility of getting “indistinguish-
able”, meaning that both experimental times are too close to separate them. To solve this problem,
we compute the time differences as we approach the unknown mass y. It would be interesting if
the time differences of a protocol call increase, i.e., if on successive calls to Compare[2, IP, g](z1, z2)
the experimental time differences would become greater. That would mean that the answer “in-
distinguishable” would not occur (after some point on) and so we could deduce the position of
y relative to z1 and z2. Fortunately, this is indeed true if both test masses lie on the same side
relative to y.

11

Proposition 4. Consider an instance of the VBE with unknown mass y and test masses z1, z2.
Suppose that either y < z1, z2 or z1, z2 < y, that |z2 − z1| ≥ δ, |z1 − y| ≤ ζ and |z2 − y| ≤ ζ. Then
|Texp(z2, y)− Texp(z1, y)| ≥ aδ/(ζ

√
ζ), where a = y/

√
1 + y.

Proof: The experimental time and its derivative are given by

Texp(z, y) =

√
z + y

|z − y|
|T ′exp(z, y)| = y

√
z + y

√
|z − y|3

.

To get the desired inequality, we just apply the mean value theorem and the assumption |z1−z2| ≥ δ.
We conclude that there is some value ξ between z1 and z2 such that

|Texp(z2, y)− Texp(z1, y)| = |z2 − z1||T ′exp(ξ, y)| ≥ yδ
√
ξ + y

√
|ξ − y|3

≥ y√
1 + y

δ

ζ
√
ζ
,

where on the last step we use the facts that ξ < 1 and that |ξ − y| < ζ. �

Algorithm “BinarySearch[2, IP, g]”

“Mass”: Infinite precision case

Input a natural number ` — number of places to the right of the left leading 0;
x0 := 0;
x4 := 1;
x2 := (x0 + x1)/2;
While x4 − x0 > 2−` Do Begin

x1 := (x0 + x2)/2;
x3 := (x2 + x4)/2;
s1 := Compare[1, IP](x1�`+1, x2�`+1);
s2 := Compare[1, IP](x2�`+1, x3�`+1);
If s1 = “second” Or “indistinguishable” Then (x0, x2, x4) := (x0, x1, x2);
Else If s2 = “first” Or “indistinguishable” Then (x0, x2, x4) := (x2, x3, x4);
Else If s1 = “first” And s2 = “second” Then (x0, x2, x4) := (x2, x3, x4);
Else If s1 = “timeout” Or s2 = “timeout” Then x0 := x2; x4 := x2

End While;
Output the dyadic rational denoted by x2.

Figure 6: Procedure to obtain an approximation of an unknown mass y in the right pan of the balance.

The measurement algorithm for the type II protocol will be very similar to the one for the type
I. We begin with the interval [0, 1]; at step k, we have an interval of size 2−k containing y; then we
split the interval in four intervals, obtaining dyadic rationals z0, z1, z2, z3, and z4 that are separated
by 2−k−2; we perform two protocol calls, one involving z1 and z2 and the other involving z2 and
z3; depending on the answers, we choose one of the intervals (z0, z2), (z1, z3) or (z2, z4) as the next
interval, thus obtaining an interval with half of the length of the previous one. To simplify, consider
first the case g = 0. Suppose that y does not belong to (z1, z2). We know that |z1−z2| = 2−k−2 and
that both |z1−y| and |z2−y| are at most 2−k. By Proposition 4, we obtain that the time difference
in protocol call Compare[2, IP, g](z1, z2) is at least a× 2k/2/4, where a is a constant. In the same
way, if y does not belong to (z2, z3), the time difference in protocol call Compare[2, IP, g](z2, z3) is
at least a×2k/2/4. We conclude that the time difference increase exponentially step by step, which

12

implies that we will not get “indistinguishable” whenever the two dyadic rationals lie on the
same side relative to y. That is, if the answer to a protocol call Compare[2, IP, g](z, z′) with z < z′

is “indistinguishable”, then z < y < z′. At step k, we make protocol calls with words of size
k + 2. Suppose that y does not lie in (z1, z2), so that the time difference is at least a × 2k/2/4. If
g = 0, then we get an answer of “first” (implying that y > z1), “second” (implying that y < z2)
or “timeout” (implying that y is very close to z1 and z2). We need g to be small enough so that
we do not get a wrong answer, that is, the number of machine transitions must not differ too much
from the real experimental time. Observe that, for any g, the time differences observed (that is, the
difference in the number of machine transitions) is at least a×2k/2/4−2g(k+ 2). Thus, if g is such
that g(k) < a × 2k/2/16, then the imprecision in time is not enough to induce a different answer
to the protocol call. Thus, any constant time precision, polynomial time precision, or exponential
time precision g(n) = c2kn with k < 1/2 does not prejudice our algorithm. Most of these results
are asymptotic, i.e., we can only guarantee that, for a certain point on, the time difference is great
enough so that we do not get answers of “indistinguishable”. However, in the first iterations,
it is not impossible to obtain “indistinguishable” as the answer to Compare[2, IP, g](z, z′) in a
situation where y does not belong in (z, z′). To deal with this problem, note that we could simply
begin the measurement with a subinterval of [0, 1], small enough so that it does not happen. The
specification of this subinterval only requires a finite amount of information (two dyadic rationals
of size k, for k large enough) that only depend on y and g, and thus it could be hard-wired in
the measurement algorithm. Thus, we can in fact build a measurement algorithm for the second
implementation.

Proposition 5. For any unknown mass y, any time schedule T and any time precision g such that
g ∈ o(λn×2n/2), (a) the time complexity of algorithm of Figure 6 for input ` is O(`T (`)), (b) for all
k ∈ N, there exists ` ∈ N such that T (`) ≥ 2(k+1)/2 and the output for input ` is a dyadic rational
m such that |y−m| < 2−k, moreover ` is at most exponential in k, (c) if T (k) is exponential in k,
then the value of ` witnessing T (`) ≥ 2k/2 can be taken to be linear in k.

Proposition 6. For any real number y ∈ (0, 1), there exists a VBE machine M(y) with the type
II protocol with infinite precision in the mass and any time precision g ∈ o(λn. 2n/2) such that:
(a) for all size n ∈ N, M(y) halts for input word 1n and the content of the output tape is a dyadic
rational z such that |z−y| < 2−n and (b) the number of steps ofM(y) is bounded by an exponential
in n.

Proof: For any y ∈ (0, 1), we take the VBE machine M(y) with the type II protocol with infinite
precision and any exponential time schedule T . The machineM, on input 1n, just calls the binary
search procedure of Figure 6 with input ` = bn. The desired approximation is produced with
probability 1. Since T (n) is exponential in n and ` is linear in n, the number of steps of the VBE
machine, in agreement with Proposition 5 (a), is in O(`2an) ⊆ O(2(a+1)n) for some a ∈ N. �

In the end of this section, we offer a different measurement algorithm for the first implementation.
We have seen that it is possible, in polynomial time, to obtain a logarithmic amount of bits of the
unknown mass. We will now consider other possibilities for the measurement. For example, suppose
that y > 1/2 and we want to measure the point z > 1/2 at which Texp(z, y) = Texp(1/2, y). With
type I protocol, this is indeed possible, as the algorithm of Figure 7 suggests.

Proposition 7. Let s be a possible result of Compare[1, IP](1�`,m�`),4 for any unknown mass

4Note that 1�` is the `-bits dyadic rational 0.10 · · · 0.

13

y > 1/2, and r > 1/2 denote the point such that Texp(1/2, y) = Texp(r, y). Then, if s =“first”,
then r ≥ m, and, if s =“second”, then r ≤ m.

Proposition 8. For any unknown mass 1/2 < y <
√

2/2 and any time schedule T , let r > 1/2
denote the point such that Texp(1/2, y) = Texp(r, y). Then (a) the time complexity of algorithm of
Figure 7 for input ` is O(`T (`)) and (b) if T (`) > Texp(1/2, y), then the output for input ` is a
dyadic rational m such that |r −m| < 2−`.

Algorithm “BinarySearch[3, IP]”

“Mass”: Infinite precision case

Input a natural number ` – number of places to the right of the left leading 0;
x0 := 1/2;
x1 := 1;
While x1 − x0 > 2−` Do Begin

m := (x0 + x1)/2;
s := Compare[1, IP](1�`,m�`);
If s = “first” Then x0 = m Else x1 = m

End While;
Output the dyadic rational denoted by m.

Figure 7: Procedure to obtain an approximation of a real number y, with a test mass z in the right pan of the
balance.

Proposition 9. For any real number y ∈ (1/2,
√

2/2), there exists a VBE machineM(y) operating
on the mass y with type I protocol with infinite precision such that: (a) for all size n ∈ N, M(y)
halts for the input word 1n and the content of the output tape is a dyadic rational z such that
|z − r| < 2−n and (b) the number of steps of M(y) is bounded by a polynomial in n.

Proof: The map z 7→ z+1
2 is a bijection f : [0, 1] → [1/2, 1] that works by simply prefixing a 1

to the binary expansion of the argument z. Suppose we want to measure r ∈ (0, 1). We take
the VBE machine M(y) with unknown mass y such that Texp(1/2, y) = Texp(f(r), y) 5 and T
as any polynomial time schedule. Let `0 be such that T (`0) > Texp(1/2, r). The oracle Turing
machine M(y) on input 1n calls the procedure BinarySearch[3, IP](`), where ` = max{n + 1, `0},
from which it gets m, and computes the value 2m − 1. Since |f(r) −m| < 2−`, we also have that
|r−(2m−1)| < 2−n. Since T (n) is polynomial, by Proposition 8 (a) the number of steps is bounded
by a polynomial. �

5. Measuring with the VBE machine with unbounded precision

The measuring algorithm provided for protocol of type I operating with unbounded precision is
very similar to algorithm BinarySearch[3, IP]. Its goal is again to measure the value r > 1/2 for
which Texp(1/2, y) = Texp(r, y), where y is the “unknown mass”.

5It can be easily proved that r = 2y2.

14

Proposition 10. Let s be a possible result of Compare[1, UP](1�`,m�`), for any unknown mass
1/2 < y <

√
2/2. Let r > 1/2 denote the point such that Texp(1/2, y) = Texp(r, y). Suppose that

` and h are such that 2−` < 1/2|1/2 − y| and 2h ≥
√

(1 + y)/(y|y − 1/2|3) + 1. Then, (a) if
s =“first”, then r ≥ m− 2−`+h and (b) if s =“second”, then r ≤ m+ 2−`+h.

Proof: When we perform the protocol Compare[1, UP](1�`,m�`), the test mass to be placed on
the first balance, which we denote by z1, lies in (1/2 − 2−`, 1/2 + 2−`). The imprecision in the
mass induces an imprecision in the experimental time, that is, the experimental time Texp(z1, y)
lies in (Texp(1/2, y) − ∆t, Texp(1/2, y) + ∆t), for some value of ∆t. This imprecision induces an
imprecision in the mass close to r, that is, there is an interval (r −∆r, r + ∆r) that contains the
values z2 of masses close to r such that Texp(z2, y) ∈ (Texp(1/2, y) − ∆t, Texp(1/2, y) + ∆t). The
assumption 2−` < 1/2|1/2− y| allows us to use the mean value theorem, just as we did in the proof
of Proposition 4, to estimate ∆r. For any z1 ∈ (1/2− 2−`, 1/2 + 2−`) let z2 be close to r such that
Texp(z1, y) = Texp(z2, y). There are ξ1 ∈ (1/2− 2−`, 1/2 + 2−`) and ξ2 ∈ (r−∆r, r+ ∆r) such that

|z1 −
1

2
||T ′exp(ξ1, y)| = |Texp(z1, y)− Texp(1/2, y)| = |Texp(z2, y)− Texp(r, y)|

= |z2 − r||T ′exp(ξ2, y)|.

After some calculations and using the inequalities ξ1 ≥ 0, |ξ1−y| ≥ 1/2|1/2−y|, ξ2 ≤ 1, |ξ2−y| ≤ 1/2,
we obtain, from Proposition 4, |z2 − r| ≤

√
(1 + y)/(y|y − 1/2|3) × 2−`. Thus, we can take ∆r =√

(1 + y)/(y|y − 1/2|3)×2−`. Let us consider again Compare[1, UP](1�`,m�`). If m > r+∆r+2−`,
then the result cannot be “first” (the experimental time Texp(m, y) is simply too low). By the
same reasoning, if m < r −∆r − 2−`, then the result cannot be “second”. From these two facts,
with 2h ≥

√
(1 + y)/(y|y − 1/2|3) + 1, we obtain the desired results. �

Algorithm “BinarySearch[1, UP]”

“Mass”: Unbounded precision case

Input a natural number ` – number of places to the right of the left leading 0;
x0 := 1/2;
x1 := 1;
While x1 − x0 > 2−` Do Begin

m := (x0 + x1)/2;
s := Compare[1, UP](1�`,m�`);
If s = “first” Then x0 = m Else x1 = m

End While;
Output the dyadic rational denoted by m.

Figure 8: Procedure to obtain an approximation of a real number y, with a test mass z in the left pan of the balance.

Proposition 11. For any unknown mass y > 1/2 and any time schedule T , let r > 1/2 be such that
Texp(1/2, y) = Texp(r, y) and h be a non-negative integer such that 2h ≥

√
(1 + y)/(y|y − 1/2|3)+1.

Then (a) the time complexity of algorithm Binary Search 1 UP for input ` is O(`T (`)) and (b) if
T (`) > Texp(1/2, y) and 2−` <

√
(1 + y)/(y|y − 1/2|3), then the output of algorithm Binary Search

1 UP for input ` is a dyadic rational m such that |r −m| < 2−`+h+1.

15

Proposition 12. For any real number y ∈ (0, 1), there exists a VBE machine M(y) operating on
the mass y with type I protocol with unbounded precision such that: (a) for all size n ∈ N, M(y)
halts for the input word 1n and the content of the output tape is a dyadic rational z such that
|z − r| < 2−n and (b) the number of steps of M(y) is bounded by a polynomial in n.

Proof: This is a consequence of Proposition 11. For any real value r, we take r′ = r+1
2 and V BE as

the intended experiment, where the unknown mass y is chosen such that Texp(1/2, y) = Texp(r
′, y).

Take T as any polynomial time schedule. Then there is a constant `0 such that T (`0) > Texp(1/2, y)

and 2−`0 <
√

(1 + y)/(y|y − 1/2|3). Take h such that 2h ≥
√

(1 + y)/(y|y − 1/2|3) + 1. The oracle
Turing machine, for input 1k, consists in a call to BinarySearch[1, UP](`) where ` = max{k + h+
2, `0}, obtaining a result m, and then returns the value 2m− 1. Since |r′ −m| < 2−`+h+1, we also
have that |r − (2m − 1)| < 2−k with probability 1. Since T (k) is polynomial, the number of steps
is then bounded by a polynomial. �

The measuring algorithm for protocol type 2 operating with unbounded precision and tolerance
g is different from the measurement algorithm for protocol type 1 operating with unbounded pre-
cision. When we were considering protocol type 1 operating with infinite precision, we saw that, in
Compare[2, IP, g](z1, z2) at step k, we had |z1 − z2| = 2−k−2 and |z1 − a|, |z2 − a| ≤ 2−k. In the
following algorithm, we make oracle queries for words of size `+ 3. In this way, we guarantee that
at step k, k = 0, . . . ≤ `− 1, the imprecision in placing the test masses is at most 2−`−3 ≤ 2−k−4,
thus ensuring that in the call to Compare[2, UP, g](z1, z2) we have that |z1 − z2| ≥ 2−k−3. In this
way we obtain a time difference greater than or equal to const.× 2k/2/8. Therefore, our algorithm
will work for all choices of time precision g such that g ∈ o(λn. 2n/2).

Algorithm “BinarySearch[2, UP, g]”

“Mass”: Unbounded precision case

Input a natural number ` — number of places to the right of the left leading 0;
x0 := 0;
x4 := 1;
x2 := (x0 + x1)/2;
While x4 − x0 > 2−` Do Begin

x1 := (x0 + x2)/2;
x3 := (x2 + x4)/2;
s1 := Compare[2, UP, g](x1�`+3, x2�`+3);
s2 := Compare[2, UP, g](x2�`+3, x3�`+3);
If s1 = “second” Or “indistinguishable” Then (x0, x2, x4) := (x0, x1, x2);
Else If s2 = “first” Or “indistinguishable” Then (x0, x2, x4) := (x2, x3, x4);
Else If s1 = “first” And s2 = “second” Then (x0, x2, x4) := (x2, x3, x4);
Else If s1 = “timeout” Or s2 = “timeout” Then x0 := x2; x4 := x2

End While;
Output the dyadic rational denoted by x2.

Figure 9: Procedure to obtain an approximation of an unknown mass y in the right pan of the balance.

Proposition 13. For any unknown mass y, any time schedule T and any time precision g such that
g ∈ o(λn. 2n/2), let s be a possible result of one of the calls Compare[2, UP, g](z1�`+3, z2�`+3) during
algorithm BinarySearch[2, UP]. Then, (a) if s =“first”, then y ≥ z1−2−`−3, (b) if s =“second”,

16

then y ≤ z2 +2−`−3, (c) if s =“undistinguishable”, then z1−2−`−3 ≤ y ≤ z2 +2−`−3, and (d) if
s =“timeout”, then |y − z1| < (µ/T (`+ 3))2 + 2−`−3 and |y − z2| < (µ/T (`+ 3))2 + 2−`−3.

Proposition 14. For any unknown mass y, any time schedule T and any time precision g such that
g ∈ o(λn. 2n/2), (a) the time complexity of algorithm BinarySearch[2, UP] on input ` is O(`T (`)),
(b) for all k ∈ N, there exists ` ∈ N such that T (`+ 3) ≥ µ2(k+1)/2 and thus the output of algorithm
BinarySearch[2, UP] for input ` is a dyadic rational m such that |y−m| < 2−k, moreover ` is at most
exponential in k, and (c) if T (k) is exponential in k, then the value of ` witnessing T (`) ≥ µ2k/2

can be taken to be linear in k.

Proposition 15. For any real number y ∈ (0, 1), there exists a VBE machine M(y) operating on
the mass y with type II protocol with unbounded precision and time tolerance g ∈ o(λn. 2n/2) such
that: (a) for all size n ∈ N, M(y) halts for the input word 1n and the content of the output tape is
a dyadic rational z such that |z − r| < 2−n and (b) the number of steps of M(y) is bounded by a
polynomial in n.

Proof: This is a consequence of Proposition 14. For any real value y, we take V BE as the intended
experiment with unknown mass y. Take T as any exponential time schedule. The oracle Turing
machine, for input 1n, consists simply in a call to BinarySearch[1, IP](`), where ` is chosen such
that ` ≥ n + 1 and T (` + 3) ≥ 2(n+2)/2 (moreover ` is linear in n), thus producing the desired
approximation with probability 1. Since T (n) is exponential in n and ` is linear in n, the number
of steps of the VBE machine is bounded by a function in O(`2an) ⊆ O(2(a+1)n), for some a. �

6. Measuring with the VBE machine with fixed precision

The final case to consider is that of fixed precision. The measurement algorithms that we are
going to specify do not produce approximations to a given mass. Instead, the goal is to compute the
approximation to the probability of some particular event. We are going to obtain approximations
to the probability of getting “first” from Compare[...](10�`, 11�`), corresponding to the test masses
1/2 and 3/4, with fixed precision ε for the mass and time tolerance g, either in the type I or type
II protocols.

Proposition 16. Let T be a time schedule such that T (2) > Texp(1/2, 3/4) =
√

5. For any mass
y ∈ (1/2, 3/4), let Pfirst(y) denote the probability of obtaining result “first” in protocol Compare
[1, FP (ε)](10, 11) (resp. Compare[2, FP (ε), g](10, 11), for any time tolerance g) for the experiment
with test mass y. Then, for any sufficiently small ε, Pfirst(1/2) = 0, Pfirst(3/4) = 1 and Pfirst is
a continuous, increasing function in (1/2, 3/4).

The above proposition entails that, by the intermediate value theorem, for any intended proba-
bility p, there is some mass y such that Pfirst(y) = p, and so we can compute approximations to p
by setting y as desired and repeating several times the protocol call Compare[...](10, 11). All that
is left is to formalize the algorithm and state its properties.

Proposition 17. In the fixed precision scenario, with protocol type I or II, with any time toler-
ance, for any time schedule T such that T (2) > Texp(1/2, 3/4), there exists a sufficiently small ε
such that, for any unknown mass y and natural number h, (a) the time complexity of algorithm
FreqCountFP(ε, h) of Figure 10 is O(22`), where ` is the input, and (b) with probability of er-
ror 2−h, the output of algorithm FreqCountFP(ε, h) on input ` is a dyadic rational m such that
|Pfirst(y)−m| < 2−`.

17

Proof: The procedure Compare[P](10, 11) can be seen as a Bernoulli trial with probability of success
p. Let α be the quantity of experiments returning “first” in ζ = 22`+h−2 trials and X denote
the estimator X = α/ζ. we conclude that E[X] = p and V[X] ≤ 1/(4ζ). The probability that
|X − p| > 2−` can be bounded by the Chebyshev’s inequality, P (|X − p| > 1/2`) ≤ V[X] × 22` ≤
22`/(4ζ) = 2−h. �

Algorithm “FreqCountFP(ε, h)”

“Mass”: Finite precision case

Input a natural number ` – used to set the precision of the approximation;
counter := 0;
ζ := 22`+h−2;
Repeat ζ vezes

s := Compare[P](10, 11); %P is both for the first and the second types

If s = “first” Then counter := counter + 1
End Repeat;
Output the dyadic rational denoted by counter/ζ.

Figure 10: Procedure to obtain an approximation of a real probability p, assuming fixed precision ε and unknown
mass y such that Pfirst(y) = p. The value h is an integer number used to bound the probability of error.

Proposition 18. For any real number y ∈ (0, 1), for all sufficiently small ε, and for all γ ∈ (0, 1/2),
there exists a VBE machine M(y) clocked in exponential time operating, either with type I protocol
or type II protocol with arbitrary tolerance, with fixed precision ε, such that, for every n ∈ N, every
computation of M(y) on input word 1n halts with a dyadic rational z as output, such that, with
probability of failure at most γ, |z − r| < 2−n.

Proof: This is a consequence of Proposition 17. We take any time schedule T such that T (2) >
Texp(1/2, 3/4), any ε ∈ (0, 1/2) in the conditions of Proposition 16 and, for any γ ∈ (0, 1), any
positive integer number h such that 2−h ≤ γ. Now consider the oracle Turing machine that, for
input word 1`, makes a call to FreqCountFP(ε, h)(`). For any real number r we take a VBE machine
with unknown mass y chosen such that Pfirst(y) = r, where Pfirst is given by Proposition 16. The
above machine produces the desired approximation with probability of failure at most 2−h ≤ γ.
Furthermore, the number of steps is bounded by a function of the order of O(22`). �

7. Tossing coins with the VBE machine

The final step before establishing lower bounds is to find out which protocols can be used with
the VBE to simulate coin tosses. As expected, any probabilistic protocol suffices; that is, only
type I and Type II protocols operating with infinite precision and infinite precision and tolerance
0, respectively, do not allow for fair coin tosses.

Proposition 19. The VBE machine operating with type I protocol with unbounded or fixed precision
for sufficiently small ε permits coin tosses.

Proof: For a given y, let z be a dyadic rational such that z 6= y and let ` ≥ |z| be such that T (`) >
Texp(z, y). Observe that both calls Compare[..., UP, ...](z�`, z�`) and Compare[..., FP (ε), ...](z�`, z�`)

18

have more than one possible result (in fact, both return “first” or “second” with the same,
non-null probability). �

Proposition 20. The VBE machine operating with type II protocol with infinite, unbounded, or
fixed precision, for sufficiently small ε and non-null tolerance g, permits coin tosses.

Proof: For a given y, let z be a dyadic rational such that z 6= y and let ` ≥ |z| be such that
T (`) > Texp(z, y) and g(`) > 0. Now observe that protocol call Compare[2, P, g](z�`, z�`), where P
is any of the protocol variants, has more than one possible result (in fact, both return “first” or
“second” with the same, non-null probability). �

Proposition 21. The VBE machine operating with type II protocol with unbounded or fixed preci-
sion, for sufficiently small ε and tolerance 0, permits coin tosses.

Proof: For a given unknown mass y, we will find a dyadic rational z of size ` such that the protocol
call Compare[2, UP, 0](z�`, z�`) (resp. Compare[2, FP (ε), 0](z�`, z�`)) returns “first” or “second”
with the same probability. We will require that T (`) > Texp(z, y) (this ensures that we do not
get “timeout” with probability 1) and dTexp(z − 2−`, y)e 6= dTexp(z + 2−`, y)e (resp. dTexp(z −
ε, y)e 6= dTexp(z + ε, y)e; this ensures that we do not get “undistinguishable” with probability
1). The above constraints are satisfied by considering a large enough integer k such that equation
Texp(x, y) = k, for fixed y, has a solution x. We then take ` such that T (`) > k and z of size ` such
that z − 2−` < x ≤ z (resp. z − ε < x ≤ z). �

8. The Cantor set C3

We denote by C3 (the Cantor numbers) the set of real numbers x such that x =
∑∞
k=1 xk2−3k,

where xk ∈ {1, 2, 4}, i.e., the numbers composed by triples of the form 001, 010, or 100.

Proposition 22. For every x ∈ C3 and for every dyadic rational z ∈ (0, 1) with size |z| = m,
(a) if |x − z| ≤ 1/2i+5, then the binary expansions of x and z coincide in the first i bits and
(b) |x− z| > 1/2m+10.

Proof: (a) First suppose that z and x coincide on the first i− 1 bits and differ on the ith bit. We
have two relevant cases.

z < x: In this case zi = 0 and xi = 1. In the worst cases the binary expansion for z after the ith
position begins with a sequence of 1s and the binary expansion for x after the ith position begins
with a sequence of 0s:

i lower bound of |x− z|
z · · · 011111 · · ·
x (case i ≡3 0) · · · 100100 · · · > 2−(i+3)

x (case i ≡3 1) · · · 100001 · · · > 2−(i+5)

x (case i ≡3 2) · · · 100010 · · · > 2−(i+4)

z > x: In this case zi = 1 and xi = 0. In the worst cases the binary expansion for z after the ith
position begins with a sequence of 0s and the binary expansion for x after the ith position begins

19

with a sequence of 1s:

i lower bound of |x− z|
z · · · 1000 · · ·
x (case i ≡3 0) · · · 0100 · · · > 2−(i+2)

x (case i ≡3 1) · · · 0101 · · · > 2−(i+2)

x (case i ≡3 2) · · · 0110 · · · > 2−(i+3)

We conclude that in any case |x− z| > 2−(i+5). Thus, if |x− z| ≤ 2−(i+5), then x and z coincide
in the first i bits.

(b) Since the binary expansion of z after the mth bit is exclusively composed of 0s and any
Cantor number x ∈ C3 has at most four consecutive 0s in its binary expansion, we conclude that,
in the best fit, z and x can not coincide in the m+ 5th bit. Thus, by (a), |x− z| > 2−(m+10). �

Now we will encode a given advice function f : N→ {0, 1}? into a real number in (0, 1).

Definition 1. The encoding of a word w ∈ Σ?, denoted by c(w), is the binary expression of the
real number obtained first by converting w to a string of 0’s and 1’s, and then replacing every 0 by
100 and every 1 by 010. Given a function f ∈ log?, we denote the encoding of f by the real number
µ(f) = limµ(f)(n), recursively defined by (a) µ(f)(0) = 0 · c(f(0)), (b) µ(f)(n+ 1) = µ(f)(n)c(s)
whenever f(n+ 1) = f(n)s and n+ 1 is not a power of two, and (c) µ(f)(n+ 1) = µ(f)(n)c(s)001,
whenever f(n+ 1) = f(n)s and n+ 1 is a power of two.

The encoding above consists on replacing the bits of f by triples 100 and 010, adding 001 at
the end of each code of f(2k), with k ∈ N. Observe that, by construction, µ(f) ∈ C3. Also, from
the encoding to get back values of the advice f . To obtain f(2k), we just have to read the bits of
µ(f) in triples until the (k + 1)-th triple 001 is found. Consequently, one may say that, whenever
f ∈ log?, by knowing O(k) bits of the real number µ(f), we can know f(2k).

9. Lower bounds on the VBE machine

We studied all variety of protocols sufficiently enough to prove the following theorems.

Proposition 23. If A ∈ P/poly, then A is decidable in polynomial time by a VBE machine
operating with type I protocol using infinite precision.

Proof: This proof of this proposition follows the steps of Proposition 25, mutatis mutandis. �

Proposition 24. (a) If A ∈ P/poly, then A is decidable in polynomial time by the VBE machine
operating with type I protocol using unbounded precision. (b) If A ∈ BPP//log?, then A is decidable
in polynomial time by the VBE machine operating with type I protocol and sufficiently small fixed
precision ε.

Proof: This proof of this proposition follows the steps of Proposition 26, mutatis mutandis, noting
that P/poly = BPP//poly . �

Proposition 25. If A ∈ P/log?, then A is decidable in polynomial time by the VBE machine
operating with type II protocol using infinite precision and tolerance zero.

20

Proof: Let f be a prefix function in log andM be a Turing machine running in polynomial time such
that, for every n ∈ N and every word w of size less than or equal to n, w ∈ A iff M accepts 〈w, f(n)〉.
Take y to be the encoding of f as a real number in (0, 1). According with Proposition 6, there
exists an integer k, an oracle Turing machineM′(y) and a time schedule T , such that (a) for every
n ∈ N, M′(y) on input 1n halts and outputs the dyadic rational z such that |z − r| < 2−n and
(b) the number of steps of M′(y) is bounded by a function in 2O(n). Our next step is to define
the oracle Turing machine, M′′(y), that decides A. For a given input w of size n, we perform a
sequence of experiments to compute f(n′), for some n′ > n. We take n′ = 2dlog(n)e. In this way,
we can obtain f(n′) if we know the binary expansion of y up to the (dlog(n)e+ 1)-th triple of the
form 001.

Since f ∈ log, this means that there are constants a and b such that, for all n, |f(n)| ≤
a log(n) + b. In particular, |f(n′)| ≤ adlog(n)e + b. Thus, we need to know at most the first
3(adlog(n)e+ b) + 3(dlog(n)e+ 1) bits of the binary expansion of y to get to the desired triple 001.
Finally, we specify our VBE machine, M′′(y) using time schedule T . For a given input word w
of size n, it simulates the machine M′(y) for input 1`, where ` = 3(a + 1)dlog(n)e + 3b + 8. By
the discussion above, the result is a dyadic rational z such that |z − r| < 2−` and thus z and r
coincide in the first `− 5 = 3(a+ 1)dlog(n)e+ 3(b+ 1) bits, and so z can be used to decode f(n′).
Afterwards, simulate M for the input word 〈w, f(n′)〉 and accept or reject based on the result of
the simulation. It is clear that this machine decides A. The time complexity of the simulation of
M′(y) is O(2a`). Since ` is logarithmic on n, the result is polynomial in n. And since M runs in
polynomial time, we conclude that M′′(y) also runs in polynomial time. �

Proposition 26. (a) If A ∈ BPP//log?, then A is decidable in polynomial time by a VBE machine
operating with type II protocol with unbounded precision and time tolerance g ∈ o(λn.2n/2). (b) If
A ∈ BPP//log?, then A is decidable in polynomial time by the VBE machine operating with type
II protocol with sufficiently small fixed precision and any time tolerance.

Proof: We prove for the case of unbounded precision. The proof relative to the fixed precision case
is similar. We use a proof similar to the proof of Proposition 25, but now we have to take into
account both the error probability in measuring and the simulation of a fair coin toss.

Let f be a prefix function in log, γ1 be a real number in (0, 1/2) and N be a Turing machine
running in polynomial time such that, for any natural number n and any word w of size less than
or equal to n,

if w ∈ A, then N rejects 〈w, f(n)〉 with probability at most γ1;
if w 6∈ A, then N accepts 〈w, f(n)〉 with probability at most γ1.

Let p3 be a polynomial bound on the running time of N . Let also r be the coding y = µ(f) and
γ3 be such that γ1 +γ3 < 1/2. Then, according with Propositions 15 (unbounded precision) and 18
(fixed precision), there is an integer k, an oracle Turing machineM(y), and a time schedule T such
that: (a) for all size n, every computation of M(y), for input word 1n, halts and, with probability
of failure at most γ3, the content of the output tape is a dyadic rational z such that |z − y| < 2−n

and (b) the number of steps of M(y) is bounded by a function in O(2an).
Furthermore, in agreement with Propositions 20 or 21, we conclude that there is a dyadic

rational z such that the protocol call with query z has more than one possible results with non-null
probability. This means that protocol call has a probability of δ of producing some result r1, with
δ ∈ (0, 1). Let also γ2 be a positive real number such that γ1 + γ2 + γ3 < 1/2. There is an integer

21

K (depending on δ and γ2) such that, for all n, we can use Kn independent biased coin tosses to
simulate n fair coin tosses, with probability of failure at most γ2.

•

• •

• •

• •

—

compute f(n′)

—

generate coin tosses

—

simulate N

—

—

p1(|w|)

—

p2(|w|)

—

p3(|w|)

—

—

γ3

—

γ2

—

γ1

—

w, |w| = n

Figure 11: Behaviour of the oracle Turing machine M ′.

Our next goal is to define the oracle Turing machine M′ that will be used to decide A. For a
given input w of size n, the idea is again to use the experiment to compute f(n′) where n′ = 2dlogne,
and to do that we need to know at most the first 3(C1dlog(n)e+ C2) + 3(dlog(n)e+ 1) bits of the
binary expansion of y, for some constants C1 and C2. Thus, begin by simulatingM for input word
1` where ` = 3(C1 + 1)dlog(n)e + 3C2 + 8. By the above discussion, with probability of failure at
most γ3, the result is a dyadic rational m such that |m − y| < 2−` and thus, by Proposition 22,
m and r coincide in the first `− 5 = 3(C1 + 1)dlog(n)e+ 3(C2 + 1) bits, and so m can be used to
decode f(n′).

In the next step, use the dyadic rational z to produce a sequence of Kp3(n) independent biased
coin tosses, and then attempt to extract from that sequence p3(n) fair coin tosses. In case of failure
(with probability at most γ2) simply reject the input word. Otherwise, simulate N for the input
word 〈w, f(n′)〉, using the sequence of fair coin tosses to choose the path of computation. To finish
the computation, accept or reject based on the result of the simulation.

Let us see that the machine decides A. If w ∈ A, then the machine may reject w if the
wrong approximation of f(n′) was produced or if it failed in producing the sequence of independent
coin tosses or if the simulation of N rejected 〈w, f(n′)〉. This happens with probability at most
γ1 + γ2 + γ3. If w 6∈ A, then the machine may accept A if the wrong approximation of f(n′) was
produced or if the simulation of N accepted 〈w, f(n′)〉, which happens with probability at most
γ1 + γ3. So this means that the probability of failure is bounded by γ1 + γ2 + γ3 < 1/2.

Let us see that the machine runs in polynomial time. The time complexity of the first step is
O(2a`), which is again bounded by some polynomial in n, p1(n). The second step also ends in some
polynomial time p2(n) since we need only Kp3(n) biased coin tosses, which is a polynomial amount,
and each coin toss takes constant time. And since N runs in polynomial time p3, we conclude that
M′ runs in polynomial time p1 + p2 + p3. �

22

10. Upper bounds on the VBE machine

Given a vanishing value oracle (that is, an oracle with three or four possible random answers),
we can depict the sequence of the answers in a binary tree, where each path is labeled with its
probability. The leaves of these trees are marked with an accept or reject. Then, to get the
probability of acceptance of a particular word, we simply add the probabilities for each path that
ends in acceptance. The next basic idea is to think of what would happen if we change the
probabilities in the tree. This means that we are using the same procedure of the Turing machine,
but now with a different probabilistic oracle. Suppose that the tree has depth m and there is a real
number β that bounds the difference in the probabilities labeling all pair of corresponding edges
in the two trees. Proposition 2.1 of [2], states that the difference in the probabilities of acceptance
of the two trees is at most 2mβ. We need to state and prove a result equivalent to this one in [2]
but for 3-adic and 4-adic trees (see Figure 12). In [2] we defined fd(m,β) as the largest possible
difference in probabilities of acceptance for two different assignments of probabilities with difference
at most β in a d-adic probabilistic tree of height m.

Definition 2. Let d be an integer with d ≥ 2. By a d-adic probabilistic tree we mean a pair (T , D)
where:

• T is a tree with some set of nodes or vertices V , some set of edges E and some set of leaves
L ⊆ V ;

• D : E → [0, 1] is a map that assigns to each edge u a probability D(u);

• T is a d-adic tree, that is, each inner node has exactly d childs; moreover, if u1, . . . , ud are
its outgoing edges then D(u1) + . . .+D(ud) = 1;

• Each leaf is either an accepting node (labeled with ‘A’) or a rejecting node (labeled with ‘R’).

(T , D)

(T1, D1)

p1

(T2, D2)

p2

(T3, D3)

p3

(T4, D4)

p4

(T , D′)

(T1, D
′
1)

p′1

(T2, D
′
2)

p′2

(T3, D
′
3)

p′3

(T4, D
′
4)

p′4

Figure 12: Proving Proposition 27

Given two d-adic probabilistic trees (T , D) and (T , D′) with the same d-adic tree T , we define
the distance d(D,D′), as d(D,D′) = tu∈E |D(u)−D′(u)|. Let T dm denote the set of d-adic trees of
height at most m and T ∈ T dm. We define a function fd : N× [0, 1]→ [0, 1] by

fd(m,β) =
⊔

d(D,D′)≤β

|P (T , D)− P (T , D′)|

Thus fd(m,β) gives the largest possible difference in probabilities of acceptance for two different
assignments of probabilities with difference at most β.

Proposition 27. For any m ∈ N and β ∈ [0, 1], f3(m,β) ≤ 2mβ and f4(m,β) ≤ 3mβ.

23

Proof: This proposition is a generalization of Proposition 2.1 in [2]. The proof involves some algebra
but is more or less straightforward. �

Proposition 28. If A is decidable in polynomial time by a VBE machine operating with any
protocol P with exponential time schedule, then A ∈ P/poly.

Proof: Let A be a set decidable by a VBE machine operating with protocol P with an exponential
schedule T . Let c and d be constants such that, for an input word of size n, all queries have size
at most dc log n + de. A query of size k is defined by two dyadic rationals of size k, so there are
exactly 22k possible queries of size k. This means that the number of different possible queries in
a computation with an input word of size n is at most polynomial in n:

dc logn+de∑
i=1

22i <
22d+2

3
n2c .

If P is deterministic, then the advice function f is the concatenation of all triples 〈z1, z2, r〉 such
that z1 and z2 are dyadic rationals of size k ≤ dc log n + de and r encodes the result of protocol
call Compare[P](z1, z2).6 If P is probabilistic, then the advice function f is the concatenation of
all tuples 〈z1, z2, pf , ps, pt, pu〉 such that z1 and z2 are dyadic rationals of size k ≤ dc log n + de
and pf , ps, pt, pu are approximations to the probabilities of obtaining each possible result (“first”,
“second”, “timeout” or “undistinguishable”) of protocol call Compare[P](z1, z2). We will
approximate each probability with a dyadic rational of size k such that the error in the probability
of any query is bounded by 2−k. To find the suitable value of k, we observe that the VBE machine
deciding A runs in polynomial time O(na) and so the number of possible queries in the computation
of any word of size n is at most bna, for some constant b. The probabilistic tree induced by the
computation has a depth at most bna. Now, if γ is the bound on the error probability associated with
the machine, by Proposition 27, we take k such that 3bna2−k < 1/2−γ, that is, 2k > 3bna/(1/2−γ).
Such a k can then be taken to be logarithmic in n. In either case f ∈ poly since f is the concatenation
of a polynomial amount of tuples each with logarithmic size.

We specify a Turing machineM to decide A in polynomial time using f as advice. M simulates
the VBE machine for the same input word. When reaching a query state with query words z1 and z2,
it reads the appropriate tuple in f . In the deterministic case, the machine resumes the computation
in the proper outcome state. In the probabilistic case, the machine uses the approximations to the
probabilities of each result and choose one of them with k coin tosses. In the deterministic case,
it is clear that this machine decides A in polynomial time. In the probabilistic case, this machine
induces a probabilistic tree in the same way as the original machine, with depth less than bna and
edge difference lower than 2−k. Then, by Proposition 27 and the above calculations, the difference
in the probabilities of acceptance is then bounded by a constant less than 1/2 − γ. Thus, the
probability that this machine gives a wrong answer is bounded by a constant less than 1/2, and so
the machine specified decides A in polynomial time. �

This proposition is not enough for our purposes: in the first implementation we will be looking
for non-exponential time schedules and in the second implementation we want to establish the
upper bounds of P/log? or BPP//log?.

6There are either three or four possible results, so r may be encoded with only two bits.

24

10.1. Upper bounds for type I protocol

The technique that will be applied to type I protocol relies on Proposition 29, that can be used
to decide the result of an oracle query for the infinite precision case. We begin by defining the
boundary numbers.

Definition 3. Let y ∈ (0, 1) be the unknown mass and T the time schedule of a particular VBE
machine. Then, for every natural number k, we define `k and rk as the real numbers in (0, 1) such
that `k < y < rk and Texp(`k, y) = Texp(rk, y) = T (k).

Proposition 29. Let y ∈ (0, 1) be the unknown mass and T the time schedule of a particular
VBE machine for the first protocol type operating with infinite precision. Let z1 and z2 be two
dyadic rationals of size k. Let s be the result of the protocol call Compare[1, IP](z1, z2). Then,
(a) if `k ≤ z1, z2 ≤ rk, then s =“timeout”, (b) if z1 < `k ≤ z2 < rk or `k ≤ z2 ≤ rk < z1,
then s =“first”, (c) if z2 < `k ≤ z1 ≤ rk or `k ≤ z1 ≤ rk < z2, then s =“second”, (d) if
z1 < z2 < `k or rk < z2 < z1, then s =“first”, (e) if z2 < z1 < `k or rk < z1 < z2, then
s =“second”, (f) if z1 < `k < rk < z2 and z1z2 ≤ y2, then s =“first”, (g) if z1 < `k < rk < z2
and z1z2 > y2, then s =“second”, (h) if z2 < `k < rk < z1 and z1z2 > y2, then s =“first”, and
(i) if z2 < `k < rk < z1 and z1z2 ≤ y2, then s =“second”.

Proof: All the cases except for the last four are obvious. For the last four cases, we can as-
sume, without loss of generality, that z1 < `k < rk < z2. To know the answer of protocol
call Compare[1, IP](z1, z2) we need to compare Texp(z1, y) and Texp(z2, y). Using the fact that
z1 < y and z2 > y, a quick calculation reveals that Texp(z1, y) < Texp(z2, y) if and only if√

(z1 + y)/(y − z1) <
√

(z2 + y)/(z2 − y) if and only if z1z2 < y2. �
We can then use the following algorithm to simulate oracle queries for the first oracle type with

infinite precision.

Algorithm “Simulate(1, IP)”

Input two dyadic rational numbers z1 and z2 with same size k;
Advice consists of three dyadic rational numbers `k, rk (with size k) and y2 (with size 2k);

If `k ≤ z1, z2 ≤ rk Then Return “timeout”;
If z1 < `k ≤ z2 ≤ rk Or `k ≤ z2 ≤ rk < z1, Then Return “first”;
If z2 < `k ≤ z1 ≤ rk Or `k ≤ z1 ≤ rk < z2, Then Return “second”;
If z1 < z2 < `k Or rk < z2 ≤ z1, Then Return “first”;
If z2 < z1 < `k Or rk < z1 ≤ z2, Then Return “second”;
If z1 < `k < rk < z2 And z1z2 ≤ y2, Then Return “first”;
If z1 < `k < rk < z2 And z1z2 > y2, Then Return “second”;
If z2 < `k < rk < z1 And z1z2 > y2, Then Return “first”;
If z2 < `k < rk < z1 And z1z2 ≤ y2, Then Return “second”.

Figure 13: Procedure to simulate an oracle query of size k; it receives as advice the suitable approximations of the
boundary numbers `k and rk and of y2, where y is the unknown mass.

Proposition 30. If A is a set decidable in polynomial time by a VBE machine with type I protocol

25

operating with infinite precision, then A ∈ P/poly.7

Proof: LetM(y) be a VBE machine with protocol of the first type operating with infinite precision
that decides A in polynomial time. Since M(y) runs in polynomial time, there is a polynomial
bound bna to the size of the queries during the computation relative to an input of size n. Consider
the advice function f such that f(n) = `1�1#r1�1# · · ·#`t�t#rt�t#y2�2t, where y is the unknown
mass associated with M, `k and rk are the corresponding boundary numbers and t = bna, so
that f ∈ poly. Now consider the Turing machine M′ with advice f that, for an input word of
size n, simulates the VBE machine M(y) and, whenever in the query state, runs the algorithm
Simulate(1, IP) for the input z1 and z2 of size k, i.e. the content of the query tape, using `k�k, rk�k
and y2�2k as advice. Clearly, M′ has the same behaviour as M(y) and, since each simulation can
be done in polynomial time, this machine also runs in polynomial time. It follows that A ∈ P/poly .
�

For the unbounded precision case remember that when a word z is written on the query tape
the actual test mass is a real number uniformly sampled in the interval (z − 2−|z|, z + 2−|z|). To
simulate an oracle query, we will first randomly choose a dyadic rational of size |z|+s in the interval
(z − 2−|z|, z + 2−|z|) (that is, we approach the real test mass with a dyadic test mass); this can be
done with s+ 1 coin tosses. Doing this twice we obtain two dyadic rationals z′1 and z′2 close to z1
and z2, respectively; then we simulate an experiment with infinite precision with z′1 and z′2, using
approximations of `k, rk and y2 (using the algorithm Simulate[1, IP]). The whole idea is described
in Figure 14.

Algorithm “Simulate[1, UP]”

Input two dyadic rational numbers z1, z2 of size k and the desired precision s;

Advice consists of three dyadic rational numbers `k, rk (with size k + s)
and y2 (with size 2(k + s));

Randomly choose a dyadic rational z′1 of size k + s in (z1 − 2−k, z1 + 2−k);
%This can be done with s+ 1 coin tosses

Randomly choose a dyadic rational z′2 of size k + s in (z2 − 2−k, z2 + 2−k);
%This can be done with s+ 1 coin tosses

Return the output of Simulate[1, IP](z′1, z
′
2) with advice (`k, rk, y

2).

Figure 14: Procedure to simulate an oracle query of size k; it receives as advices approximations of the boundary
numbers `k and rk and of y2, where y is the unknown mass.

We observe that the algorithm Simulate[1, UP](z1, z2, s) is probabilistic, like the protocol call
Compare[1, UP](z1, z2). The next step should be to bound the difference in probabilities between
these two procedures. As the following proposition shows, this bound depends on the precision s
of the quantizer.

Proposition 31. If p is the probability of obtaining result “first”, “second” or “timeout” in
the protocol call Compare[1, UP](z1, z2), for the unbounded precision case, for an unknown mass
y and any time schedule T , and q is the probability of obtaining the same result in algorithm

7Note the difference relative to Proposition 28: Proposition 30 is independent of the time schedule.

26

Simulate[1, UP](z1, z2, s), receiving as advice approximations of y2 as well as the boundary numbers
`k and rk associated with y and T , then |p− q| < 2−s+1.

Proof: When protocol call Compare[1, UP](z1, z2) is made for dyadic rationals of size k, we can
think of the actual test masses used as a point (ξ, υ) uniformly sampled in the two-dimensional
region R = (z1 − 2−k, z1 + 2−k) × (z2 − 2−k, z2 + 2−k). This region can be divided in three
different regions: (a) the region Rf where the result is “first”, that is defined by the equations
(ξ < `k ∧ ξ < υ < y2/ξ)∨ (ξ > rk ∧ y2/ξ < υ < ξ), (b) the region Rs where the result is “second”,
that is defined by the equations (υ < `k ∧ υ < ξ < y2/υ) ∨ (υ > rk ∧ y2/υ < ξ < υ), (c) the region
Rt where the result is “timeout”, that is defined by the equations (`k < ξ < rk) ∧ (`k < υ < rk).
Then, the probability of obtaining some result “first”, “second” or “timeout” is simply the
area of the corresponding region divided by the area of the full square, which is 2−2k+2. Figure 15
shows the various regions for a possible situation.

TIMEOUTFIRST FIRST

SECOND

SECOND

Figure 15: Regions.

When we are simulating the oracle query with algorithm Simulate[1, UP], we are basically
approximating each region by a union of small squares; we are dividing R into an array of 2s+1 by
2s+1 squares, each of these squares has a representative (ξ, υ) where ξ and υ are dyadic rationals of
size 2k+s. Then, the probability of obtaining a given result is simply the number of squares for which
its representative falls in the corresponding region, divided by the total number of squares, which is
22s+2. To bound the difference in probability we observe that this difference comes from the squares
containing points in more than one region. We call these squares tainted. Observe that, whenever
a square is not tainted, that is, completely confined to one of the regions Rf , Rs, Rt, it does not
contribute to the error in the probability used in the simulation. In other words, only the tainted
squares contribute to the error. This step is decisive, since it implies that the absolute difference
|p − q| is bounded by the total area of the tainted squares. Finally, a simple counting argument

27

reveals that the total number of tainted squares is at most 2(2× 2s+1 − 1)− 1 < 2s+3. In this way,
we obtain the desired bound in the difference of probabilities, as |p− q| < 2s+3/22s+2 = 2−s+1. �

Proposition 32. If A is a set decidable in polynomial time by a VBE machine operating with type
I protocol and unbounded precision, then A ∈ P/poly.8

Proof: Let A be decidable in polynomial time by a VBE machine operating with type I protocol
and unbounded precision. We will prove that A ∈ BPP//poly . There is a polynomial bound bna on
both the size of a query and the number of queries that can be made during the computation on an
input word of size n. We want to approximate the probability of any possible result of any possible
query with a dyadic rational of size e, for a suitable e, such that the difference in probabilities of
any query is bounded by 2−e. If γ is the bound on the error probability associated with the VBE
machine, then, by Proposition 27, the suitable value of e must be such that 2× bna2−e < 1/2− γ,
that is, 2e > 2bna/(1/2− γ).9 Such a e can be taken to be logarithmic in n.

Now we consider the advice function f such that f(n) = `1�2+e#r1�2+e# · · ·#`t�t+e+1#rt�t+e+1

#y2�2(t+e+1), where y is the unknown mass associated with the VBE machine, `k and rk are the
corresponding boundary numbers and t = bna. It is immediate that f ∈ poly. We specify a machine
for deciding the set A in polynomial time, using f as advice. This machine simulates the VBE
machine for the same input word. Whenever in a query state with query words z1 and z2 of size k,
it runs algorithm Simulate(1, UP) for the input z1, z2 (in the query tape) and e+1, using `k�k+e+1,
rk�k+e+1 and y2�2(k+e+1) as advice. This machine induces a probabilistic tree in the same way as
the original machine, with depth lower than bna. Thanks to Proposition 31, the edge difference is
also lower than 2−e. Then, by Proposition 27, the difference in the probabilities of acceptance is
bounded by a constant less than 1/2 − γ. Since each simulation can be done in polynomial time,
this machine also runs in polynomial time. It follows that A ∈ BPP//poly =P/poly . �

The remaining case is that of the fixed precision ε. The idea is the same as in the unbounded
precision case, that is, we will devise a randomized algorithm to simulate oracle queries. For two
given dyadic rationals z1, z2 we discretize the region R = (z1 − ε, z1 + ε) × (z2 − ε, z2 + ε). In
the unbounded precision case it was easy to select a dyadic rational of fixed size in the interval
(z − 2−|z|, z + 2−|z|) since the amplitude was itself a dyadic rational; for the fixed precision we
have to deal with the fact that ε may not be a dyadic rational. The idea that we will use is as
follows: let t be a natural number such that 2−t−1 < ε ≤ 2−t; we randomly choose a dyadic rational
z′ ∈ (z−2−t, z+ 2−t) of size σ (this can be done with σ− t+ 1 coin tosses);10 then with probability
at least 1/2 we obtain that z′ ∈ (z − ε, z + ε). If we repeat the above procedure h times then we
can get a dyadic rational of size σ with probability of failure less than 2−h. Moreover all dyadic
rationals of size σ in the interval have the same probability of being chosen. This is the core idea
for simulating oracle queries with fixed precision.

Proposition 33. If p is the probability of obtaining result “first”, “second” or “timeout” in
the protocol call Compare[1, FP (ε)](z1, z2), for an unknown mass y and any time schedule T , and q
is the probability of obtaining the same result in algorithm Simulate[1, FP (ε)](z1, z2, σ, h) receiving
as advice approximations of y2 and ε as well as the boundary numbers `k and rk associated with y
and T , then |p− q| < 2−h+1 + ε 2−σ+3 + 2−σ+2/ε.

8Again, this result does not depend on any particular time schedule.
9The probabilistic tree induced by the VBE machine is ternary in this case.

10Observe that σ may be smaller than |z|; i.e. the dyadic rational generated has smaller size than z; the intuitive
meaning of this is that increasing the size of the queries does not contribute to increase their precision.

28

Proof: There are three situations that change the probability of a given result: (a) the algorithm fails
to produce the desired dyadic rational of size σ, (b) the algorithm does not take into account a small
area in the outer part of the region R, and (c) the algorithm has different probabilities in the inner
part of the region R. The first situation occurs with probability less than 2−h + 2−h. Regarding
the second situation, let N = bε×2σc; observe that the dyadic rationals produced by the algorithm
that are in (z− ε, z+ ε) belong in fact to the interval (z−N2−σ, z+N2−σ); this means that we are
approaching region R of Figure 15 by region R′ = (z1−N2−σ, z1+N2−σ)×(z2−N2−σ, z2+N2−σ).
This means that we must account for the difference between the areas of these two regions, which
is bounded by 4× 2ε× 2−σ. Finally, the calculations for the third situation are the same as in the
proof of Proposition 31; we divide R′ by an array of 2N by 2N squares; counting the number of
tainted squares we conclude that the difference in probabilities is less than 2/N . Now using the
fact that N > ε2σ/2 we obtain the desired bound of 2−h+1 + ε 2−σ+3 + 2−σ+2/ε. �

Algorithm “simulate(1, FP (ε))”

Input two dyadic rational numbers z1 and z2 with size k, the desired precision σ, and h;
Advice consists of four dyadic rational numbers `k, rk (size σ), y2 (size 2σ) and ε (size σ);
Find t such that 2−t−1 < ε ≤ 2−t; %Just count the number of 0s in the head of ε
Repeat h times

Randomly choose a dyadic rational z′1 of size σ in (z1 − 2−t, z1 + 2−t);
%This can be done with σ − t+ 1 coin tosses

If z′1 ∈ (z1 − ε, z1 + ε) Then Break;
End Repeat;
If z′1 6∈ (z1 − ε, z1 + ε) Then Return “timeout”;
Repeat h times

Randomly choose a dyadic rational z′2 of size σ in (z2 − 2−t, z2 + 2−t);
%This can be done with σ − t+ 1 coin tosses

If z′2 ∈ (z2 − ε, z2 + ε) Then Break;
End Repeat;
If z′2 6∈ (z2 − ε, z2 + ε) Then Return “timeout”;
Simulate[1, IP](z′1, z

′
2) with advice (`k, rk, y

2)

Figure 16: Procedure to simulate an oracle query of size k; it receives as advice approximations of the boundary
numbers `k and rk, of y2 where y is the unknown mass, and of the fixed precision ε. Observe that the result
“timeout” in two instructions is irrelevant; we could choose any other result, since the probability of the algorithm
ending in any of this instructions will decrease to 0 as we increase the value of h.

Proposition 34. If A is a set decidable in polynomial time by a VBE machine operating with type
I protocol and fixed precision ε, then A ∈ P/poly.

Proof: Let A be decidable in polynomial time by a VBE machine operating on a mass y with
type I protocol and fixed precision ε. First we observe that, to obtain a bound of 2−e on the
difference of probability in any oracle query, it suffices to consider h and σ such that h = e+ 2 and
σ = e + 3 + dlog(2ε + 1/ε)e and invoke Proposition 33.11 Since there is a polynomial bound bna

on both the size of a query and the number of queries that can be made during the computation
on an input word of size n, we take e such that 2e > 2bna/(1/2− γ). Next we consider the advice
function f such that f(n) = `1�σ#r1�σ# · · ·#`t�σ#rt�σ#y2�2σ#ε�σ, where y is the unknown mass

11The constant 3 + dlog(2ε+ 1/ε)e can be hard-wired into the machine.

29

associated with VBE machine, `k and rk are the corresponding boundary numbers and t = bna. It
is immediate that f ∈ poly (actually, σ is logarithmic in n).

The machine that decides the set A in polynomial time, using f as advice, simply simulates the
VBE machine for the same input word and replaces oracle calls by algorithm Simulate[2, FP (ε)]
using as input the content of the query tape as well as k and σ, and using as advice the appropriate
`k and rk as well as y2 and ε. This machine induces a probabilistic tree in the same way as the
original machine. By Proposition 27 and the above discussion, the difference in the probabilities
of acceptance is bounded by a constant less than 1/2 − γ. Since each simulation can be done in
polynomial time, this machine also runs in polynomial time. It follows that A ∈ BPP//poly =
P/poly . �

Proposition 35. If A is a set decidable in polynomial time by a VBE machine operating with type
I protocol and fixed precision ε, then A ∈ BPP//log?.

Proof: We strengthen the proof of Proposition 34 assuming without loss of generality that, as a
function of n, we have T (n)2 > 2. The boundary numbers `k and rk are such that

`k = y(1− 2

T (k)2 + 1
) rk = y(1 +

2

T (k)2 − 1
)

We can use d + 2 digits of y to obtain a precision of d digits on `k and rk. As in the previous
proof, σ can be taken as logarithmic in n, i.e. σ = ξdlog(n)e + e, with ξ, e ∈ N. We define an
auxiliary function f̃ such that (a) f̃(0) is the concatenation of the first e + 2 bits of y, the first
2e bits of y2, and the first e bits of ε, and (b) f̃(t + 1) is the concatenation of f̃(t), the bits from
e+ ξt+ 3 to e+ ξt+ ξ + 2 of y, the bits from 2e+ 2ξt+ 1 to 2e+ 2ξt+ ξ of y2, and the bits from
e+ ξt+ 1 to e+ ξt+ ξ of ε.

We can use f̃(t) to obtain the first ξt+e+2 digits of y, the first 2ξt+2e digits of y2, and the first
ξt+e digits of ε. By the previous discussion, we can then use the approximations of y to compute the
first ξt+e bits of any real `i or ri. Also, we can see that |f̃(t)| = ξt+e+2+2ξt+2e+ξt+e = O(t).
Finally, the advice function required is g̃(n) = f̃(dlog(n)e). Observe that g̃ is a prefix function
and that |g̃(n)| = O(log(n)). Furthermore, g̃(n) can be used to compute f(n) on the proof of
Proposition 34. Now we specify a probabilistic machine for deciding set A in polynomial time,
using g̃ as advice. Simply retrieve f from g̃ and then use the machine specified in the proof of the
previous proposition. Since this retrieval can be made in polynomial time and the above machine
also runs in polynomial time, we conclude that A is decided by this procedure in polynomial time,
as we wanted to prove. �

Algorithm “random”

Input natural numbers g – defines the range [−g, g] – and h – number of iterations;
s = dlog(2g + 1)e; % 2g+1 is the number of possible results

Repeat h times
Randomly choose a natural number r ∈ [0, 2s); %It can be done with s coin tosses;
If r ≤ 2g Then Break; %This happens with probability greater than 1/2

End Repeat;
If r > 2g Then Return “fail”;
Return r − g.

Figure 17: Probabilistic procedure to find an integer in the range [−g, g] with probability of failure bounded by 2−h.

30

10.2. Upper bounds for type II protocol

We consider now the type II protocol. In this implementation there are two aspects to consider
in order to simulate oracle queries: (a) the need to compute the exact number of machine steps
that an experiment takes and (b) the need to produce integer numbers in the range [−g(k), g(k)]
where g is the time tolerance and k is the query size. The first is solved with a suitable advice and
the second is solved by the randomizer of Figure 17.

Proposition 36. For any h ∈ N, (a) the time complexity of algorithm Random for an input g
of size n and number h is O(hn) and (b) with probability of failure less than 2−h, the output of
algorithm Random for input g is an integer in [−g, g].

We will use algorithm Random several times in the following proofs; observe also that not all
time tolerances are simulatable; in particular, we prove upper bounds under the assumption that
g is computable in polynomial time. We also need to define a sequence of real numbers, similar to
the boundary numbers.

Definition 4. Let y ∈ (0, 1) be the unknown mass of a particular VBE machine. We define the
section numbers `′k and r′k for every k ∈ N, as the real numbers in (0, 1) such that `′k < y < r′k and
Texp(`

′
k, y) = Texp(r

′
k, y) = k.

The section numbers effectively split the interval [0, 1] according to the corresponding exper-
imental time. Moreover, given a dyadic rational z, in order to compute the time taken for an
experiment with test mass z (assuming infinite precision and zero time tolerance) we simply need
to find k such that either `′k−1 < z ≤ `′k or r′k < z ≤ r′k−1. Observe also that the boundary numbers
are a particular case of section numbers since `k = `′T (k) and rk = r′T (k).

Algorithm “simulate[2, IP, g]”

Input two dyadic rational numbers z1 and z2 – both with same size k –
and a natural number h – precision desired;

Advice consists of a sequence of dyadic rationals `′′1 , . . . , `
′′
T , r
′′
T , . . . , r

′′
1

approximating the section numbers;
T is half of the number of dyadic rationals in the above sequence;
Find T1 such that `′′T1−1 < z ≤ `′′T1

or r′′T1
< z ≤ r′′T1−1;

If no such T1 exists Then T1 = T + 1;
Find T2 such that `′′T2−1 < z ≤ `′′T2

or r′′T2
< z ≤ r′′T2−1;

If no such T2 exists Then T2 = T + 1;
T1 := T1 +Random(g(k));
T2 := T2 +Random(g(k));
Compare T1 and T2:
If T1 > T And T2 > T Then Return “timeout”;
If T1 < T2 Then Return “first”;
If T1 > T2 Then Return “second”;
If T1 = T2 Then Return “indistinguishable”.

Figure 18: Procedure to simulate an oracle query of size k; it receives as advice approximations `′′1 , . . . , `
′′
T and

r′′1 , . . . , r
′′
T of the section numbers `′1, . . . , `

′
T and r′1, . . . , r

′
T as in the proof of Proposition 37; assume that g ∈ PF .

Proposition 37. If A be a set decidable in polynomial time by a VBE machine operating with type
II protocol with infinite precision and time tolerance g ∈ PF , then A ∈ P/poly.

31

Proof: LetM(y) be a VBE machine operating with mass y and deciding A in polynomial time with
protocol (2, IP, g), where g ∈ PF . In the case that g 6≡ 0, let γ ∈ (0, 1/2) bound the probability
of failure. Since M(y) runs in polynomial time, there is a polynomial bna such that, for every
input word of size n: (a) it bounds the number of possible queries and (b) it bounds the maximum
possible size of a query. Consider the advice function f such that f(n) = `′1�t#`

′
2�t# · · ·#`′t�t##r′t�t

· · ·#r′2�t#r′1�t, where t = bna. That is, f(n) is a non-decreasing sequence of dyadic rationals of
size t that divide the interval [0, 1] in intersecting sub-intervals corresponding to each experimental
time. Observe that timeouts occur when the test mass lies in (`′t, r

′
t).

The machine that decides the set A in polynomial time, using f as advice, simply simulatesM
for the same input word of size n. Whenever in a query state, M(y) sequentially compares the
query words z1 and z2 with the dyadic rationals in the advice, thus obtaining T1 and T2 such that
dTexp(z1, y)e = T1 and dTexp(z2, y)e = T2. In the case that `t < zi < rt (that is, the experiment
times out), we take Ti as t+ 1.

In the case that g is the null function, we can simply resume the computation in the correspond-
ing state (“first”, “second”, “timeout” or “indistinguishable”) by comparing T1, T2 and t.
For a non-null g, we produce two random integers r1 and r2 with two calls to Random(g(|z1|, h)
for a suitable value of h.12 If any of these calls fail (with probability less than 2−h) we resume the
computation in the state “timeout”. Otherwise we compare T1 + r1, T2 + r2 and t and resume
the computation in the corresponding state. To find the suitable value of h, observe that this
machine induces a probabilistic tree in the same way as M(y), with edge difference lower than
2×2−h. The depth of the tree is bounded by t which is polynomial in n. Thus, we take h such that
3× t× 2× 2−h < 1/2− γ, that is, 2h > 6t/(1/2− γ), so that h is polylogarithmic in n. Then, by
Proposition 27, the difference in the probabilities of acceptance is bounded by a constant less than
1/2 − γ and so the probability that this machine gives a wrong answer is bounded by a constant
less than 1/2. In either case (g ≡ 0 or g 6≡ 0) each simulation can be done in polynomial time, so
this machine also runs in polynomial time. It follows that A ∈ P/poly or A ∈ BPP//poly , which
are the same. �

Algorithm “simulate[2, UP, g]”

Input two dyadic rational numbers z1 and z2 — both with same size k
— and natural numbers s and h — desired precision;

Advice consists of a sequence of dyadic rationals `′′1 , . . . , `
′′
T , r
′′
T , . . . , r

′′
1

approximating the section numbers;
Randomly choose a dyadic rational z′1 of size k + s in (z1 − 2−k, z1 + 2−k);

%This can be done with s+ 1 coin tosses

Randomly choose a dyadic rational z′2 of size k + s in (z2 − 2−k, z2 + 2−k);
%This can be done with s+ 1 coin tosses

Return the output of Simulate[2, IP, g](z′1, z
′
2, h) with the same advice.

Figure 19: Procedure to simulate an oracle query of size k; it receives as advice approximations `′′1 , . . . , `
′′
t and

r′′1 , . . . , r
′′
t of the section numbers `′1, . . . , `

′
t and r′1, . . . , r

′
t as in the proof of the Proposition 37; assume that g ∈ PF .

For the other precision cases, we again consider a technique similar to quantization. To simulate
an oracle query with test masses z1 and z2 of size k, we first generate in a random way dyadic

12This is the step in which we assume that g ∈ PF .

32

rationals z′1 and z′2 of a suitable size close to z1 and z2, respectively; then we simulate an experiment
with infinite precision with z′1 and z′2 using algorithm Simulate[2, IP, g].

Proposition 38. If p be the probability of obtaining either result “first”, “second”, “timeout”
or “indistinguishable” in protocol Compare[2, UP, g](z1, z2), for an unknown mass y, any time
schedule T , and any time tolerance g ∈ PF , and q is the probability of obtaining the same result
in algorithm Simulate [2, UP, g](z1, z2, s, h), where z1 and z2 have size k, receiving as advice dyadic
rationals `′′1 , . . . , `

′′
t , r
′′
t , . . . , r

′′
1 approximating the section numbers `′1, . . . , `

′
t, r
′
t, . . . , r

′
1 such that |`′′i −

`′i|, |r′′i − r′i| < 2−k−s, then |p− q| < 2−h+1 + 2−s+2 T (k).

Proof: We can think that the actual test masses used are points (ξ, υ) uniformly sampled in the
two-dimensional region R = (z1− 2−k, z1 + 2−k)× (z2− 2−k, z2 + 2−k). This region can be divided
in regions Ri, i ∈ N, where Ri is the set of points (ξ, υ) such that dTexp(ξ, y)e − dTexp(υ, y)e = i.
Then, the probability of obtaining a time difference of i (not accounting for the time tolerance) is
simply the area of the corresponding region divided by the area of the full square, which is 2−2k+2.
Figure 20 shows the various regions for a possible situation.

T . O .

0

+ 1

+ 2

+ 3

+ 2

+ 1

0

- 1

0

+ 1

+ 2

+ 1

0

- 1

- 2

- 1

0

+ 1

0

- 1

- 2

- 3

- 2

- 1

- 1

- 2

- 3

- 2

- 1

0

+ 1

0

- 1

- 2

- 1

0

+ 1

+ 2

+ 1

0

- 1

0

+ 1

+ 2

+ 3

+ 2

+ 1

0

Figure 20: Example of the regions, for the square [0, 1]× [0, 1], with y = 1/2.

Finally, the probability of obtaining a given result “first”, “second”, “timeout” or “indis-
tinguishable” is the weighted sum of the above probabilities, such that region Ri has a weighted
probability corresponding to the probability of obtaining that result given that the time difference
is i. When we are simulating the oracle query with algorithm Simulate[2, UP, g], we are dividing
R into an array of 2s+1 by 2s+1 squares, each of these squares has a representative (ξ, υ) where
ξ and υ are dyadic rationals of size 2k+s. Then, the probability of obtaining a time difference of
i is the number of squares for which its representative falls in the corresponding region, divided
by the total number of squares, which is 22s+2. To bound the difference in probability we observe

33

that once more only the tainted squares contribute for a difference in probabilities; in this case the
tainted squares are those that lie in a zone where the integer part of the time changes (in Figure 20
this correspond to the dashed lines). Thus the absolute difference |p − q| is bounded by the total
area of the tainted squares. A simple counting argument reveals that the total number of tainted
squares is less than 4 × 2s+1 ×m where m is the number of vertical lines (m is bounded by twice
the largest value of the time schedule). We also need to add the probability of getting failures when
performing algorithm Random which is 2−h+1. Thus, we obtain the desired bound in the difference
of probabilities, as |p− q| < 2−h+1 + 8× T (k)× 2s+1/22s+2 = 2−h+1 + 2−s+2T (k). �

Proposition 39. If A is a set decidable in polynomial time by a VBE machine operating with type
II protocol with unbounded precision and time tolerance g ∈ PF , then A ∈ P/poly. Moreover, if the
time schedule T is exponential, then A ∈ BPP//log?.

Proof: Let M(y) be a VBE machine operating with mass y deciding A in polynomial time with
protocol (2, UP, g) where g ∈ PF . Let γ ∈ (0, 1/2) bound the probability of failure. Since M runs
in polynomial time, there is a polynomial bna bounding all of the following, in the computation of an
input word of size n: (a) the number of queries made, (b) the maximum possible size of a query, and
(c) the largest value taken by the time schedule (that is, T (k) where k is the maximum possible size of
a query). Consider the advice function f such that f(n) = `′1�t#`

′
2�t# · · ·#`′t�t##r′t�t# · · ·#r′2�t#r′1�t,

where t = bna and t+s for a suitable choice of s. That is, f(n) is a non-decreasing sequence of dyadic
rationals of size t+ s dividing the interval [0, 1] in sub-intervals corresponding to each experimental
time. Observe that timeouts occur when the test mass lies in (`′t, r

′
t).

The machine that decides set A in polynomial time, using f as advice, simply simulatesM(y) for
the same input word of size n and replaces protocol calls with Simulate(2, UP, g)(z1, z2, s, h) for a
suitable choice of h. The difference in probabilities, by Proposition 38, is less than 2−h+1 + 2−s+2 t.
To find the suitable values of s and h, observe that this machine induces a probabilistic tree in
the same way as M(y), with depth bounded by t which is polynomial in n. Thus, we take h
and s such that 3 × t × (2−h+1 + 2−s+2 t) < 1/2 − γ, for example, taking 2h > 12t/(1/2 − γ)
and 2s > 24t2/(1/2 − γ), so that h and s are logarithmic in n. Then, by Proposition 27, the
difference in the probabilities of acceptance is bounded by a constant less than 1/2− γ and so the
probability that this machine gives a wrong answer is bounded by a constant less than 1/2. Since
each simulation can be done in polynomial time, this machine also runs in polynomial time. It
follows that A ∈ P/poly .

Finally, in the assumption that T is exponential, the maximum posible size of a query is bounded
by some value σ which is logarithmic in n. But in this case we can take an advice function f̃
consisting on the binary expansion of y from which we can retrieve approximations of `′i and r′i by
taking `′′i = y (i2 − 1)/(i2 + 1) and r′′i = y (i2 + 1)/(i2 − 1). It can be seen in a similar reasoning to
previous proofs that to get an approximation with precision 2−σ−s we need σ + s + 2 digits of y,
thus f̃ can be taken to be a prefix function in log. Now we can retrieve f from f̃ and repeat the
same procedure to decide A in polynomial time, thus concluding that A ∈ BPP//log?. �

For the fixed precision case, all we need to do is devise once more an algorithm to simulate
queries and then prove the upper bound.

Proposition 40. Let r be either result “first”, “second”, “timeout” or “indistinguishable”.
If p is the probability of obtaining result r in protocol call Compare[2, FP (ε), g](z1, z2), for an un-
known mass y, any time schedule T and any time precision g ∈ PF , and q is the probability of
obtaining result r in algorithm Simulate[1, FP (ε), g](z1, z2, σ, h) receiving as advice dyadic rationals

34

`′′1 , · · · , `′′t , r′′t , · · · , r′′1 such that |`′′i − `′i|, |r′′i − r′i| < 2−σ and an approximation of ε with error less
than 2−σ, then |p− q| < 2−h+2 + ε 2−σ+3 + 2−σ+3 T (|z1|)/ε.

Proof: There are four situations that change the probability of a given result: (a) the algorithm
failed in producing a desired dyadic rational of size σ, (b) the algorithm failed in sampling a random
integer in [−g(z1), g(z1)], (c) the algorithm does not take into account a small area on the outer
part of the region R, and (d) the algorithm has different probabilities in the inner part of the
region R. The first situation occurs with probability less than 2−h + 2−h. The second situation
occurs also with probability less than 2−h + 2−h. Regarding the third and fourth situations, let
N = bε× 2σc > 1

2ε2
σ; the small region that is not accounted has area less than 4× 2ε× 2−σ. For

the last situation we repeat the reasoning as in Proposition 38; the number of tainted squares is
less than 4NT (|z1|). We obtain the desired bound of 2−h+2 + ε 2−σ+3 + 2−σ+3 T (|z1|)/ε. �

Algorithm “simulate[2, FP (ε)]”

Input two dyadic rational numbers z1 and z2 – both with same size k –
and natural numbers σ and h – precision desired;

Advice consists of a sequence of dyadic rationals `′′1 , · · · , `′′T , r
′′
T , · · · , r

′′
1

approximating the section numbers and ε (size σ);
Find t such that 2−t−1 < ε ≤ 2−t; %Just count the number of 0s in the head of ε;

%This can be done with s+ 1 coin tosses

Repeat h times
Randomly choose a dyadic rational z′1 of size σ in (z1 − 2−t, z1 + 2−t);

%This can be done with σ − t+ 1 coin tosses

If z′1 ∈ (z1 − ε, z1 + ε) Then Break
End Repeat;
If z′1 6∈ (z1 − ε, z1 + ε) Then Return “timeout”;
Repeat h times

Randomly choose a dyadic rational z′2 of size σ in (z2 − 2−t, z2 + 2−t);
%This can be done with σ − t+ 1 coin tosses

If z′2 ∈ (z2 − ε, z2 + ε) Then Break
End Repeat;
If z′2 6∈ (z2 − ε, z2 + ε) Then Return “timeout”;
Simulate(2, IP, g)(z′1, z

′
2, h) with advice given by the section numbers

Figure 21: Procedure to simulate an oracle query of size k; receives as advices approximations `′1, . . . , `
′
t and r′1, . . . , r

′
t

of the section numbers `1, . . . , `t and r1, . . . , rt and of the fixed precision ε; assume that g ∈ PF .

Proposition 41. If A is a set decidable in polynomial time by a VBE machine operating with type
II protocol with fixed precision ε and time precision g ∈ PF , then A ∈ BPP//log?.

Proof: Let M(y) be a VBE machine operating with mass y deciding A in polynomial time with
protocol (2, FP (ε), g) where g ∈ PF . Let γ ∈ (0, 1/2) bound the probability of failure. SinceM(y)
runs in polynomial time, there is a polynomial bna bounding the number of queries made (which
bounds the depth of the computation tree) and the largest value taken by the time schedule, during
any computation of any word of size n. We consider an advice function such that f(n) contains
the bits of y and ε. For an input word of size n, let t = bna. First we take h and σ such that
3× t× (2−h+2 + ε 2−σ+3 + 2−σ+3 t)/ε < (1/2− γ), which can be achieved with 2h > 24t/(1/2− γ)
and 2σ > 48t(ε+ t/ε)/(1/2− γ). Once more, h and σ are logarithmic in n. To get approximations
of the section numbers with error less than 2−σ we need σ+2 bits of y. This means that our advice

35

f will contain the first σ + 2 bits of y and σ bits of ε. The advice function can be specified as in
previous proofs, that is, at each new power of 2 we append to the advice a constant amount of bits
of each of these three constants. Thus f is a prefix function in log.

The machine that decides set A in polynomial time, using f as advice, begins by using the
approximations of y to produce approximations to the section numbers. Then it simulates M(y)
for the same input word and replaces protocol calls with Simulate(2, FP (ε), g)(z1, z2, σ, h) for the
suitable choices of σ and h mentioned above, using as advice the approximations of the section
numbers and of ε. The difference in probabilities, by Proposition 38, is less than 2−h+2 + ε 2−σ+3 +
2−σ+3 t/ε. Then, by Proposition 27, the difference in the probabilities of acceptance is bounded
by a constant less than 1/2 − γ and so the probability that this machine gives a wrong answer is
bounded by a constant less than 1/2. Since each simulation can be done in polynomial time, this
machine also runs in polynomial time. It follows that A ∈ BPP//log?. �

11. Conclusions

Measurement theory of Hempel (see [16]) and Carnap (see [14]), developed in Suppes et al. (see
[18]), is a theory about operations on the real world that taken to the limit define real numbers.
In this paper we have considered the abstract experimenter (e.g. the experimental physicist) as a
Turing machine and the abstract experiment of measuring a physical quantity (using a specified
physical apparatus) as an oracle to the Turing machine. The algorithm running in the Turing
machine abstracts the experimental method of measurement chosen by the experimenter (encoding
the recursive structure of experimental actions). Scientific activity seen as algorithm running in a
Turing machine is also not new in computational learning theory (see [17]).

It is standard to consider that to measure a real number µ, e.g. the value of a physical quantity,
the experimenter (the Turing machine) should proceed by approximations – oracle consultations.
Thus, besides the value of µ, we have considered dyadic rational approximations (denoted by finite
binary strings), and a procedure to measure µ proved to be universal in specific settings (see [5] for
the proof of universality of binary search method in the case of two-sided experiments). In principle,
whenever possible, the algorithm conducting the experiment should approximate the unknown in
a series of convergent experimental values. The time needed to consult the oracle is not any more
a single step of computation but a number of time steps that will depend on the size of the query
(precision). Provided with such mathematical constructions, the main complexity classes of Turing
machines coupled with these measurements have been studied herein for the case of vanishing value
measurements. Two-sided measurements have been considered in [1, 5, 6, 9, 10] and threshold
experiments in [3, 10].

Two-sided experiments of measurement and their variants (see [1, 5, 6, 8, 9, 10]) have the
following common characteristics:

• A real value is being measured.

• (axiom 1) A query corresponds to a classical query to the oracle in the following sense: the
answer is “yes”, or “no”, or “timeout” (meaning no answer in the given time).

• Queries express dyadic rational putative values of the concept being measured.

• The cost of the oracle to the Turing machine expresses the time required by the experiment.13

13Remember that the classical connection between the Turing machine and the oracle is a one step computation.

36

Note that axiom 1 clarifies that the answer should be a qualitative aspect of the experimental
apparatus, e.g. a detection, and not dependent on prior measurements, that is a fundamental
measurement. The threshold oracles introduced in [3, 7, 10] have a different axiom 1, namely

• axiom 2 A query corresponds to a classical query to the oracle in the following sense: the
answer is “yes”, or “timeout”.

The vanishing oracles introduced in [7, 10] and fully studied in this paper differ also in axiom
1, 2, namely

• axiom 3 A query does not correspond to a classical query to the oracle in the following sense:
two queries are made at the same machine (experimenter) time; if the oracle answers first
to query number one, then it is interpreted as a “yes”, else if the oracle answers first to
query number two, then is interpreted as a “no”, else a “timeout” or an “indistinguishable”
is returned.

Notice that vanishing experiments correspond to an intuition about a mathematical object –
an oracle – of a specified form. The physical experiment helps in understanding that the oracle
has a cost of consultation and is stochastic, it gives intuitions about the fact that exponential time
on the size of the query is common if not universal in Physics. In this sense, the common limits
of computational power established in [19] drops from P/poly to BPP//log?. The power P/poly ,
corresponding to type I vanishing value experiments, is supported by an analog device – the oracle
– that is able to distinguish precedence between two events no matter how close in time they
happened, fact that corresponds to an impossibility in Physics, a fact that should be considered as
impossible as the existence of piecewise linear activation functions.

By this time, and with this paper, we have characterized the three identified types of physical
oracles – two-sided, threshold and vanishing value – in terms of their computation capabilities in
polynomial time. In [5], we also defined measurable number, partially agreeing with Geroch and
Hartle in their [15], identifying non-measurable numbers.

Type of Oracle Infinite Unbounded Finite
lower bound P/log? BPP//log? BPP//log?

Two-sided upper bound P/poly P/poly P/poly
upper bound (w/ exponential T) −− −− −−
lower bound P/log? BPP//log? BPP//log?

Threshold upper bound −− −− −−
upper bound (w/ exponential T) P/log? BPP//log? BPP//log?
lower bound P/poly P/poly BPP//log?

Vanishing1 upper bound P/poly P/poly BPP//log?
upper bound (w/ exponential T) −− −− −−
lower bound P/log? BPP//log? BPP//log?

Vanishing2 upper bound P/poly P/poly BPP//log?
(Time tolerance) upper bound (w/ exponential T) −− BPP//log? −−

Figure 22: Table of complexity classes of different experiments considered with different concept precision and time
tolerance. Two-sided experiments have been considered in [1, 2, 5, 6, 8, 9] and threshold experiments in [3].

Having studied the three categories of physical measurements that give rise to three types of
oracles with possible variants, we recently identified a new phenomenon of boosting computations
in polynomial time by means of non-computable schedules, increasing the computational power of
the analog-digital Turing machines in polynomial time again from BPP//log? to P/poly .

37

Table of Figure 22 reports on lower and upper bounds of VBE machines. We added the results
of our previous research on the two-sided (see [5]) and threshold oracles (see [3]).

Acknowledgements. The research of José Félix Costa is supported by Fundação para a Ciência
e Tecnologia, PEst – OE/MAT/UI0209/2011.

12. References

[1] Edwin Beggs, José Félix Costa, Bruno Loff, and John V. Tucker. Computational complexity
with experiments as oracles. Proceedings of the Royal Society, Series A (Mathematical, Physical
and Engineering Sciences), 464(2098):2777–2801, 2008.

[2] Edwin Beggs, José Félix Costa, Bruno Loff, and John V. Tucker. Computational complexity
with experiments as oracles II. Upper bounds. Proceedings of the Royal Society, Series A
(Mathematical, Physical and Engineering Sciences), 465(2105):1453–1465, 2009.

[3] Edwin Beggs, José Félix Costa, Diogo Poças, and John V. Tucker. On the power of threshold
measurements as oracles. In Giancarlo Mauri, Alberto Dennunzio, Luca Manzoni, and Anto-
nio E. Porreca, editors, Unconventional Computation and Natural Computation (UCNC 2013),
volume 7956 of Lecture Notes in Computer Science, pages 6–18. Springer, 2013.

[4] Edwin Beggs, José Félix Costa, and John V. Tucker. Computational Models of Measurement
and Hempel’s Axiomatization. In Arturo Carsetti, editor, Causality, Meaningful Complexity
and Knowledge Construction, volume 46 of Theory and Decision Library A, pages 155–184.
Springer, 2010.

[5] Edwin Beggs, José Félix Costa, and John V. Tucker. Limits to measurement in experiments
governed by algorithms. Mathematical Structures in Computer Science, 20(06):1019–1050,
2010. Special issue on Quantum Algorithms, Editor Salvador Eĺıas Venegas-Andraca.

[6] Edwin Beggs, José Félix Costa, and John V. Tucker. Physical oracles: The Turing machine and
the Wheatstone bridge. Studia Logica, 95(1–2):279–300, 2010. Special issue on Contributions
of Logic to the Foundations of Physics, Editors D. Aerts, S. Smets & J. P. Van Bendegem.

[7] Edwin Beggs, José Félix Costa, and John V. Tucker. The Turing machine and the uncer-
tainty in the measurement process. In Hélia Guerra, editor, Physics and Computation, P&C
2010, pages 62–72. CMATI – Centre for Applied Mathematics and Information Technology,
University of Azores, 2010.

[8] Edwin Beggs, José Félix Costa, and John V. Tucker. Axiomatising physical experiments as
oracles to algorithms. Philosophical Transactions of the Royal Society, Series A (Mathematical,
Physical and Engineering Sciences), 370(12):3359–3384, 2012.

[9] Edwin Beggs, José Félix Costa, and John V. Tucker. The impact of models of a physical
oracle on computational power. Mathematical Structures in Computer Science, 22(5):853–879,
2012. Special issue on Computability of the Physical, Editors Cristian S. Calude and S. Barry
Cooper.

[10] Edwin Beggs, José Félix Costa, and John V. Tucker. Three forms of physical measurement
and their computability, 2013. Submitted.

38

[11] George A. Bekey and Walter J. Karplus. Hybrid Computation. John Wiley & Sons, Inc., 1968.

[12] Max Born and Emil Wolf. Principles of Optics. Electromagnetic Theory of Propagation, In-
terference and Diffraction of Light. Pergamon Press, second (revised) edition, 1964.

[13] Olivier Bournez and Michel Cosnard. On the computational power of dynamical systems and
hybrid systems. Theoretical Computer Science, 168(2):417–459, 1996.

[14] Rudolf Carnap. Philosophical Foundations of Physics. Basic Books, 1966.

[15] Robert Geroch and James B. Hartle. Computability and physical theories. Foundations of
Physics, 16(6):533–550, 1986.

[16] Carl G. Hempel. Fundamentals of concept formation in empirical science. International En-
cyclopedia of Unified Science, 2(7), 1952.

[17] Sanjay Jain, Daniel N. Osherson, James S. Royer, and Arun Sharma. Systems That Learn. An
Introduction to Learning Theory. The MIT Press, second edition, 1999.

[18] David H. Krantz, Patrick Suppes, R. Duncan Luce, and Amos Tversky. Foundations of Mea-
surement. Dover, 2009.

[19] Hava T. Siegelmann. Neural Networks and Analog Computation: Beyond the Turing Limit.
Birkhäuser, 1999.

[20] Hava T. Siegelmann and Eduardo D. Sontag. Analog computation via neural networks. The-
oretical Computer Science, 131(2):331–360, 1994.

[21] Damien Woods and Thomas J. Naughton. An optical model of computation. Theoretical
Computer Science, 334(1-3):227–258, 2005.

39

