The ARNN model relativises P = NP and P # NP

José Félix Costa®P*, Raimundo Leong®

@Department of Mathematics, Instituto Superior Técnico
Technical University of Lisbon
Lisbon, Portugal
bCentro de Matemdtica e Aplicagoes Fundamentais do Complexo Interdisciplinar
Unwversidade de Lisboa
Lisbon, Portugal

Abstract

In this paper we prove that the relations P = NP and P # NP relativise to
the deterministic / non-deterministic artificial recurrent neural net (ARNN)
with real weights (informally considered as oracles in [10] and [11]). Al-
though, in the nineties, a dozen of papers were written on the ARNN model,
some introducing computation via neural nets with real weights and some
introducing non-deterministic and stochastic neural nets, it seems that no
one noticed such a relativisation, which makes the ARNN an interesting but
restricted model of computation.

Keywords: Analog recurrent neural nets (ARNN model),
Non-deterministic neural nets, Dynamical systems, Cost of an oracle,
Simulation of a real weighted neural net by an oracle Turing machine,
Positive relativisation of P = NP.

1. Introduction

The computability analysis of some classes of analog recurrent neural
networks can be found in, inter alia, [23, 22, 19, 21]. In [21], lower and
upper bounds on their computational power are established under diverse
limitations of resources.

*Corresponding author
Email addresses: fgcOmath.ist.utl.pt (José Félix Costa), rcoleong@gmail.com
(Raimundo Leong)

Preprint submitted to Elsevier April 27, 2013

These nets satisfy the classical constraints of computation theory, namely,
(a) input is discrete (binary) and finite, (b) output is discrete (binary) and
finite, and (c) the system is itself finite (control is finite). However, the
neurons may hold values in [0, 1] with unbounded precision. The infinite-
ness arises from two different sources: real valued weights such like physical
constants or real valued probabilities of outcome.

In such analog systems, the binary inputs are encoded into rational num-
bers in the unit interval]0,1[, and the output (supposed to be a rational
number) is decoded into a binary sequence too. The technique used in [23, 22]
consists of an encoding of the inputs into the Cantor set of either base 4 or
base 9.

We may then identify the class of sets decidable by analog recurrent neural
nets, once provided the type of the weights.

The first level is the class of nets ARNN|[Z] (see [20, 21])." These nets
are historically related with the work of Warren McCulloch and Walter Pitts.
Since the weights are integer numbers, each processor can only compute a
linear integer combination of zeros and ones. The resulting values are always
zero or one. In this case the nets “degenerate” into classical devices called
finite automata. It was Kleene who first proved that McCulloch and Pitts
nets are equivalent to finite automata and, therefore, they are able to decide
exactly the regular languages.

The second relevant class is ARNN[Q] (see [23, 21]): it is equivalent to
the Turing machines. Twofold equivalent: rational nets decide the same sets
as Turing machines and, under appropriate encoding of input and output,
they are able to decide the same sets in exactly the same time. The class
ARNNIQ)] coincide with the class of recursive enumerable sets.

The third relevant class is ARNN[R] (see [22, 21]). Reals are in general
non-computable. As shown in [22, 21], all sets over finite alphabets can be
encoded as real weights. Under polynomial time computation, these networks
simulate not only all efficient Turing computations, but also sparse oracle
Turing machines (their power is exactly P/poly).

The way the last result mentioned above was proved raised controversy in
the nineties, since the ARNN model displays the so-called hypercomputation
effect. Here, we provide a few clues that might help the reader to go through

In what follows, we denote by ARNN[.], possibly with more suffixes, both the class of
nets satisfying some structural property and the corresponding class of sets.

our paper with a clear mind.

If we assume synaptic plasticity and a more physical realizable activation
function for the neurons (system units), then the ARNN model turns to be
the recurrent neural net used in engineering applications and usually trained
(e.g., to learn grammar) using a modified method of backpropagation (see
[12]). This (steepest descent) method works only with real weighted net-
works. Thus there is nothing special about neural nets with real weights, at
least theoretically — it is a common model. But the focus of the papers cited
above was digital computation. For that purpose, the authors considered a
piecewise linear activation function rather than the regular sigmoid used in
advanced learning theory. (A further paper (see [14]) attempts to prove that
the computational power of the piecewise linear activation function does not
collapse when it is replaced by the standard sigmoid.)

The classification of the computational power of real-weighted systems
described in [23, 22, 19, 21] is surely a meritorious work. From the point
of view of models of the real world, these studies indicate that such systems
tuned with real-valued parameters (if such an assignment exists) may display
behaviour not simulable by a Turing machine. However, it does not mean
that we can set the weights of the net in a programmable fashion, in order
to compute above the Turing limit. Such a pretension was the subject of a
paper in Science (the journal, see [19]), that attracted criticism. Professor
Davis, in [10, 11], addressed this issue by saying that the author has put in
the system exactly the information she wants to extract, and by looking at the
real number as an oracle, he reduced the ARNN model to that of a Turing
machine equipped with an oracle.

In this paper we prove that the real number, inbuilt in the ARNN model
in [22], can be seen as a conventional oracle; moreover, the nature of this
oracle is such that the relation P = NP relativises, i.e., the following result
holds. If ARNN[QU {r}]P denotes the class of sets decidable with deter-
ministic rational nets in polynomial time with an extra single real weight r
and ARNN[Q U {r}]NP denotes the class of languages decidable with non-
deterministic rational nets in polynomial time with an extra single real weight
r, then:

Theorem 1. If P = NP, then, for every real weight r, ARNN[QU {r}|P =
ARNN[QU {r}|NP.?

2This result is true for a finite number of real weights.

Such a positive relativisation shows that the ARNN model is a restricted
model of computation. We then explore this fact as a clear separation be-
tween physical and mathematical oracles, being the ARNN model closer to
physical theories than the conventional Turing machine with oracle (Turing’s
o-machine). In fact, a more plausible ARNN model causes the full relativi-
sation of P = NP:

Theorem 2. If P # NP, then, for every real weight r, ARNN|QU {r}|P #
ARNN[QU {r}]NP 3

We adopted the definition of non-deterministic neural net provided in
[21]. As far as we know, such nets are not yet characterized in the literature
and the definition on a non-deterministic neural net seems not to be unique.

The idea of the proof of positive relativisation is as follows.

Once we bound the number of oracle calls of a Turing machine to a poly-
nomial on the size of the input we get a relativisation of P = NP. Such a
counting can not be done by the oracle Turing machine itself since it is a
counting over all possible non-deterministic branches of the tree of compu-
tations. However, the counting can be avoided if we restrict the oracles to
the sparse or tally ones. We prove that the ARNN model with the saturated
sigmoid activation function is simulable by Turing machines with sparse or-
acles.

Once we bound the number of oracle calls of a Turing machine to the
logarithm on the size of the input we get the relativisation of P # NP. If
the activation function becomes the analytic one, then in polynomial time
only a logarithmic number of queries can be effective all over the branches
of the non-deterministic trees. In this case, the counting can not be avoided
by “known/common” oracles (such like the tally oracles). We prove that
the ARNN model with the analytic sigmoid activation function is simulable
by the oracle Turing machine consulting its oracle a logarithmic number of
times. It turns out that the double relativisation is true for the ARNN model
with the analytic sigmoid.

In the classical positive relativisation condition, the logarithmic bound
on the number of queries can not be controlled by the Turing machine itself,
since it is an overall counting over all the branches. It is a meta-machine
counting. But in the ARNN case, that counting is not needed since the

3Idem.

system can not do more, and such result seems to be quite interesting for
natural computation.

As described above, the method of proof of the two theorems consists of
simulating the ARNN with real weights by the oracle Turing machine. To
prove these statements, we need to recall knowledge about the ARNN model.
We tried to reduce to a minimum the concepts needed, but the reader can
find within this paper a survey of the main features of the ARNN model.
Proofs done prior to this paper are fully referenced; all the others are done
for the purpose of proving the above theorems.

2. The artificial recurrent neural net

2.1. The ARNN model

We recall the concept of Analogue Recurrent Neural Net — the ARNN
model — as in [22, 23, 21]. The state space is R", for some specified n
(dimension of the system), although we will consider subspaces, namely Q"
and Z" over Q and Z, respectively. The state will be denoted by & of n
components z1(t), ..., ,(t). Inputs will be total functions of signature N —
{0,1}, i.e., streams of Boolean values. The state of the input is given at
any moment of time ¢ by a vector 4(t) of m components uy(t), ..., u,(t) (for
some m, the number of input stream lines). To specify the dynamical map
we will consider matrices A of dimension n X n, and B of dimension n x m,
both composed of real numbers. Sometimes we will restrict those values to
the rationals or to the integers. We can always consider a state variable with
fixed value 1 and workout the dynamic map to write it as follows:*

z1(t+1) = o(enzi(t) + -+ a1wn(t) +buur(t) + - + bimum(t) + 1)

zo(t+1) = opanizi(t) + -+ annen(t) + bpaui(t) + - - + bpmum (t) + ¢)

This system can be presented in abbreviated form by
Zt+1) = J(AZ(t)+ Bu(t)+ <) .

The most common functions used, oy, ..., 0, : R — R, belong to the
following classes:

4In this case the dimension n of the system does not include the state component
holding the value 1.

(a) The McCulloch-Pitts sigmoid (see [16, 12]),

oal) = 1 ifz>0
A1 0 ifr<0

(b) The saturated sigmoid (see [22, 23]),

1 ifz>1
olz)=¢ =z f0<z<1
0 ifx<O

(¢) The analytic sigmoid of parameter k (see [12]),

1

7okl = T o

Definition 1. Given a system (X) Z(t + 1) = ¢(AZ(t) + Bu(t) + ¢), with
initial condition Z(0) and u(0), a finite computation of ¥ is a sequence of
state transitions £(0)Z(1) ... Z(t) such that, for every 1 < 7 < t, (1) =
G(AZ(t — 1)+ Bu(r — 1) +).

Definition 2. Given a system (X) Z(t + 1) = ¢(AZ(t) + Bu(t) + ¢), with
initial condition Z(0) and 4(0), a computation of 3 is an infinite sequence
of state transitions Z(0) Z(1) ... Z(t) ... such that, for every T > 0, ¥(1) =
G(AZ(t — 1)+ Bu(t — 1) + o).

We choose a collection of state components, within the n components,
to denote the output of the system. Those variables are called effectors,
provided that they are always Boolean valued. For those effectors we can
define an output stream, i.e., a map v : N — {0, 1}, such that, if z; is an
effector, then v(t) = xx(t).

Definition 3. We say that a system % is in equilibrium at time t if its state
15 0.

We will only consider systems with all -components less or equal to zero,
which are in equilibrium at ¢ = 0, and such that 4(0) = 0. Consequently, at
time ¢ = 1, the state is Z(1) = ¢(AZ(0) + Bi(0) + &) = 0.

We will be working with the saturated sigmoid, but in Section 9 the
analytic sigmoid will be the case.

2.2. Hard-wiring a system

Let us give two examples to show that such a system can compute as any
other abstract machine. For the purpose, we will consider only saturated
sigmoids as activation functions of the state components of the dynamical
system. Some conventions on how to input data and extract the result from
this systems have to be established. Let ¢ : {0,1}" — {0,1}" be a func-
tion and w € {0,1}T given as conventional input: we will consider two
input streams, one is Ow0“ and the other, to validate the sequence of time
steps that the conventional input takes, is 011*10“. Analogously, we use two
streams for the system to output the result: the first one is the validation
line 00*~111Ip~ where ¢ > 1 is the time step of the first bit of the output,
and the output stream 00" ¢(w)0%, where ¢(w) is the expected answer.

We will consider hardwired structures, that is, the weights of neural nets
(the entries of the matrices A, B and vector ¢) are fixed at start. This means
that we will be dealing with time invariant systems. The dynamics can then
be expressed as " = o(AZ(t) + Bu(t) + ¢) where A and B are linear maps,
which can be represented by matrices and ¢ is a vector.

The first example is a rather simple but clarifying one — the unary suc-
cessor. There are many simple networks simulating this operation.® Consider

the system:
{ yi =o(a)
Ya = 0la+uy)

with a as input stream and y, providing the output stream. Note that in this
case the validation streams are not necessary since the output is in unary.
The reader can easily check that this system in fact computes the successor
of the input in constant time.

Now, we will define one system that compute addition in unary in linear
time. The streams a and b denote the summands, v their validation, and

Yarp the result, respectively.
The first part

ys =0(y1)
simply copies the input of the bigger number, digit by digit (being it delayed

{ yi =o(v)

5The examples that follow are not published elsewhere.

to match the timing of the next procedure). The second part

{ yy =c(a+b—1)
yi = o(3(ys +va) — (1 — y3))

codifies the term with smaller value in 2-Cantor set. Next, this result will be
“saved” in the next neuron

{vf=0clya+ys—(1—w)—ys)

while the result from the first part is being exported. When it ends, the
following part decodes the “saved” information °:

{ ye =0(2(ys + 6 +ya) — 1 —y1)
yi = 0o(2(ys + v + ya) — 2u1)

Finally, the output neuron prints out the result ?J:er =o(ys + y7) -

This example show that the systems not only can perform computations,
but also have the capacity of memory. This is due to the use of the saturated
sigmoid, which allows to uniquely encode inputs into rational numbers in the
interval [0, 1]. These systems can perform computations as other abstract
machines such as finite automata or Turing machines.

2.8. Basic logical predicates

All quantifier-free Boolean formulas can be expressed with O-ary predi-
cates 0 and 1 (meaning false and true, respectively), unary predicate NOT
and binary predicates AND and OR. The 0-ary predicates can be expressed
by a single unit with the dynamics z; = ¢(0) and 2,7 = o(1).” The unary
function NOT is computed by z},p = o(—u+1). The predicates AND and
OR given u; and us as input can be simulated by ZZND = o(u3 +uz —1) and
2op = o(uy + ug).

By composing these units, we can compute any Boolean formula. To be
able to distinguish between an output unit at rest and the one that sends the

signal false, we use an extra unit called the validation of the output. When

6Note that if the terms are equal, there is nothing to be saved.
"Since positive bias is not permited, such like 1, this value is injected in the proper
neuron from the input or input validation streams.

this unit holds the value 1, the value of the output unit holds the result of
the computation. Similarly, we add an extra input validation line.

Let o(uq, ug, uz) = uy AND (ug OR NOT us). Clearly, it can be done in
three layers. The first one to compute NOT ug and to hold the values of
and usy:

$f1 =o(u1)
$f2 = o(us)

A second layer to compute the disjunction and to hold the value of wuy:

T3, = 0(x1,)
:1:;2 =o0(x12+213)

The last one is to compute the function ¢:

+:

Lo

0(:['271 + To2 — 1)

In three steps, the solution is computed. Denoting the input validation line
by v, we add some extra units to compute the output validation a:;[’v:

xoﬂ =o(v)

The composite output is then given by the values of the state variables
and x, .

2.4. Memory and local inhibition

Since cycles in single processors are allowed, one can easily understand
that a single unit has the capacity to hold a value (forever, if needed). Given
input u, a neuron x with the dynamics 27 = o(z + u) can save the value of
u. Once u feeds in the value 1, x will hold the first 1 of u forever. To build a
more complex unit x that saves the last value introduced, consider one input
line u and input validation line v with the dynamics % = o(x + 2u — v).

Suppose now that we have another unit, y, and we want it to download
the value of x when it receives an input 1 from input line u. This downloading
unit can follow, e.g., the dynamics y* = o(z + u — 1). The input line u can
be seen as a switch. This idea can be generalized. Suppose that a unit y is
defined as y* = o(7(zi, ..., ;) + bu —b), where 7 : {0,1}* — Z is a linear

9

function with integer coefficients aq,...,ax. Let a; be the coefficient with
greatest absolute value among them and ¢ = |q;|. Then the values held by 7
are within [—ck, ck]. By setting b = ck + 1 we guarantee that: if u(t) = 0,
then y(t+ 1) = 0; if u(t) =1, then y(t + 1) = o(w(xy (1), . .., 2, (1))).

Proposition 1 (Switch Lemma). Let y be a unit of a system with dy-
namics y* = o(w(Z)). Then, there exists a new system with a unit § with the
dynamics §* = o(7T(Z, Tswiten)) such that, if Tspiuen(t) =0, then y(t+1) =0,
and if Tgwiren(t) =1, then gt +1) = y(t + 1).

2.5. Sequential Composition and Synchronization

Components of an ARNN might not have binary inputs and outputs. We
will refer to them as subsystems or subnetworks. Note that an ARNN is a
particular kind of subsystem while the reverse is not always true.

Let N} and N, be two subsystems, where N has two output units ,,, and
Toutw (denoting output and output validation, respectively) and N5 has two
input lines u;, and u;,, (denoting input and input validation, respectively)
connected to units zy,...,x,.

To connect N7 to Nz, we add two extra units, z;, and 4, ,, to N3 such
that 3, = 0(zow) and z7}, , = 0(Zourw). Then, we simply change z1,..., 2,
by substituting in their dynamics u;, and i, by @, and x, ., respectively.®

After the download performed by A5 on the computation result of N,
Toutw(t) = 0 and w4,,(t + 1) = 0, but the input unit x;, still needs to be
switched off at t +1. We can add a switch as in Proposition 1 to x;,, that is,
we can change its dynamics from = = o(2,u) to) = 0(Tout + Toutw — 1).
Suppose that T, =1 at t =T and, for t < T, Tou, = 0. At time T+ 1,
N, downloads the value that z,,; holds, and, at time T + 2, N, starts its
computation.

If we want to shut NV; down after the download, we can add a switch unit
Tswiteh- Let xjum = o(m(Z)) and b be the constant in proof of Proposition 1.
We set z! .., = 0(—7(Z) + bTourr — b(1 — Tour) + b swiren) and we add to the

dynamics of every unit x; in N (including Zpyu,) an extra term —b;Zspitcn,
where b; is the constant of Proposition 1 for the respective unit.

8The units z;, and z;,, are needed because z1, ..., z, can depend also on other
units of A3 and we do not want to change the dynamics of units that make part of the
computations of N>.

10

Proposition 2. Let N and Ny be two subsystems. Then we can connect
them sequentially into a new subsystem working as follows: N, starts its
computation while Ny is in equilibrium until the output of Ny is fed into Ns.
If needed, Ny can be shut down after Ny has downloaded its output.

Now, consider two subsystems A; and N, working in different times and
a third subsystem N waiting to receive as inputs the outputs from output
units @oue1 and Teuwo of N7 and Na, respectively. We want to feed their
outputs at the same time into A/. This is the synchronization problem in
combining subsystems n parallel.

Without loss of generality, suppose N is composed by only one unit, x,
with two input lines, u; and usy, receiving signals from N; and N5.

We add two units o; and v; to N;, where o = 0(0; + Tour;) and v} =
0(Vi+Zoutw,i)- These units hold the outputs and output validations. A switch
unit Tgyien works as follows:? af .. . = o(—xsyiten + v1 + v2 — 1). We add
two extra units, &, 1 and x;, 2, to the system N, with dynamics z;,; = o(0;)
and replace u; by z;,; in N. To finish, we modify v;, 0;, and x;,; according
to Proposition 1.

Proposition 3. Let N7 and N5 be two subsystems with one output unit and
N with two input lines. Then we can build a subsystem that works as follows:
N1 and N5 start computing at t = 1 while N is in equilibrium. The output
of one of the subsystems is saved until the other has finished its computation.
When both have finished their computations, the outputs are fed into N

We can turn off the subsystems N} and N, being synchronized after the
download into V.

These results are of extreme importance for the rest of this work, allowing
description of neural networks by separated subsystems. Despite their direct
application in what follows, this is just an unfolded corner of the discussion
about the hard-wiring of neural nets and logical description of realizable
logical propositions. For further results, see [16], [18], and [13].

2.6. Characterization of computational model

We ask now whether a system can recognize or decide a set:

9The constant term is —(n—1) when we need to combine n systems. The term —z suizch
is a switch to turn itself off.

11

Definition 4. A word w € {0,1}" is said to be classified in time v by a
system N if the input streams are (A, V), with A = 0w0® and V = 0110«
and the output streams are (U, Ry with R(t) = (t = v). If U(v) = 1, then the
word is said to be accepted, otherwise (if U(v) = 0) rejected.

The classes of sets decided by integral, rational, and real ARNN s will be
denoted, respectively, by ARNN|[Z]|, ARNN[Q], and ARNN[R].

2.6.1. Integral ARNN s

Neural nets with integer weights are an equivalent variant of those intro-
duced by McCulloch and Pitts [16]. Since the state variables only hold linear
combinations of 0 and 1, the activation function “degenerates” into a step

function:
o(z) = 1 ifx>0
10 ifz<0
Kleene proved the equivalence between finite automata and integral nets
(see [17, 20]).
Proposition 4. A is a reqular language if and only if A € ARNNI[Z].

2.6.2. Rational ARNN

The saturated sigmoid allows a trivial encoding of information of arbi-
trarily large size. For words w € {0,1}", we can use [] : {0,1}" — [0, 1]
given by:

The set {0, 1} is mapped to a subset of the rational numbers (actually, the
image of this function is a Cantor subset of the rationals). The functions
top(q) = o(4g — 2), pop(q) = o(4g — (2top(q) + 1)), and nonempty(q) =
0(4q) can retrieve bit by bit the encoded word. The encoding is done by
the functions pusho(q) = o(q/4 + 1/4) and pushi(q) = o(q/4 + 3/4). All
these functions can be implemented with simple ARNNs. The two following
propositions are proved in [23].

Proposition 5. If A C {0,1}* is decidable (in the sense of Turing) in time
t, then there exists a rational system N such that, for every word w € {0,1}F,
the system classifies w in time O(t(Jw|) + |w|).

12

We also have:
Proposition 6. A set A is recognizable if and only if A € ARNN[Q].

Since the simulation of a Turing machine can be done in linear time and
the other way around in polynomial time, the polynomial class P is preserved,
i.e., denoting by ARNN|Q]P the class of sets decidable by rational nets in
polynomial time, we have:

Proposition 7. P = ARNN|Q]P.

Until now, we have been analysing deterministic neural net models. In
the next section, we will define a non-deterministic version of these nets and
explore their properties. We recall that our final goal is to exhibit relativi-
sation results.

3. Non-determinism in the ARNN model

In this section, we will consider nets with rational or real weights, equipped
with the saturated sigmoid. First, a definition of non-deterministic net:

Definition 5. A non-deterministic analog recurrent neural net (NARNN)
N (of dimension n) consists of an analog neural net with three input units,
receiving streams V = 01l*low, U = 0w0¥, and v, a guess stream, with
dynamics defined by

—

F(t+1) = o(AZ(t) + @V (t) + bU(t) + &y(t) + d) |

where X is the state vector of dimension n, A an n X n matriz, d, a, and a
are vectors of dimension n.

Two special units are chosen for the output validation and the output,
sending out streams z = 0TV (wD=11l6Mlow "y (#) = 0, for t < Ty (|wl]), and
y(Tv(Jw]) =1 +14) = (p(w));, fori=1,...,|p(w)|, where Ty is the compu-
tation time and ¢ : {0,1}T — {0,1}* the function computed by N.*°

10Tn particular, the characteristic function of a set.

13

Note that if we impose a time bound Ty, then only the first T (Jw|) digits
of the guess stream are needed. We can regard the guess stream (which only
admits binary values as another input stream) as a path in the binary tree
for possible sets of states of the given net. Each branch corresponds to a
choice in {0,1}. The values that the unit takes decide the path along the
computation such as a guess in a non-deterministic Turing machine.

A function ¢ computed by a NARNN receives as argument a word w. If
the word w is in its domain, then value of ¢ can vary for different streams
~ that lead to acceptance, so that ¢ is multi-valued: a partial function @ :
{0,1} x {0,1}" — {0,1}* can be defined, where ®(w, ;) has value ¢(w)
given v as guess stream, 7; being a prefix of 7. We are interested in a more
restricted definition of NARNN, those that compute functions ¢ : {0,1}T —
{0,1}7, that is, given w € {0,1}", there is a 7 such that ®(w, ;) is defined
and, for all such 7, this value is the same whenever ®(w, ;) is defined. In
this case, we write ¢p(w) = ®(w, ;). Compare this restricted definition to
the following;:

Definition 6. A function ¢ is in NPF if it is computed in polynomial time
by a non-deterministic Turing machine M in the following sense:

(a) M accepts the domain of ¢ in polynomial time;

(b) if (x1,...,x,) € dom(¢), then any accepting computation writes in the
output tape the value ¢(x1,...,x,) in polynomial time.

The notion of acceptance of a language is similar to the one for non-
deterministic Turing machine:

Definition 7. A set A is said to be decided by a non-deterministic net N
if (a) for all w € A, there exists a guess stream v, such that N accepts w
(using some prefix v, of v) and (b) for all w ¢ A, all computations reject no
matter the guess 7.

This particular case coincides with the definition of a NARNN given in
23] more or less informally.'’ In the end of Chapter 4 in [21], it is written
(1) The above result suggests that a theory of computation similar to that
of Turing machines is possible for our model of analogue computation. (2)

1 This model was not explored in the nineties.

14

Despite the very different powers of the two models, at the core of both theories
1s the question of whether the verification of solutions to problems is strictly
faster than the process of solving them, or in other words whether P and NP
are different. (3) While our model clearly does not provide an answer, it
leads us to conjecture that it is quite likely that ARNN[R|NP is strictly more
powerful then ARNN[R]P.

We will see that the first statement above is not exactly true because
deterministic and non-deterministic ARNN s necessarily relativise the rela-
tion P = NP (see Section 8). The third statement points to the fact that,
curiously, the author thinks that the relation P = NP might be independent
of the relation ARNN[R]NP = ARNN|[R]P. We will see, in Section 8 that
it is not.

The construction of the simulation of the non-deterministic Turing ma-
chine by a non-deterministic ARNN with rational coefficients is identical to
that one of deterministic Turing machines in [23]. The simulation can be
handled by injecting random bits to an auxiliary unit that is used by the
control part of the dynamic system to make the option between the left or
the right transition of the Turing machine being simulated (see the switch
models in Section 2.4).

4. Polynomial resources

Let us assume in this section the special case of polynomial time compu-
tation via rational NARNN s. It is rather intuitive from [23] that these nets
are equivalent to non-deterministic Turing machines clocked in polynomial
time. We provide a short justification not found elsewhere.

Proposition 8. If ¢ is a function computed by a rational NARNN clocked
in polynomial time (denoted by ¢ € ARNN|[Q|NPF), then ¢ € NPF.'?

PROOF. Let ¢ be a function of ARNN[Q|]NPF, computed by a NARNN N,
working in polynomial time par, as in Definition 5.

Let M be a deterministic Turing machine which simulates A, according
with Proposition 5, on input w and given the prefix v, of guess stream -,
such that |y1| = par(|w]). We specify the following non-deterministic Turing
machine M:

12Gee Definition 6.

15

Procedure:
Begin
input w;
guess z such that |z| = pa(Jw]);
simulate M on (w, z);
if M is in accepting state, output its result
End

Machine M witnesses the fact that ¢ € NPF, since polynomials are
closed under addition, multiplication, and composition. ([l

Once proven the other inclusion, we will have the equivalence
Proposition 9. ARNN|[Q]NPF = NPF

The following definition and proposition provide an alternative definition
of NPF, which consists on separating a non-deterministic Turing machine
clocked in polynomial time in a polynomial long guess and a deterministic
Turing machine clocked in polynomial time.

Definition 8. The class IPF consists of functions ¢ : {0,1}7 — {0,1}7,
such that there exist a function ® : {0,1}" x {0,1}* — {0,1}* in PF and a
polynomial p with the properties:

(a) w € dom(¢) if and only if there exists z such that |z| < p(lw|) and
(w, z) € dom(P);

(b) &(w) is defined and its value is y if and only if there exists a z such that
Iz| < p(jwl]), (w,z) € dom(®P), ®(w,z) is defined and, for all such z,
O(w,z) =y.

Proposition 10. NPF = 3PF
PRrOOF. Let ¢ € NPF witnessed by the non-deterministic Turing machine

M clocked in polynomial time p. The following machine computes the func-
tion & with the properties of Definition 8:

16

Proce dure:
Begin
input w and z;
simulate M(w) using z as guess;
if M(w) is led to the accepting state, then output ¢(w),
else reject
End

Conversely, let ¢ € 3PF and ® € PF be witnessed by the Turing machine
M clocked in polynomial time p. We specify a non-deterministic Turing
machine clocked in polynomial time that computes ¢:

Proce dure:
Begin
input w;
guess z such that |z| < p(|w]);
if M(w, z) is led to the acceptance state,
then output ®(w, 2)
End

This ends the proof. 0

As a corollary of Proposition 10, we have the well known result NP = 3P,
as expected, corresponding to the characteristic functions of sets: A € NP if
and only if there is a set B € P and a polynomial p such that w € A if and
only if there exists z, |z] < p(|w]), such that (w, z) € B.

Now, we are ready to prove Theorem 9.

PROOF. Suppose ¢ € NPF = dPF. Let M be the Turing machine that
computes the corresponding function . Note that M is a deterministic
Turing machine clocked in polynomial time with two inputs. We can then
simulate M in linear time by a deterministic neural net N° with one pair
input and input validation and a guess stream. In the computation of N, no
matter the guess, we end up always with same result. U

Hence, the class of languages accepted by non-deterministic rational nets
is exactly NP. Joining this with the fact that deterministic neural nets with
polynomial time bound decides exactly P, one is induced naturally to the
positive relativisation of the hypothesis P = NP. The problem is now the
lifting from rational to real valued weights.

17

5. Oracles and Advices

By inserting an additional real weight in a rational ARNN, one obtains
an effect similar to that of an oracle. We will introduce the notion of Davis’
oracle that will allow to simulate such device by an oracle Turing machine
and vice versa.

5.1. Oracles and Advices in Standard Computation

The oracle Turing machine has also been seen as a way to reach the
“uncomputable”, called sometimes “hypercomputation” by some computer
scientists such as in [9]. We emphasise this well known definition for we are
about to consider a generalisation of it in Section 6.

Definition 9. An oracle Turing machine M s a Turing machine with a
special tape called the query tape, three special states Query; Qyes; and Gno,
equipped with a set O, called the oracle set, following the conditions:

1. When the machine is in the query state qguery, the machine interrupts
its computation and in a single step verifies if the word in the query
tape, say z, is in O;

2. If z € O, then M transitiones to Gyes;
3. If z ¢ O, then M transitiones to G,

4. After the oracle’s answer, M continues its computation.

The main idea of this oracle Turing machine is to enrich a standard Turing
machine with a black box. This black box answers the membership question,
that is, decides ‘w € O’, in one step. Note that the oracle can be an arbitrary
set, either decidable or not decidable.

We will also refer to the concept of advice.

Definition 10. Let A be a class of sets over the alphabet ¥ and F a class
of total functions of signature N — ¥*. The non-uniform class A/F is the
class of sets B over ¥ such that there exist A € A and f € F such that
w € B if and only if (w, f(Jw|)) € A. The function f is said to be an advice
function.

18

P/poly is the class of sets decidable by deterministic Turing machines
working in polynomial time with advice of a size bounded by a polynomial.
Note that f may not be computable. A similar example is P/log.

We will also need the following concept:

Definition 11. We denote by Fx the set of prefix functions with size limited
by a function in F. That is, if f € Fx, then for all n, f(n) is a prefiz of
f(n+1) and |f(n)| < g(n) for some function g € F.

5.2. Oracles in Non-Standard Computation

Families of circuits of polynomial size have been known to be in corre-
spondence with sets in P/poly (see [1], Chapter 5). In the article [22], it is
proved that each circuit family can be simulated by a rational ARNN with
an appropriate real weight.

Definition 12. A circuit is a directed acyclic graph, where nodes of in-degree
0 are called input nodes and the others gates, labeled by one of the Boolean
functions AND, OR, or NOT, computing the corresponding function. The
first two types are of many variables and the third is a unary function. A
special node with no outgoing edge is designated as the output node. The size
of a circuit is the total number of gates. The circuit is given by levels 0,
..., d so that the input nodes are in level 0, the output node in level d, and
each level has gates only receiving input from gates of the previous level. The
depth is then d. A family of circuits is a set of circuits {c,, : n € N}.

Proposition 11. (a) There is an injective enconding from the set of families
of circuits to the 9-Cantor subset of [0,1]; (b) if r encodes a family (cx)ken of
polynomial size circuits, then the code of the nth circuit can be found among
the first p(n) digits of the decimal expansion of r, where p is a polynomial
depending on (cx)ken, and furthermore (c¢) we can construct an ARNN —
call it N, — with weights in Q U {r} to extract in polynomial time, given
input w of size n, the code of ¢,.

The proof of this result relies on a subsystem, herein called BAM , which
recovers, bit by bit, such encodings (see Section 5.3 for a proof). This shows
that the class of languages decided by rational ARNN s working in polynomial
time with one real weight is as powerful as P/poly.

19

Proposition 12. P/poly C ARNN|R|P, where ARNN[R|P denotes the
class of sets decided by neural nets with real weights clocked in polynomial
time.

PROOF. Suppose A is a set in P/poly and let w be a word of size n. From
Proposition 11, we can build N, having a real weight r coding for the circuit
family A, that extracts the code ¢, of the circuit deciding A,, = AN {0, 1}™.
Feeding (w, ¢,,) into Ngyp, a rational ARNN that simulates the Turing ma-
chine deciding the set CVP '3 in polynomial time, we can decide in polyno-
mial time if w € A. OJ

In fact, ARNNs working in polynomial time with real weights decide
exactly the sets in P/poly. (Moreover, real ARNN s working in exponential
time can decide any set!) And here arises the claim of hypercomputational
power of recurrent neural nets made in [19]: If we can implement such a
real weight in a neural net, a computer with hypercomputational properties
can be built, exceeding the computational power of Turing machines! Others
proposed the use of physical constructs as oracles to access, in a natural way,
real numbers encoded in the Universe. That the impossibility of achieving
such devices does not derive from the necessity of adjustment of physical
parameters with infinite precision is addressed in [15]. However, despite the
advocated impossibility, this misconception can be refuted by the following
result:

Proposition 13. The output of an ARNN after t steps is affected only by
the first O(t) digits in the expansion of the weights.

From the proof of this proposition (see [22]), it was showed that one can
simulate a real weighted ARNN working in time ¢ by a circuit of size O(¢%).
As a corollary, we can fully classify ARNN[R|]P and ARNN[R] in the two
following propositions.

Proposition 14. ARNN[R|P = P/poly.

And, more trivially, we get:

B Circuit Value Problem.

20

Set of weights Time restriction Computational power

A none Regular languages
Q none Recursive languages
Q t DTIME(t)

R polynomial P /poly

R none All languages

Table 1: Computational power of ARNN under various restrictions.

Proposition 15. For any binary language there is a neural network with
real weights which decides it. Conversely, an exponential time restriction s
sufficient for real nets to decide any set. Summing up, ARNN[R]EXP =
ARNNIR] = P({0,1}1).

The last result is a consequence of the fact that, to decide a given lan-
guage, it is enough a family of circuits of exponential size. This uniform
classification of languages decided by ARNNs (by changing the type of the
weights) is resumed as in Table 1.

In [10], Professor Davis criticised the point of view expressed in [19],
and also other attempts of the hypercomputation claims: Since the non-
computability that Siegelmann gets from her neural nets is nothing more than
the non-computability she has built into them, it is difficult to see in what
sense she can claim to have gone “beyond the Turing limat”.

As real numbers can “boost up” the computational power of rational
ARNN , we will present real numbers in the remaining of this work as oracles
and show that they are a restricted class of oracles — we will refer to them
as Dawvis’ oracles.

To simulate a neural net with real weights, one real weight suffices (e.g.,
resulting from the shuffling of the expansions of a finite number of reals).
This will imply that a finite number of Davis’ oracles can be reduced just to
one. Therefore, it is enough to prove relativisation results in ARNN for nets
with only one Davis’ oracle, that is, only one real weight.

21

5.83. BAM and the Prefix Retrieval Process

In linear time, the prefix of r of length n can be extracted by running
an appropriate ARNN. In [22], it is presented for the first time a subsystem
that simulates this procedure to retrieve the prefix of a given weight encoded
in the 9-Cantor set.

Let Cy be the b-Cantor subset of [0,1] and r € C, a real number with
digits in {0,2,...,b — [}, where [is 1 if b is odd and 2 if b is even.!* Let us
assume that b is odd. To extract the digits of , we can first compare br with
k € {0,1,...,b — 1} through the family of functions ' Ay(r) = o(br — k)
and then shift the encoding of r one digit to the left by the shift map =(r) =
o Z;B (—=1)*Ax(r)). When the word is not trivial, for at most one k even,
the value of Ag(r) is in (0,1). If such k exists, for 0 < j < k, we have
Aj(r) =1 and, for j > k, A;j(r) = 0. The following map recovers the prefix
of r along the extraction procedure and saves it in the reverse order as 7:

W(r7) = o(F/b + 2/b 357y Ay(r)) . (1)

This dynamical system can be simulated by a four-layered net:

yt=o(V+ X (—1)Fay)

zf =o(by — k) for k € {0,...,b— 1} @)
2z =o0(2/b+2/b Zj 0:62])

7 =o0(z)

where V' is the unit that uploads the encoding of r into the BAM. Once
V sends r, the units z, extracts one digit of r at a time, while z; keeps
7.1¢ By joining a clock to this subsystem (and doing some more work on
synchronization), we can control the number of digits to be extracted. By
choosing a 9-Cantor encoding, we have the BAM as in [22].

Let us prove Proposition 11.

PROOF. (a) Let ¢, be one of the circuits from the family C' = (¢)ren. We
enumerate the gates by layer and we fix an order, say g;; is the jth gate of
level i. The encoding of the ¢, denoted by ¢, is performed as follows.

1A “good” encoding is one isomorphic to a subset of a b-Cantor encoding.

5Tn fact, for b even, verifying this property for & € {0,1,...,b — 2} is enough. For
reasons of uniformity of notation, we can include b — 1, since Ap_1(r) = 0 for all r.

16Unit 2 is only for synchronization purposes.

22

V

r

%// b\\x

Xok—1 Xog

- —(2k) ~(b—1)
N b//] 2 1 ’
7z

1/b
Zs

Figure 1: Architecture of subnet BAM. The arrows without labels have weights alternating
between —1 and 1; arrows without origin nodes denote the bias; finally, the input V injects
the code r into the unit Y.

The encoding of a level starts with 6. Each level is encoded successively
from bottom to the top level. In each level 7, the gates are encoded by order,
each g;; starting with 0, followed by the code of the gate

AND +— 42
OR — 44
NOT — 22

and then, by order, 4 if a gate g;_1 ;» from the previous level feeds into g;;,
and 2 otherwise.

We denote by w the reverse of @. The encoding of a circuit family C,
denoted by C, is given by C' = 8 ¢; 8 ¢3 8 ¢3.... This infinite sequence can
then be finally encoded into r, the corresponding real number in the 9-Cantor
set Cy.

(b) Follows from the fact that the circuits of the family (cg)ren are of
polynomial size.

(c) We have two input streams, A = 0w0* and V = 01*l0~. The vali-
dation line V feeds into the system the size of the input in unary. The unit

xf{u‘ = 0(32)w + 3V — 1) encodes |w| into a rational number g, This value

23

is saved in the unit z:

{ x;l‘relay = O'($|w‘)

.T};_ = O'(xdelay — V)

We then build the net N, the BAM system to extract r. Each time N
encounters an 8 in 7, it subtracts 1 from |w|, that is, 2¢,| —1. When g,,| = 0,
N extracts the digits of r until the next 8, outputting the code sequence of
the corresponding circuit in the correct order. The dynamics is as follows

(from [22]):

(x5 = 0(9719)
2y =0(939— 1)
g = 09210 — 2)
I; = 0'(91'10 — 3)
vy = 0(9z19 — 4)
ZL’;_ = O'(9$10 - 5)
rg = 0 (9319 — 6)
33'; = O'(9$10 — 7)
Ig = 0'(9]710 — 8)
zg = o(2A)

\ 1o = 0(rag + 29 — 1 + T2 — T3 + T4 — T5 + L6 — T7 + T5)

To count the number of 8s encountered we add 3 more units:

ziy = o(A+ 15 + 214)

l’itl = 0'(1‘7 + 2.%'13 — 2)

rls = o(—x7 + 113)
where the unit z13 holds initially the value (Jw]|)|, and its value is decremented
each time a 8 is detected in unit x14. When the value held by ;3 reaches 0,
the circuit has been downloaded. The encoding of the circuit is done by the
dynamics:

{ ;C;rl = 0'<2/9 T +2/9 $3+2/9 $5+2/9 T7 + 1/9 1312)

iy = o(zn)

The result is provided by the state component xj; = o(x7 + x5 — 1). The
units xo, . . ., 12 constitute the BAM. The unit x1; keeps the key real number
r. The control of retrieval is done by the units xi3, ..., 216 (note that in the
dynamic map of x4, 2x13—1 counts |w| downwards each time x7 = 1, working
as a switch). O

24

The y in Equation 2 can be regarded as the query unit and z; (or z5) as
the answer unit. The time of extraction is linear on the numbers of digits
required since each digit can be obtained in constant time. We say that this
“oracle” is of linear access time or linear cost. In the next sections, we will
show how to simulate a rational net with one real weight by a Turing machine
with a special type of oracle and then define access time protocols for oracles.

5.4. Davis’ Oracles

The embedding of real numbers in machines or in neural nets has been
seen as a path to achieve “non-computability”. In this subsection we provide
a way of regarding real numbers as oracles in the context of the ARNN
model.

As stated in Proposition 13, only the first digits of the expansion of the
weights are needed in a computation. The same output can be computed
by replacing the weights by their first O(t) bits if the computation can be
achieved in time ¢, i.e., the computations performed by ARNNs equipped
with real weights can only decide sets by means of (finite) prefixes of the
expansion of the weights in some base. This gives us the intuition that the
oracles embedded in ARNN s are a restricted class of (tally) oracles.

Definition 13. The Davis’ oracle O,, for some r € {0,1}*, is the set
Prefiz(r) of the prefizes of rX7 (The first n digits of v will be denoted

T|n.)

We will also call Davis’ oracles to sets of the kind O,y = {(0",7) : n €
N, 7 is a prefix of r|fq,)}, for some time constructible function f : N — N.
These two definitions are equivalent when implemented in a Turing machine
without time restrictions.

Proposition 16. (a) A net N with weights in QU {r}, r € [0,1], clocked in
constructible time Tyr(n), where n is the size of the input, can be simulated
by a Turing machine with a Davis’ oracle O, in time O(Tp(n)¥), for some
positive integer k; (b) A Turing machine M with a Davis’ oracle O, [O,]
working in constructible time Th(n), where n is the size of the input, can be
simulated by a neural net N with weights in Q U {r}, r € [0, 1], working in

time O(Tx(n)) [O(f(n) + Txe(n))}.

17"The stream 7 should be regarded as a real number in [0, 1].

25

PROOF. (a) Let O = {(0",7) : n € N, 7 is a prefix of 7|7,,(»)} be the re-
quired Davis’ oracle for the simulation of A/. Let ¢Tyr(n) be the number of
digits of r needed for the computation on words of size n. The following
Turing machine can simulate N with at most a delay polynomial in Ty (n):

Procedure:
Begin
input w;
n = Iyv(Jw|);
Ti=\

for2:=1tondo
if (0™, 70) € O, then 7 := 70,
else if (0", 71) € O, then 7 := 71,
else exit for
end for;
simulate N replacing r by 7 with input w;
output the result of N
End

(b) This statement can be proved by separating oracle calls of M from
the other computations. Since M works in time T, for an input of size n,
Tr(n) is an upper bound of the size of the query words. Let w be an input
of size n, 7 be the first Th((n) bits of r, and M the Turing machine that
receives (z,7) as input and simulates the computations of M, replacing the
oracle calls by the following procedure:

Procedure:
Begin
input query word z;
if z is a prefix of 7, then switch to state gyes,
else switch to state ¢,
End

Let N3 be an ARNN that simulates M. Then we construct a net A;
receiving information from the input stream (0w0*) and the input validation
stream (011*10¥): it consists on a binary BAM for the real r = lim O,
(in binary) plus a counter that counts Th(n) BAM steps (by linear time
simulation of the Turing machine that witnesses the time constructibility of

26

Tr), to extract 7, and a unit that saves the value of w; this net N exports
w together with 7. The sequential composition of N5 after N;, provided by
Proposition 2 produces a rational net N with a real-valued weight r, working
in time O(Tm(n) + 1+ Thv(n)), that is, O(Tp(n)).

The case of O,y can be proved similarly, by changing the number of bits
to be retrieved by the BAM to f(n). This net will work in time O(f(n) +

Tr(n)). O

The proof of Proposition 16 (b) is essential for the last sections of this
paper. To sum up: the BAM system “queries” the oracle and implements
the oracle consultation process of a Turing machine. On the other hand, the
oracle Turing machine M composed of two parts: (a) one performing all the
oracle calls first for an arbitrary input w and (b) M such that, upon receiving
a prefix of a real number and the input w, behaves like M with the oracle
calls replaced by comparisons, can be simulated by a neural net with two
interconnected subsystems: (a) A that extracts a prefix of a real number
(a BAM) and (b) N, that simulates the original Turing machine with the
oracle consultation process in real time.

Proposition 17. For allr € [0,1], ARNN[QU {r}|P = P(O,).

We will be writing ARNN|[Q]P(r) instead of ARNN[Q U {r}]P when we
want to emphasise that r is to be seen as an oracle. By induction, we can
conclude the following:

Proposition 18. ARNN[Q]P(r;)(r2)...(rn) = P(O,,)(Oy,) ... (O,.).
Proposition 19. The following classes of sets coincide:

. P/poly

Usparse s £(5)

- Utaay » P(T)

Urepo) ARNNIQIP(7)

Urep) ARNN[QU {r}]P

: UDavis’omcle(’) P<O)

~

G e e

(=

27

This is also true for the corresponding non-deterministic classes.

PROOF. (1) = (2) = (3) is known from structural complexity (see [1], Chap-
ter 5). Proposition 14 states that (5) = (1) and, from the last Proposition,
we have that (4) = (6). (1) C (4) is guaranteed by Proposition 11 and, by
definition, (4) = (5). O

6. Time protocols

The working time of a standard oracle is constant by definition. This
means that, when it is called, no matter how long a query word is, the time
taken to answer the query is the same, which is a unrealistic view when
a physical process takes the place of an oracle. Certainly, we can “solve”
the problem by replacing every call of a given oracle O by the following
subsystem:

Procedure:
Begin
input w;
count T'(Jw|) — 1 steps;
if w € O, then ‘yes’ else ‘no’
End

where w is the query word and 7" a time constructible function. Instead, we
include “naturally” an internal clock into the oracle system that works in the
required time units.

Definition 14. An oracle O works in time T when, in each call, the oracle
costs T(|z|) time steps to answer to the query z € O 18

When T is a polynomial or an exponential, we say that the oracle has
a polynomial or an exponential cost, respectively. We will be interested in
Davis’ oracles of polynomial and exponential cost. When no protocol is
referred, the answers to queries are done in one time step.

The work on physical oracles to take into account the time taken by the
physical process is introduced in [4, 6, 5, 8, 7, 3].

18T may not be time constructible.

28

7. Generalized nets

The retrieval process works in linear time by means of the use of the
saturated sigmoid. When other activation functions are adopted, the time
to retrieve the digits from the weight might well be longer.

Definition 15. A neural net is said to be a generalized net (of dimension
n with m input lines) if the activation function is given by f = o o w where
m: R"™ — R" is an affine map and o : R" — R", called the activation
function, has a bounded range and is locally Lipschitz.® The output units
are chosen within the n processors and two decision thresholds o < 3 are
set to be interpreted as 0 if an output is less than or equal to o and 1 if an
output is greater than or equal to 3.

Definition 16. A function f : R — R is s-approximable in time t, if there
is a Turing machine that computes f|y) in time ty(n) given an input of
size n. When the function s is not explicitly mentioned, we are considering
s(n) =n.

Let us consider now a neural net with the architecture of Proposition 16,
replacing the activation function o of the critical unit holding the real weight
r by g, having the right inverse g approximable in constructible time ¢, giving
rise to a generalized processor net D. Simulating the Turing machine that
computes g in order to retrieve from f(r) the first n bits of r costs t(n) steps.
Suppose that the value f(r) is given for a function f with right inverse, say g,
approximable in time ¢. The cost of retrieving the first k& bits of f(r) (by the
BAM) is O(k), but the cost of retrieving n bits of r = f(g(r)) is O(t(n)).?
This is a Davis’ oracle with access time O(t(n)). This oracle can be easily
implemented in an ARNN, done as follows: (a) a subsystem simulates M,
in real time and (b) a BAM subsystem extracts the bits of f(r). It costs
O(t(n)) to compute the first n bits of r. Languages decided by these nets
will be denoted by ARNN |[Q](f, r).

19That is, for each p > 0, there is a constant K such that, for all z; and x5 in the
domain of o, if |xg —z1| < p, then |o(z2) —o(x1)| < K|xg — 1|, where | -| is the Euclidean
norm.

20Note that 7 is a weight of the net. In a first step, the net activates a unit, sending r x 1
to another unit which evaluates in a single step f(r), where f is the activation function.
Thus, retrieving n bits of r corresponds to evaluate the first n bits of g(f(r)).

29

Definition 17. A generalized Davis’ oracle is an oracle Oy, C Prefiz(f(r)),
where r € [0,1] and f is a function with a right inverse approzimable in some
time t.21

The trivial case is the saturated sigmoid. For z € [0, 1], we have that
o(z) = z. In fact, O,, = O, is just a Davis’ oracle with linear cost. Another
example is the family of analytic sigmoids

1

7o) = T

The computation of the inverse function takes exponential time. That is
Os, . 18 a Davis’ oracle with exponential cost.

The generalised oracles do not fit into the definition of a standard oracle.
As stated before, an internal clock is naturally implemented into them, so we
can control the time taken to answer a given query. By choosing a function
f approximable in polynomial or exponential time, we obtain a Davis’ oracle
with polynomial or exponential cost, respectively, and also their simulations
in ARNN s.

8. Relativisation in ARNN s. 1. Polynomial Cost

We prove in this section the positive relativisation result for the rational
ARNN s equipped with one real weight.??

The deterministic or non-deterministic ARNN N has access to the oracle
only by performing the query in constant time — that we can take as a
few computation time steps —, as seen in Section 5.3. It means that to
read n bits of the oracle r, no more than a polynomial number of time steps
is needed. Let us suppose that p is the polynomial bounding the time of
non-deterministic system N. Then N can query an exponential number of
words (20(7’(‘“"))) to the physical oracle, for input word w. However, that is
equivalent to query just a polynomial number of words in the totality of the
branches of the non-deterministic branching tree of computations, as we will
prove in the propositions that follows.

21The cost of the oracle is t.
22 As described before, the same result applies to a finite number of real-valued weights.
Since ARNN systems are finite, the result applies to arbitrary ARNN s.

30

The results arise naturally, since no restrictions are put on the underly-
ing dynamic system. As we see, the number of queries are not limited by
polynomial bounds, but only a polynomial number of queries are effective in
determining the membership of a word to a set. This is the reason why we
consider the ARNN model as a natural model of machine that can effectively
query in polynomial time no more than a polynomial number of words to its
oracle.

Definition 18. Let Q(M,w, Q) denote the set of queries produced by the
machine M with oracle O when the input word is w. If the system is non-
deterministic, then the set Q(M,w, Q) is the union of sets of queries refer-
ring to all the computations of the branching tree.

Although trivial, the following proposition helps to understand the limi-
tations of Davis’ oracles, now seen as sparse oracles to Turing machines:

Proposition 20. Let A be a set decided by a non-deterministic Turing ma-
chine M clocked in polynomial time p, equipped with a Davis’ oracle O
of polynomial time access. Then, there is an equivalent non-deterministic
Turing machine M, clocked in polynomial time, querying the same ora-
cle at most a polynomial number of times in a computation tree. In fact,

QM w,0)| < p(Jwl).

PROOF. Suppose without loss of generality that the query language is binary.
Let O = Prefix(r), for an r € {0,1}*, where the extraction of the nth bit
takes time ¢(n). Since M is working in polynomial time p, given an input
w, the size of the queries does not exceed p(|w|). Thus, only a polynomial
number of bits of r are needed. Let M; be the machine that extracts the
first p(Jw|) 4+ 1 bits of r given the input w:

Procedure:

Begin
input w;
5=\
for i :=1 to p(Jw|) + 1 do

if 50 € O, then § := 50 else if 51 € O, then § := 51

return s

End

31

This subsystem takes polynomial time to perform the computations.??

Let My be the Turing machine with the same description as M, replacing
each oracle call by the following procedure:

Procedure:
Begin
input z;
for i := 1 to |z| do if z; # r;, then proceed to ‘no’;
proceed to ‘yes’
End

where z is the query word. The machine Mj works in polynomial time and
so does M which is the sequential composition of M, after M;. The total
number of oracle calls is indeed polynomial in the size of the input. ([l

Note that it is trivial that P(O,) = UsP(Oy,), when f has a right inverse
approximable in polynomial time (implying P/poly = U0, P(O,), where
p.c. abbreviates polynomial cost and O, is a Davis’ oracle). Note that M
results from a machine that exclusively does the oracle calls, My, and a
machine that does not query the oracle, M,. This was used in the proof
of Proposition 16. By simulating M; with a BAM and M, by the linear
time simulation of Turing machines by neural nets, we have the following
corollary, resulting from Propositions 16 and 20:

Proposition 21. Let A be a set decided by a non-deterministic rational neu-
ral net N, with a real weight r, clocked in polynomial time p. Then, there
is an equivalent non-deterministic neural net N', clocked in polynomial time,
querying r at most a polynomial number of times. In fact, \Q(/V,w,r)] <

p(lw]).

To proceed to analyze the combined power of non-determinism and the or-
acles, we need to introduce more concepts. In the non-deterministic branch-
ing computation tree of depth ¢, each computation, of size t, corresponds to
a binary word of size t.

23This is indeed a Turing machine simulation of the bit extraction process done by the
BAM subsystem of an ARNN.

32

Definition 19. Let K be the set of tuples of the form (N,w, 1", 7), where
N is a non-deterministic ARNN system having as oracle (BAM) the dyadic
rational 7 that accepts w in at most t steps.?*

We know that the set K is decidable, since the ARNN with rational
weights is simulable by a Turing machine in polynomial time by Proposition
5. But we prove a stronger result, namely:

Proposition 22. K € NP.
PrOOF. Consider the following non-deterministic Turing machine M:

Procedure:
Begin
(1) input ¥ = (N, w, 1%, 7);
(2) check if A/ encodes a non-deterministic
ARNN description;
(3) guess z € {0,1};
(4) simulate ¥ on w guided by z0¥ as input random stream
to N, with oracle value 70%;
(5) if, given that the validation output stream outputs 1,
the decision is accept, then accept else reject
End

We now prove that the non-deterministic Turing machine M can be
clocked in polynomial time. The system A has to provide an answer in
time ¢. In time ¢, each unit of N, decoded in the appropriate base, can
be rewritten ¢ times during the computation guided by z, task that can be
achieved in time polynomial in ¢, i.e., polynomial in the size of the input
(O(N+ [w|+t + 7).

To conclude the proof we have to discuss some detail about (4) in the
above algorithm. When the machine queries the oracle with query z, M

runs the following deterministic procedure:?®

24Note that, even in the case that A does not behave accordingly to the definition of a
NARNN, provided after the definition 3, it does not affect the use of this definition in the
Proposition 23.

2The word 7 is padded with 0s to the right up to |w| + 1 if |w| > |7

33

Procedure:
Begin
input z;
for i :=1 to |z|
if z; > 7; then return no
else if z; < 7; then return yes;
return yes

End
We conclude that K € NP. O

Proposition 23 (Positive relativisation PART 1). P = NP iff, for all
oracle r € [0,1], ARNN[QU {r}]P = ARNN[QU {r}|NP.

PROOF. Assume that, for every oracle r, we have ARNN[QU {r}|P =
ARNN[QU {r}]NP. As particular case, ARNN[Q]P(3) contains all sets
decidable by deterministic ARNN systems clocked in polynomial time that
do not take profit of any oracle, that is all sets decidable by deterministic
Turing machines clocked in polynomial time, that is P; on the other side,
ARNN[Q|NP(3) contains all sets decidable by non-deterministic ARNN sys-
tems clocked in polynomial time that do not take profit of any oracle, that
is all sets decidable by non-deterministic Turing machines clocked in polyno-
mial time, that is NP. Thus P = NP.

For the converse, it is clear that ARNN[Q U {r}|P C ARNN[QU {r}]NP.
We will prove that P = NP implies ARNN[QU {r}]NP C ARNN[QU {r}]P.

Let A be a set decided by a non-deterministic ARNN AN with an oracle
r clocked in polynomial time p, and consider the following algorithm:

Procedure:
Begin
input w;
if ¥ = <N, w, lp(|w|), 7“|cp(|w|)> € ’C,
then accept else reject
End

A dynamical system that reads 7 = 7|(jw|), for some constant ¢, can be
executed in linear time and, according with Proposition 13, 7 contains the bits
needed for ¥ to complete its computation; if P = NP (by hypothesis), the
test of membership to K can be decided in deterministic polynomial time too.

34

This algorithm accepts the same set as the original non-deterministic ARNN
system with oracle r, clocked in polynomial time, as we wished to show.
Then we can simulate this procedure by an ARNN system in linear time and
connect it with the previous system which reads the bits of 7, obtaining a
composite system that solves deterministically the decision process for A in
polynomial time. O

By repeating the proof for particular restrictions we have:

Proposition 24. P = NP if and only if, for any r €

[0,1] and for any f
having a right inverse approximable in polynomial time, P(

1] a
Oy.) = NP(Oy,).
As particular cases we have what was wanted:
Proposition 25. P = NP if and only if, for any r € [0,1], we have
ARNN[QU{r}]P = ARNN[QU {r}|NP .

Note that the left hand side of the equivalence of all these results claims
that, not only the whole class will collapse, but also each deterministic sub-
class will coincide with its non-deterministic counterpart. The difference

from the trivial result P = NP if and only if P/poly = NP /poly should be
emphasised.

Proposition 26. The following propositions are equivalent:
1. P=NP
2. ARNN[Q]P = ARNN|Q|NP
3. ARNN[R|P = ARNN[R|NP

9. Relativisation in ARNNs. I1. Exponential Cost

The analytic oracles are members of a larger class of oracles: the Davis’
oracles with exponential cost. As in the polynomial case, we have the fol-
lowing results that can be proved using arguments similar to the proof of
Proposition 20.

35

Proposition 27. Let A be a set decided by a non-deterministic Turing ma-
chine M clocked in polynomial time equipped with a Davis’ oracle with expo-
nential cost. Then, there is an equivalent non-deterministic Turing machine
M, clocked in polynomial time, querying the same oracle in a way such that
the total number of calls in all branches of a computation tree is logarithmic
in the size of the input.

Let Py(O) the class of sets decided by Turing machines clocked in poly-
nomial time and equipped with an oracle such that, for inputs of size n, only
a number O(log(n)) of calls are allowed. From the last proposition we have
that:

Proposition 28. For all Davis’ oracles O, with exponential cost, P(O,) =
Py(O,).

In particular,

Proposition 29. For all functions f with a right inverse approximable in
exponential time, P(Oy,) = Py(Oy,).

Proposition 30. For all Davis’ oracles O with exponential cost, P(O) C
P/logx C P/log.

The first inclusion can be easily extended to P/logx = Uec. 0,P(O,)
where e.c. abbreviates exponential cost and O, are Davis’ oracles. For this
class of oracles we have also the positive relativisation of the negative case.

Proposition 31. P = NP if and only if, for all Davis’ oracles O with ez-
ponential time access, P(O) = NP(O).

Proposition 32. P # NP if and only if, for all Davis’ oracles O with ez-
ponential time access, P(O) # NP(O).

The proof of Proposition 31 is omitted since it applies the same techniques
as in the proof of Theorem 23. We shall prove the second one. For this we
will need the following well known proposition from structural complexity
(see [2], Chapter 5):

Proposition 33. If SAT € P/log, then P = NP.

36

Now we proceed to the proof of Proposition 32.

Proor. If the statement on the right hand side is true, then for the par-
ticular case of O%’ we have that P # NP (see the corresponding case for
the polynomial cost). Suppose now that P # NP. Let O be a Davis’
oracle with exponential cost. By Proposition 33, SAT ¢ P/log. In par-
ticular, SAT ¢ P(O) by Proposition 30. As known from structural com-
plexity SAT € NP, which implies that SAT € NP(O). This proves that
P(O) # NP(0O). O

As particular cases, we have:

Proposition 34. P = NP if and only if, for all r € [0,1] and [with a right
inverse approzimable in exponential time, P(Oy,) = NP(Oy,).

Proposition 35. P # NP if and only if, for allr € [0,1] and f with a right
inverse approzimable in exponential time, P(Oy,) # NP(Oy,).

Applying the previous results to the ARNN model, we get:

Proposition 36. P = NP if and only if, for all r € [0,1] and f with a
right inverse approzimable in exponential time, we have ARNN|[Q|(f,r)P =
ARNNI[Q|(f, r)NP.

Proposition 37. P # NP if and only if, for all r € [0,1] and f with a
right inverse approzimable in exponential time, we have ARNN|[Q|(f,r)P #
ARNN|[Q](f,r)NP.

10. Conclusion

We formalised the idea of a real weight of a ARNN as an oracle, up to
the point of Martin Davis criticism in [10].

The simulation of a rational neural net with one real weight by a Turing
machine with a Davis’ oracle shows that, not only the class of ARNN[R|P
coincides with P/poly, but furthermore, the structural relation P = NP

26Note that all the classes in this compartment coincide for arbitrary reals.
2"Idem.

37

Set of weights Time restriction Protocol Computational power
Z none none Regular languages
Q none none r.e. languages
Q t none DTIME(t)
QuU{ri} polynomial exponential Py(Oy,)
QU{ry,...,mn} polynomial exponential Py(Oyy) ... (Oy)
R polynomial exponential P /log*?S
Qu{r} polynomial polynomial P(O,,)
QuU{ry,...,m} polynomial polynomial P(Oy,)...(O,)
R polynomial polynomial P /poly®T
R none none all languages

Table 2: A more refined classification of the computational power of the ARNN.

positively relativises (making these oracles a subclass of sparse sets). ARNN s
clocked in polynomial time are, in fact, a restricted model of computation.
Table 2 sumarises the classification. For the case of exponential cost, we also
have the positive relativisation of P # NP. (This result is an open problem
for the polynomial case, as in classical structural complexity.)

Returning to more “grounded” issues, there are still simple questions no
yet answered. For instance, a very rewarding work would be a classification of

38

functional properties of neural nets. Within the system of [16] it is possible to
implement a given logical function. However, giving a description of how one
ARNN performs its computation is not trivial. Most of the work published
refers to layered neural nets (for example, a BAM structure).

Acknowledgements. The research of José Félix Costa is supported
by Fundagao para a Ciéncia e Tecnologia, PEst — OE/MAT /U10209/2011.
We thank John V. Tucker for suggesting the study of the relativisation of
P = NP in different models of computation, and Edwin Beggs for working
with John V. Tucker and José Félix Costa on the subject of relativisation in
quite different framework.

References

[1] José Luis Balcazar, Josep Dias, and Joaquim Gabarré. Structural Com-
plexity I. Springer-Verlag, 2nd edition, 1988, 1995.

[2] José Luis Balcazar, Josep Dias, and Joaquim Gabarré. Structural Com-
plexity II. Springer-Verlag, 1990.

[3] Edwin Beggs, José Félix Costa, Diogo Pogas, and John V. Tucker. On
the power of threshold measurements as oracles. In Manindra Agrawal,
Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors, Unconventional
Computation and Natural Computation (UCNC 2013), Lecture Notes in
Computer Science. Springer, 2013.

[4] Edwin Beggs, José Félix Costa, and John V. Tucker. Physical experi-
ments as oracles. Bulletin of the European Association for Theoretical
Computer Science, 97:137-151, 2009. An invited paper for the “Natural
Computing Column”.

[5] Edwin Beggs, José Félix Costa, and John V. Tucker. Limits to measure-
ment in experiments governed by algorithms. Mathematical Structures
in Computer Science, 20(06):1019-1050, 2010. Special issue on Quantum
Algorithms, Editor Salvador Elias Venegas-Andraca.

[6] Edwin Beggs, José Félix Costa, and John V. Tucker. Physical ora-
cles: The Turing machine and the Wheatstone bridge. Studia Logica,
95(1-2):279-300, 2010. Special issue on Contributions of Logic to the

39

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Foundations of Physics, Editors D. Aerts, S. Smets & J. P. Van Ben-
degem.

Edwin Beggs, José Félix Costa, and John V. Tucker. Axiomatising phys-
ical experiments as oracles to algorithms. Philosophical Transactions of
the Royal Society, Series A (Mathematical, Physical and Engineering
Sciences), 370(12):3359-3384, 2012.

Edwin Beggs, José Félix Costa, and John V. Tucker. The impact of mod-
els of a physical oracle on computational power. Mathematical Structures
in Computer Science, 22(5):853-879, 2012. Special issue on Computabil-
ity of the Physical, Editors Cristian S. Calude and S. Barry Cooper.

Jack Copeland and Diane Proudfoot. Alan Turing’s forgotten ideas in
Computer Science. Scientific American, 280:99-103, 1999.

Martin Davis. The myth of hypercomputation. In Christof Teuscher,
editor, Alan Turing: the life and legacy of a great thinker, pages 195—
212. Springer, 2006.

Martin Davis. Why there is no such discipline as hypercomputation.
Applied Mathematics and Computation, 178(1):4-7, 2006.

S. Haykin. Neural Networks: A Comprehensive Foundation. MacMillan
College Publishing, 1994.

Hava T. Siegelmann Joao Pedro Neto and José Félix Costa. Symbolic
Processing in Neural Networks. Journal of the Brazilian Computer So-
ciety, 8(3):58-70, 2003.

Joe Kilian and Hava T. Siegelmann. The dynamic universality of sig-
moidal neural networks. Information and Computation, 128(1):48-56,
1996.

Bruno Loff and José Félix Costa. Five views of hypercomputation. Inter-
national Journal of Unconventional Computing, 5(3-4):193-207, 2009.
Special issue on Future Trends in Hypercomputation, Editor Mike Stan-
nett.

Warren McCulloch and Walter Pitts. A logical calculus of ideas imma-
nent in nervous activity. Journal of Mathematical Analysis and Appli-
cations, 5:115-133, 1943.

40

[17]

[18]

[19]

[20]

[21]

[22]

23]

M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-
Hall, Inc., Engelwood Cliffs, NJ, 1967.

Mark Schlatter and Ken Aizawa. Walter Pitts and “A Logical Calculus”.
Synthese, 162:235-250, 2008.

Hava T. Siegelmann. Computation beyond the Turing limit. Science,
pages 545548, 1995.

Hava T. Siegelmann. Neural networks and finite automata. Journal of
Computational Intelligence, 12(4), 1996.

Hava T. Siegelmann. Neural Networks and Analog Computation: Be-
yond the Turing Limat. Birkhauser, 1999.

Hava T. Siegelmann and Eduardo D. Sontag. Analog computation via
neural networks. Theoretical Computer Science, 131(2):331-360, 1994.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational
power of neural networks. J. Comp. Syst. Sciences, 50(1):132-150, 1995.

41

