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Resumo

A gravidade quântica surge da necessidade de formular uma teoria de gravidade capaz de fazer pre-

visões fı́sicas em todas as escalas, em particular, nas regiões em que a Relatividade Geral (RG) não o

consegue fazer, isto é, em regimes de curvatura muito elevada. É natural pensar que nestes regimes a ge-

ometria possa requerer uma descrição quântica e que os efeitos quânticos sejam dominantes, resolvendo

assim as singularidades da teoria clássica. Evidentemente, uma teoria de gravidade quântica adequada

tem de concordar com a RG também em regimes semiclássicos, isto é, de baixa curvatura.

Uma das teorias mais promissoras de gravidade quântica é a chamada gravidade quântica de loop

(Loop Quantum Gravity – LQG). Mantendo o ponto de vista geométrico da RG, esta abordagem preserva

os princı́pios de covariância geral e independência do background. Seguindo o processo de quantização

de Dirac, o Hamiltoniano da RG é encontrado como uma combinação linear de quatro constrangimentos

locais: três geradores de difeomorfismos espaciais e um constrangimento escalar ou Hamiltoniano, que

gera reparametrizações temporais. Os constrangimentos são então promovidos a operadores num espaço

de Hilbert cinemático bem definido e encontram-se os estados fı́sicos como aqueles que são aniquila-

dos pelos constrangimentos. Nesta abordagem de LQG canónica, o sistema é descrito em termos de

uma conexão SU(2) e a trı́ade densitizada canonicamente conjugada. Uma das caracterı́sticas notáveis

deste processo de quantização é que não existe um operador para representar diretamente a conexão,

sendo usadas holonomias em torno de um loop. Consequentemente, e de forma emergente, a própria

geometria é discretizada. A geometria encontra-se codificada em operadores quânticos que representam

observáveis fı́sicos e, portanto, resultados fı́sicos são encontrados através dos valores expectáveis destes

observáveis sobre estados fı́sicos. Os estados de maior interesse são os semiclássicos, isto é, aqueles que

se encontram centrados em trajectórias clássicas em regimes de curvatura baixa, de forma a haver uma

concordância entre a teoria clássica e a quântica neste limite. Embora seja uma teoria promissora, não se

encontra ainda completa.

Quando o interesse maior recai sobre o Universo primitivo, onde a RG prevê uma singularidade ini-

cial (o big-bang), é imperativo considerar uma teoria de gravidade quântica que cure esta singularidade.

Seria então necessário desenvolver uma teoria completa de gravidade quântica e extrair as suas con-

sequências cosmológicas. No entanto, esta é uma abordagem extremamente complicada. A alternativa é

particularizar à partida a análise para modelos cosmológicos e só depois quantizá-los. Esta abordagem

é denominada de cosmologia quântica e tem sido alvo de grande exploração nas últimas décadas. Ao

impor homogeneidade já na descrição clássica e só depois quantizar o sistema, reduz-se o número de

graus de liberdade a uma quantidade finita, evitando assim algumas das maiores dificuldades de gravi-

dade quântica. No entanto, ao manter a independência do background, algumas das questões conceptuais

mais atraentes de gravidade quântica podem ser abordadas já neste cenário simplificado. Além de ter o
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potencial de oferecer previsões relevantes para cosmologia, permite desenvolver técnicas úteis também

para teorias completas de gravidade quântica.

A cosmologia quântica de loop (Loop Quantum Cosmology – LQC), procura quantizar modelos cos-

mológicos, de acordo com as prescrições de uma teoria completa de gravidade quântica, LQG. Imitando

os procedimentos desenvolvidos para quantizar a RG em LQG canónica e aplicando-os a modelos cos-

mológicos, não se trata do setor cosmológico de LQG. No entanto, poderá capturar as suas caracterı́sticas

mais importantes e desenvolver estratégias que serão úteis para a teoria completa.

A dinâmica dos modelos cosmológicos planos Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) mi-

nimamente acoplados a um campo escalar sem massa tem sido intensivamente estudada no contexto

de LQC. Em modelos cosmológicos homgéneos, devido à homogeneidade, apenas sobrevive um cons-

trangimento Hamiltoniano global, gerando reparametrizações temporais. Assim, a coordenada temporal

da métrica não é um tempo fı́sico, na medida em que o Hamiltoniano não gera evolução nesta coorde-

nada. Para falar de dinâmica na descrição quântica, é necessário primeiro escolher uma variável como

tempo interno, em relação à qual as restantes variáveis do sistema podem ser evoluı́das. Na análise

deste modelo, apenas se usam duas variáveis: o campo escalar, para representar o sector da matéria, e

uma variável relacionada com o factor de escala, descrevendo a geometria. Em LQC é comum esco-

lher o campo escalar como relógio interno, em relação ao qual se evolui o factor de escala. O resultado

mais excepcional desta abordagem é a resolução da singularidade do big-bang em termos de um ressalto

quântico. Seguindo a prescrição denominada solvable LQC (sLQC), é encontrada uma formulação em

que o sistema admite solução analı́tica. Nesta, o valor expectável do observável que representa o volume

tem um mı́nimo positivo e, portanto, o valor expectável da densidade de energia nunca diverge, atingindo

um valor máximo finito. Estas quantidades sofrem um ressalto, conectando uma época de contração do

Universo com uma de expansão. Este resultado é obtido sem restringir de qualquer forma os estados

fı́sicos.

O resultado do ressalto foi encontrado anteriormente recorrendo a tratamentos numéricos, restrin-

gindo a análise do valor expectável do operador do volume a estados semiclássiclos. A sua dedução

analı́tica para estados genéricos confere robustez ao resultado. No entanto, nunca foi necessário particu-

larizar a análise na formulação sLQC para estados fı́sicos especı́ficos. Assim, uma dificuldade ignorada

até à data é que na realidade não é trivial escrever explicitamente estados fı́sicos no domı́nio do volume

(o principal observável em consideração), na formulação sLQC. Neste trabalho encontramos uma forma

de o fazer. Um paralelo com a abordagem de Wheeler-De Witt (WDW) à cosmologia quântica facilita

este estudo, na medida em que esta abordagem permite uma formulação semelhante à sLQC de LQC.

Mais precisamente, ambas as abordagens (WDW e LQC) partilham o espaço de Hilbert fı́sico nestas

formulações. As diferenças entre as duas encontram-se na forma dos operadores que representam os
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observáveis. Assim, os estados fı́sicos de ambas vivem no mesmo espaço de Hilbert. Estudando a forma

dos estados fı́sicos no domı́nio do volume da abordagem de WDW, que oferece um cenário mais simplifi-

cado, encontramos uma forma de os escrever explicitamente em LQC, colmatando uma lacuna ignorada

até agora na literatura.

O estudo de modelos cosmológicos mais realistas requer a introdução de um potencial para o campo

escalar. A introdução do potencial origina mais um termo no constrangimento Hamiltoniano. Este termo

depende não só do potencial, mas ainda da variável geométrica. Desta forma, em geral, em LQC, o

sistema quântico não admite soluções analı́ticas. Os tratamentos geralmente adotados recorrem a abor-

dagens efectivas ou semiclássicas, introduzindo aproximações, ou a tratamentos numéricos, requerendo

frequentemente recursos computacionais elevados. Recentemente, foi proposto na literatura um proce-

dimento para extrair tanto quanto possı́vel as contribuições do potencial para a dinâmica quântica. Este

oferece um compromisso entre os dois extremos, recorrendo a aproximações, mas indo além das geral-

mente adoptadas. O tratamento proposto consiste em considerar em primeiro lugar a dinâmica do caso

livre (sem potencial), já devidamente conhecida, passando para uma imagem de interação. Nesta, os va-

lores expectáveis de operadores são obtidos sobre estados do sistema livre, já conhecidos. Desta forma,

o principal obstáculo no estudo da dinâmica deste modelo, que se encontrava na integração da evolução

dos estados, é evitado. No entanto, a dificuldade transfere-se agora para forma dos operadores na ima-

gem de interação, que inclui operadores de evolução. Estes consistem em integrais de caminho e são,

por conseguinte, ainda demasiado complexos para serem calculados. Ao passar para uma nova imagem

de interação, as contribuições dominantes do potencial podem ser obtidas, tratando o correspondente

operador de evolução de forma perturbativa, mantendo apenas os termos de primeira ordem.

Este método foi proposto para uma forma genérica do potencial, nunca tendo sido aplicado a uma

forma especı́fica. Neste trabalho, aplicamo-lo à forma não trivial mais simples possı́vel de um potencial

constante. Embora seja um caso simples, é já bastante relevante no contexto de cosmologia, já que

é equivalente a um modelo FLRW plano minimamente acoplado a um campo escalar sem potential

na presença de uma constante cosmológica. Sendo o potencial constante, o termo correspondente no

constrangimento Hamiltoniano é independente do tempo (interno). No entanto, os estados próprios

do operador Hamiltoniano não admitem uma forma analiticamente fechada. Este é, portanto, o caso

ideal para a primeira aplicação deste procedimento, permitindo algumas simplificações nos cálculos.

Neste trabalho aplicamos este procedimento a este modelo, obtendo uma expressão geral para o valor

expectável do observável do volume, em primeira ordem no potencial, que pode ser computada, dado

um perfil para os estados fı́sicos.

Palavras-chave: Cosmologia quântica, Geometrodinâmica, Cosmologia Quântica de Loop,

correcções quânticas, constante cosmológica.
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Abstract

The dynamics of a flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) cosmological model with a

massless scalar field has been intensively studied in the context of Loop Quantum Cosmology (LQC),

leading to the resolution of the big-bang singularity in terms of a quantum bounce. Following the solvable

LQC formulation, in which the cosmological dynamics is driven by a Klein-Gordon equation, this result

is found analytically to be valid for a generic physical state. However, the bounce had already been

found to occur with numerical treatments, and it was never necessary to write explicitly physical states

that belong to the domain of the volume operator in the solvable formulation of LQC. Hitherto, the fact

that this is actually not trivial went unnoticed. In this work, we find that a parallel with the Wheeler-De

Witt approach is helpful to clarify how to write these states, since the two approaches share the physical

Hilbert space in an appropriate formulation. By analysing the form of physical states in the domain of

the volume in an analogue Klein-Gordon formulation of the WDW approach, we find a way of writing

explicitly physical states in the domain of the volume of the solvable formulation of LQC.

The study of more realistic cosmological models requires the introduction of a non-vanishing poten-

tial for the scalar field. Following the LQC approach, this generally implies that there is no analytical

solution for the quantum dynamics. A procedure has been proposed to extract as much as possible the

contributions of the potential to the quantum dynamics, beyond the approximations usually employed

in the literature. The method considers first the well-known dynamics of the free case (with vanishing

potential), passing to an interaction picture. The remaining evolution is seen as a kind of geometric inter-

action and the main contributions can be extracted by passing to a new interaction picture, and treating

the corresponding evolution operator in a perturbative manner, keeping only the leading terms. This

procedure has been proposed for a generic potential, but never applied to a specific form of it. In this

work we apply it to the simplest non-trivial case of a constant potential. This is already a relevant model,

as it corresponds to a massless scalar field in the presence of a cosmological constant. The form of the

expectation value of the volume observable is found, up to first order in the potential.

Keywords: Quantum cosmology, Geometrodynamics, Loop Quantum Cosmology, quantum cor-

rections, cosmological constant.
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Chapter 1

Introduction

Quantum gravity arises from the need to formulate a theory of gravity that is valid at all scales

and capable of making predictions in regimes where General Relativity (GR) breaks down. These are

regimes of high curvature, where GR displays singularities. It is natural to think that, in these scenarios,

the effects of quantizing the geometry might be important. The geometry of spacetime might require a

quantum description, leading to well-defined quantum dynamics.

However, GR is extremely successful away from these singularities. Evidently, any theory of quan-

tum gravity needs to agree with GR in these regimes, while significantly deviating from it close to the

singularities. While an effective field theory approach to gravity based on perturbative quantization [1]

would, by construction, satisfy the first condition, it cannot provide a proper resolution of this issue,

since GR is not perturbatively renormalizable. Hence, we seek a non-perturbative quantum theory for

gravity, that agrees with the classical theory far away from the singularities.

Canonical Loop Quantum Gravity (LQG) is precisely an attempt at quantizing GR in a non-perturbative

and background independent manner [2–4]. Maintaining the geometrical point of view of GR, it pre-

serves the principles of general covariance and background independence. Following Dirac quantization

program for GR, the Hamiltonian is found to be a linear combination of 4 local constraints: 3 generators

of spatial diffeomorphisms, and a Scalar or Hamiltonian constraint, that generates time reparametriza-

tions (up to spatial diffeomorphisms). These constraints are then promoted to well-defined operators

on a kinematical Hilbert space, and then one looks for the physical states that are annihilated by the

constraints. In this canonical LQG approach, the system is described by an SU(2) connection and its

canonically conjugate densitized triad. One of the distinguishing features of the theory is that there is no

operator directly representing the connection, and holonomies of the connection around a loop are used

instead. As consequence, an emergent feature is that the geometry itself turns out to be quantized. Since

the geometry is encoded in quantum operators, that represent physical observables, physical results are

obtained by computing expectation values of physical observables on physical states, and the relevant
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physical states are semiclassical ones, peaked on classical trajectories in low curvature regimes, in order

to agree with GR when quantum gravity effects are expected to be small. Even though this is a promising

proposal, it is still far from complete.

If we are particularly interested in understanding the physics of the early Universe, where GR pre-

dicts an initial singularity (the big-bang), we may take one of two paths. The appropriate one would be

to develop a full theory of quantum gravity, and then extract its consequences to the cosmological sector.

However, this is too complicated. The alternative is to particularize for cosmological models prior to

quantization, which is referred to as quantum cosmology. This approach is based on a huge approxi-

mation, by fixing classically most of the diffeomorphism symmetry, with the hope of retaining the most

important quantum corrections to the cosmological dynamics. By first imposing homogeneity and only

then quantizing the system, we reduce the number of degrees of freedom to a finite quantity, and several

difficulties of quantum gravity are thus avoided. Nevertheless, since there is still no background structure

(background independence is maintained), most of the conceptual issues of full quantum gravity can be

tackled already in this simplified scenario. Also, this allows for some of the mathematical framework

to be developed. This way, the goal is to use this setting as a stepping stone, to provide at least some

intuition and insight, as well as to develop strategies that can be useful in the full theory. Furthermore, it

may already provide relevant predictions in the context of cosmology.

Quantum cosmology was first explored by Wheeler and de Witt in the 70’s. In the spirit of quantum

mechanics, the geometrodynamical or Wheeler-De Witt (WDW) approach considers a Schrödinger-like

representation of the system [5, 6]. However, this approach does not lead to a general resolution of

the big-bang singularity, inasmuch as the expectation values of Dirac observables follow the classical

trajectory into the big-bang. In this sense, the singularity persists in the WDW approach to quantum cos-

mology. This led to the exploration of inequivalent quantization procedures. Loop Quantum Cosmology

(LQC) is an attempt of quantizing cosmological models, with the guidance of a full theory of quantum

gravity, LQG. It mimics the procedures that have been developed for quantizing GR in the canonical

LQG approach, applying them to these symmetry reduced models. Since this reduction happens prior to

quantization, LQC is not the cosmological sector of the full theory, but it may already capture its crucial

features. Furthermore, the development of LQC may establish strategies that can be useful in LQG.

The first endeavors in LQC [7–11] applied the techniques of LQG to the simplest possible case of

a flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) model. The analysis then progressed to the same

model minimally coupled to a massless scalar field φ, depicting the matter sector [12]. For homogeneous

cosmological models, due to homogeneity, only the zero mode of the Hamiltonian constraint survives. If

the Hamiltonian vanishes, it does not generate evolution in the time coordinate of the metric. Instead it

only generates time reparametrizations. In this sense, this coordinate is not a physical time, as the system
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cannot be evolved with respect to it. In the interest of interpreting results in an evolution picture, and

speak of quantum dynamics, a variable needs to be chosen as internal time, with respect to which we can

evolve the system. In this setting, the variables used to represent the system are the scalar field φ, and a

variable related to the scale factor a, to describe the geometry. In the LQC approach, it is usual to choose

the scalar field φ to portrait internal time, and evolve the scale factor a with respect to it. The most

attractive result of this approach to this model is that the big-bang singularity is replaced by a quantum

bounce, connecting a contracting epoch of the Universe with an expanding one. Numerical simulations

of the quantum evolution (in the internal time variable) of the expectation values of observables, such as

the volume and the energy density, on semiclassical states reveal that these never diverge. Additionally,

the effects of the quantization only become important once the energy density approaches a critical value,

below which the dynamics agrees with the classical prediction [12].

However, at this stage there were some important drawbacks in this approach. The critical density at

which the bounce occurred was found to be dependent on the momentum of the scalar field [12], and, as

result, the effects of quantum geometry could be important even when the energy density was not neces-

sarily high. Thus, the dynamics could deviate significantly from the classical predictions in semiclassical

regimes, rendering them physically unsuccessful. The work in [13] pinpointed the source of this problem

to a stage in the procedure, where the definition of the Hamiltonian constraint operator relied on fiducial

structures instead of physical ones. The introduction of the so-called improved dynamics prescription

solved this issue, while at the same time maintaining the attractive result of the bounce, by introduc-

ing an improved Hamiltonian constraint operator. This way, the LQC approach to the quantization of a

flat FLRW model minimally coupled to a massless scalar field resulted in a well-defined and physically

successful quantum dynamics. The quantum effects render gravity repulsive when the energy density

is of the order of the Planck scale, replacing the big-bang singularity with a quantum bounce. Below

the critical energy density (which is now universal) the dynamics agrees with the classical prediction,

as required. This prescription proved to be robust, as it was also successful in models with non-zero

cosmological constant [13–16], K = 1 spatially compact models [17, 18], and Bianchi models [19–22].

One of the concerns at this point was whether this result was particular to semiclassical states alone.

The work in [23] settled this question for the case of the simple FLRW model with massless scalar field. It

introduced the solvable LQC (sLQC) proposal, where, by interpreting the scalar field as a relational clock

already in the classical Hamiltonian, an appropriate change of representation translates the constraint into

a Klein-Gordon equation, and the model turns out to be exactly solvable. Its outstanding results are that

the bounce is proven to occur for a generic physical state, and that the discreteness of the geometry is

fundamental to the occurrence of the bounce. It also showed that the upper bound in the spectrum of the

matter energy density, at which the bounce occurs, equals the critical energy density that first resulted
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from the numerical simulations.

The determination of predictions of LQC in more realistic models, namely inflationary models, re-

quires the introduction of a potential for the scalar field. As a consequence, generically, the quantum

system does not admit analytical solutions. The analysis of the quantum dynamics requires either heavy

computational power or the introduction of approximations. The procedure proposed in [24] offers a

way of computing the dynamics of LQC for the flat FLRW model in the presence of a scalar field with

non-vanishing potential. This analysis offers a compromise between required computational power and

the precision of the results. It does not find the exact dynamics, introducing approximations, but goes

beyond the semiclassical or effective treatments usually employed in the literature (see e.g. [25, 26]). It

takes advantage of the fact that the dynamics of the FLRW model minimally coupled to a massless scalar

field is well known. Once the potential is introduced, the extra term that appears in the Hamiltonian

constraint is seen as a sort of geometric interaction. By considering first the vanishing potential case and

passing to an interaction picture, the expectation values of observables in this picture are applied on the

states of the free system. Thus, the main obstacle, which was to integrate the evolution of the states, has

been shifted to the computation of the observables in the interaction picture. These include evolution

operators, which consist of path-ordered integrals, and are thus still too complicated to be manageable.

Then, the main contributions of the potential to the evolution operators can be extracted, by passing to

a new interaction picture. Here, the dominant part of the evolution operator can be dealt with pertur-

batively, keeping only the leading terms. This procedure has been proposed for a generic potential, but

never applied to a specific form of it.

The aim of this work is two-fold. Firstly, we will address an issue that has been overlooked hitherto.

Because the aforementioned sLQC prescription was developed after the bounce had been found to occur

from numerical simulations, it was never necessary to write explicit physical states that belong to the

domain of the volume (the main observable under consideration) in the solvable representation of LQC.

Thus, the fact that this is actually not trivial has never been noticed. We find that a parallel with the

WDW approach is helpful to simplify this task. In this approach, a construction similar to the sLQC

can be made [13], where a suitable change of representation leads to a simplification of the Hamiltonian

constraint into a Klein-Gordon equation as well. This representation of the WDW approach shares its

physical Hilbert space with the solvable formulation of LQC, while their differences lie in the form of the

operators that represent observables. We will take advantage of the fact that the WDW approach offers

a simpler setting on which to study the form of the physical states in the domain of the volume in the

Klein-Gordon representation, to provide a way of writing them in the solvable formulation of LQC.

Then, having a complete understanding at physical level of the solvable formulation of LQC, we can

study more realistic models, by introducing a non-vanishing potential for the scalar field. We will intro-
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duce the procedure proposed in [24] to extract as much as possible the contributions of the potential to

the quantum dynamics of the system, and apply it to the simplest non-trivial case of a constant potential.

Even though this is a simple model, it is already relevant for cosmology as it is equivalent to considering

the model with a massless scalar field in the presence of a cosmological constant. Since the potential

does not depend on the scalar field, many of the computations of the procedure [24] are simplified, and

we will find the form of the expectation of the value of the volume, up to first order in the potential.

The structure of this dissertation is the following. In chapter 2, we introduce the Hamiltonian formu-

lation of homogeneous cosmological models suited to the LQC procedure. Then, in chapter 3, we present

a detailed analysis of the WDW approach in a way that makes its comparison to LQC simple. In chapter

4, we briefly present the LQC procedure, focusing on its solvable formulation, i.e., the Klein-Gordon

representation, along with its main results. We also present a way to write explicit physical states in the

domain of the volume in this approach, which has not been established until now. Finally, in chapter 5,

we introduce the procedure proposed in [24] to compute the dynamics of LQC for the flat FLRW model

in the presence of a scalar field with a generic potential, and apply it to the simple case of a constant

potential.
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Chapter 2

Hamiltonian formulation of homogeneous

cosmological models

In this work, we will restrict the discussion to homogeneous and isotropic cosmological models. The

goal of this chapter is to build the Hamiltonian formulation of such systems suited to the quantization

procedure of LQC, which mimics the techniques of LQG. This involves choosing suitable variables for

the description of a gauge theory: an SU(2) connection and a canonically conjugate densitized triad.

Throughout this work, we set the speed of light and the reduced planck constant ~ equal to 1.

We start by considering a Hamiltonian formulation of GR. The ADM formalism [27] adopts a de-

composition of the 4D metric gµν into three objects: the 3-metric qab induced in the spatial slices that

foliate the manifold, the lapse function N and the shift vector Na, such that the line element is

ds2 = −
(
N2 − qabNaN b

)
dt2 + 2qabN

adtdxb + qabdx
adxb. (2.1)

N and Na are not physical quantities, since they are in fact Lagrange multipliers accompanying

the constraints in the action, and the relevant physical information is found in qab and its canonically

conjugated extrinsic curvature Kab.

For a flat FLRW model, various integrals in the Hamiltonian framework diverge, as a consequence of

homogeneity, and an infrared regulator needs to be introduced. Thus, we restrict the integrations to a fix

finite cell V . Due to homogeneity, the dynamics on V will reproduce the events of the whole Universe.

In fact, the final results will not depend on the choice of this cell. We fix a fiducial Euclidean metric oqab,

and denote the volume of the cell V with respect to this metric by Vo.

In LQG, 3-metrics are replaced by triads [3]. To this end, we define the Euclidean co-triad eia by

qab = eiae
j
bδij , (2.2)
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where δij is the Kronecker delta, and triad eai as its inverse,

eai e
j
b = δab δ

j
i . (2.3)

Then, we change variables to the Ashtekar-Barbero connectionAia, canonically conjugate to the den-

sitized triad Eai [28]. The Ashtekar-Barbero connection is formed by the spin connection Γia compatible

with the densitized triad1, and the extrinsic curvature in triadic form Ki
a = Kabe

b
jδ
ij :

Aia = Γia + γKi
a. (2.4)

Here, γ is an arbitrary real number called the Immirzi parameter [29, 30]. On the other hand, the

densitized triad is defined as:

Eai =
√
qeai . (2.5)

where q is the determinant of the metric qab. In order to impose homogeneity and isotropy, these variables

are parametrized by only one spatially constant parameter for each of them:

Aia = c(t)V −1/3
o

oeia, (2.6)

Eai = p(t)V 2/3
o

√
oq oeai , (2.7)

where oq is the determinant of the fiducial Euclidean metric, with respect to which the fiducial Euclidean

co triad oeia is defined. The variable p(t) is related to the scale factor a(t) through:

a(t) =
√
|p(t)|V −1/3

o . (2.8)

Furthermore, the sign of p(t) represents the relative orientations of the physical triad and the fiducial

triad. The variable c(t), on the other hand, is related to the momentum of the scale factor da/dt:

c(t) = γV −1/3
o

da

dt
. (2.9)

This way, the gravitational degrees of freedom are encoded in the canonically conjugate variables

c ≡ c(t) and p ≡ p(t) with Poisson brackets [11]:

{c, p} =
8πGγ

3
. (2.10)

1I.e., it verifies∇bEai +εijkΓjbE
ak = 0, where∇b is the usual spatial covariant derivative and εijk the totally antisymmetric

symbol.
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As in LQG, in LQC there is no operator corresponding to the connection itself, and we take holonomies

of the connection and fluxes of the densitized triad as variables instead [11, 31–34]. The fluxes are simply

proportional to p. Objects that are defined classically in terms of the connection, on the other hand, could

be obtained by considering holonomies of the connection around a loop and taking the limit where the

area of the loop shrinks to zero. However, this limit is not defined in the cosmological setting. Thus, in-

stead of taking the limit where the area is zero, we take the limit where it is the non-vanishing minimum

eigenvalue of the area operator. In an initial LQC treatment, this minimum area was calculated using

the fiducial structure, which resulted in some unwanted features that rendered the quantum dynamics

unsuccessful. Namely, it was found that the quantum effects of the geometry could be important even

when the energy density was not high, thus deviating significantly from the classical predictions in semi-

classical regimes. The so-called improved dynamics prescription introduced in [23] solved this issue, by

defining this area with respect to the physical geometry instead. Thus, the basic holonomies are taken

along straight lines and in the fundamental representation of SU(2), with a length such that the square

formed by them has a physical area equal to ∆, the non-vanishing minimum allowed by LQG2[35, 36].

To simplify calculations, we perform another change of variables to a new canonical set, such that

the holonomies simply produce a constant shift in the new geometric variable v, which replaces p [13]:

v = sign(p)
|p|3/2

2πGγ
√

∆
, (2.11)

b =

√
∆

|p|
c, (2.12)

with {b, v} = 2.

To summarize, we started with a description of the spacetime based on the scale factor and its mo-

mentum, and changed variables to the canonical pair v and b:

|v| =
V

2πGγ
√

∆
≡ a3Vo

2πGγ
√

∆
, (2.13)

b = γ
√

∆H = γ
√

∆
1

a

da

dt
, (2.14)

where t is the proper time and H = 1
a
da
dt is the Hubble parameter. This way, the physical volume of the

cell V is given by:

2i.e., the smallest non-zero eigenvalue of the area operator in LQG, for spins equal to 1/2 (i.e., the fundamental representa-
tion).
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V = 2πGγ
√

∆|v|. (2.15)

Additionally, we are going to consider as matter content a homogeneous massless scalar field φ and

its momentum πφ, which form a canonical pair with Poisson brackets {φ, πφ} = 1.

This is the simplest possible cosmological model with non-trivial dynamics. Even so, it already

contains enough features to display interesting consequences coming from LQC.

As discussed in the introduction, in GR, the Hamiltonian of the system is found to be a linear com-

bination of constraints, and so it vanishes [37]. In our case, due to homogeneity, the only constraint left

is a global Hamiltonian one, namely the zero mode of the full Hamiltonian constraint, which generates

time reparametrizations [13]:

π2
φ −

3

4πGγ2
Ω2

0 = 0, (2.16)

where we used Ω0 = 2πGγbv. Thus, the time coordinate of the metric is not a physical time, since the

Hamiltonian does not generate evolution in it. If we want to speak of dynamics in an evolution picture

at the quantum level, we first need to address this concept of evolution. We need to elect a variable to

portrait the role of internal time, with respect to which we evolve the remaining variables of the system.

In this setting, we only work with two variables: v and φ. It seems more intuitive to evolve v (which is

essentially the volume), with respect to φ, as is in fact common in LQC for this model [13, 38], so we

choose the scalar field φ as internal time.

The next step is to promote this constraint (2.16) to a well-defined operator on a kinematical Hilbert

space. The total kinematical Hibert space will be given by two sectors: one for geometry and another

for matter. The quantum representation of the geometrical sector is where LQC distinguishes itself from

other quantum cosmology procedures, such as the Wheeler-De Witt approach [13, 38].
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Chapter 3

The Wheeler-De Witt approach

To maintain as much as possible GR’s key principles while having in mind a canonical approach for

quantization, we have taken as a starting point the Hamiltonian formulation of it described in chapter

2. The next step is to adopt a quantum representation of the system, in order to promote the constraint

(2.16) to a well-defined operator on a kinematical Hilbert space. Having standard quantum mechanics in

mind, the most intuitive path is to consider a Schrödinger-like representation of the system. In fact, in the

70’s, the Wheeler-de Witt (WDW), or geometrodynamical, approach considered such a representation of

the scale factor and its conjugate momentum.

With this approach, one finds that the initial (big-bang) singularity is not generically cured, as the

expectation values of Dirac observables, such as the energy density, still diverge at this point. This led

to the need to explore other inequivalent quantization procedures, such as the one we are interested in,

Loop Quantum Cosmology (LQC) [13].

Nevertheless, the study of the WDW approach is of interest in the context of LQC. For a flat FLRW

model, a suitable change of variables leads to a simplification of the Hamiltonian constraint, turning it

into a Klein-Gordon equation. A similar construction is also possible in LQC, and leads to a solvable

formulation of the quantum dynamics of this simple model. These two approaches share the physical

Hilbert space of their respective Klein-Gordon formulations, while the differences are found on the rep-

resentations of physical observables. The WDW approach offers a simpler setting to analyse the physical

Hilbert space and physical states, along with their transformation from the original representation to the

Klein-Gordon one, and so this analysis will prove useful for LQC.

Thus, in this chapter we analyse in detail the physical Hilbert space and physical states in the WDW

theory and track its transformation through the different representations that lead to the Klein-Gordon

formulation of the system. This will allow us to explicitly construct physical states (and in particular

semiclassical ones) in the Klein-Gordon representation, both in the WDW approach and in LQC.
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3.1 Kinematical vs Physical Hilbert space

Having a representation of the system based on the canonically conjugate variables v and b, we pro-

mote the Hamiltonian constraint (2.16) to an operator on a kinematical Hilbert space (by promoting v, b,

φ and πφ to operators v̂, b̂, φ̂ and π̂φ, respectively, and looking for representations of the canonical com-

mutation relations [b̂, v̂] = 2i, [φ̂, π̂φ] = i) and find the physicals states as the ones that are annihilated by

the constraint. Focusing on the geometric sector, we will start from the v-representation, where v̂ is diag-

onal, and study carefully the procedure to pass to the y-representation, where the constraint is simplified

to a Klein-Gordon equation. This consists on first building the kinematical and physical Hilbert spaces

(by defining the kinematical/ physical states and inner product) in the v-representation, then passing to

the b-representation and finally, through a change of the geometric variable from b to y(b), passing to

the y-representation. By keeping track of the maps between these representations, we find the relation

between the profiles that define a state in the y and v-representations.

3.1.1 v-representation

In this section, we will review the work presented in [13]. In this representation, the quantum coun-

terpart of the Hamiltonian constraint (2.16) is given by:

Ĉ = −∂2
φ − Θ̂, (3.1)

where we use underlines when referring to operators/ states of the WDW approach, that are not the same

as in the LQC approach. The geometric part of the constraint is:

Θ̂ = Ω̂
2

=
3

4πG
Ω̂

2
0, (3.2)

Ω̂ = −i
√

12πG : v∂v : (3.3)

where : v∂v : represents the symmetric ordering of v∂v. We will use here the convenient symmetric

ordering

: v∂v : =
v∂v + ∂vv

2
, (3.4)

which leads to:

Ω̂ = −i
√

12πG

(
v∂v +

1

2

)
. (3.5)
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The operator Ω̂ is (essentially) self-adjoint in the domainDv of the Schwartz space of rapidly decreas-

ing functions dense in L2(R, dv), with absolutely continuous and non-degenerate spectrum σ(Ω̂) = R.

Its generalized eigenfunctions ek(v) with eigenvalue ω =
√

12πGk are:

ek(v) =
1√

2π|v|
eik ln(v), (3.6)

normalized such that 〈ek, ek′〉 = δ(k − k′), where 〈 , 〉 is the inner product in L2(R, dv), and δ(k − k′)

is the Dirac delta. This way, these eigenfunctions provide a basis for L2(R, dv).

The operator Θ̂ is (essentially) self-adjoint in Dv, with absolutely continuous and double degenerate

spectrum σ(Θ̂) = R+. For each eigenvalue ω2 = 12πGk2, there are two eigenfucntions: ek(v) and its

complex conjugate ēk(v).

Finally, the operator −∂2
φ is (essentially) self-adjoint in the domain Dφ of the Schwartz space of

rapidly decreasing functions dense inL2(R, dφ), with absolutely continuous double degenerate spectrum

σ(−∂2
φ) = R+. Its generalized eigenfunctions of eigenvalue λ2 are the plane waves e±iλφ, which then

provide a basis for L2(R, dφ).

Thus, the constraint operator Ĉ is defined in a dense domain D ≡ Dv ⊗ Dφ ⊂ L2(R, dv) ⊗

L2(R, dφ) ≡ Hkin, where Hkin is the kinematical Hilbert space. Each of the operators act as the

identity in the sector where they do not have a dependence.

Physical states

Physical states ψ are the ones that are annihilated by the constraint: Ĉψ = 0. These have to be

normalizable. Generally, the solutions of the constraint are not normalizable in the kinematical Hilbert

space, unless 0 is in the discrete spectrum of the constraint operator. However, Ĉ has continuous spec-

trum, so states ψ are not normalizable in Hkin. We need to regard them as elements of a bigger space,

specifically the topological dual D∗ of the domain:

D ⊂ Hkin ⊂ D∗ ≡ D∗v ⊗D∗φ. (3.7)

This way, we find that the general states ψ(v, φ) ∈ D∗ are given by:

ψ(v, φ) =

∫ +∞

−∞
dk

∫ +∞

−∞
dλ

(
ψ̃

++
(k, λ)ek(v)eiλφ + ψ̃

+−(k, λ)ek(v)e−iλφ

+ ψ̃−+
(k, λ)ēk(v)eiλφ + ψ̃−−(k, λ)ēk(v)e−iλφ

)
,

(3.8)

We simply require ψ(v, φ) <∞ for ψ(v, φ) to belong to D∗. This way, imposing the constraint:
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− ∂2
φψ(v, φ) = Θ̂ψ(v, φ), (3.9)

we find λ2 = ω2. Redefining ω(k) as:

ω(k) =
√

12πG|k| > 0, (3.10)

the physical states are generally given by:

ψ(v, φ) =

∫ +∞

−∞
dk
[
ψ̃

+
(k)ek(v)eiω(k)φ + ψ̃−(k)ēk(v)e−iω(k)φ

]
. (3.11)

Furthermore, they can be separated in positive and negative frequency sectors:

ψ
+

(v, φ) =

∫ +∞

−∞
dkψ̃

+
(k)ek(v)eiω(k)φ, (3.12)

ψ−(v, φ) =

∫ +∞

−∞
dkψ̃−(k)ēk(v)e−iω(k)φ, (3.13)

respectively, such that the positive frequency sector corresponds to taking ψ̃−(k) = 0 and the negative

frequency sector to taking ψ̃
+

(k) = 0. As we will see later, the complete set of commuting observables

preserves the space of positive/ negative frequencies so that they are superselected, and we can focus our

analysis on only one of them.

Evolution picture

As has been mentioned, to deal with the fact that the time variable of the metric does not appear in

this description of spacetime, we choose the scalar field φ as internal time, with respect to which we

evolve the remaining variables of the system, in this particular case v. We can thus deparametrize the

system and write a Schrödinger evolution equation:

− i∂φψ(v, φ) = Ĥψ(v, φ), (3.14)

where Ĥ is the physical Hamiltonian, in the sense that it generates time evolution (in the internal time

variable φ). Ĥ is given by
√

Θ̂ for the positive frequency sector and by−
√

Θ̂ for the negative frequency

sector:

− i∂φψ±(v, φ) = ±
√

Θ̂ψ±(v, φ). (3.15)

Thus, physical states can be found by evolving an initial datum (at initial ‘time’ φ = φo) with the
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evolution generated by Ĥ:

ψ±(v, φ) = e±i
√

Θ̂(φ−φo)ψ±(v, φo). (3.16)

Choosing φ as internal time, we can say that, if the profiles ψ̃±(k) of (3.12) and (3.13) have support

only for k > 0, the solution is incoming (or contracting), whereas if they only have support for k < 0,

we have an outgoing (expanding) solution [13].

Physical observables and physical inner-product

Finally, we have to endow the space of physical states with a Hilbert space structure, specifically,

by finding a complete set of commuting observables along with a physical inner product, i.e., an inner

product that makes them self-adjoint.

This complete set of commuting observables consists of π̂φ = −i∂φ and |v̂|φ [13]. πφ is already

a Dirac observable in the classical theory, given that it is a constant of motion. This way, its quantum

counterpart commutes with the constraint. On the other hand, |v| is not a constant of motion in the

classical theory, but it is monotonic in φ, and so it is in fact a Dirac observable for any fixed φ. The

action of its quantum counterpart on an initial datum is given by:

|v̂|φψ(v, φo) = |v|ψ(v, φo). (3.17)

This way, we can separate the physical states in positive and negative frequency sectors, act on an

initial datum (at φ = φo) with |v̂|φ, and then evolve it through (3.16), which yields:

|v̂|φψ(v, φ) = ei
√

Θ̂(φ−φo)|v|ψ
+

(v, φo) + e−i
√

Θ̂(φ−φo)|v|ψ−(v, φo). (3.18)

Since both these operators preserve the positive and negative frequency spaces, there is a superselec-

tion of the two sectors, and we can restrict our analysis to one of them. We will choose to focus on the

positive frequency sector.

Finally, the physical inner-product that makes these operators self-adjoint is:

(
ψ

1
, ψ

2

)
=

∫
φ=φo

dv ψ̄
1
(v, φ)ψ

2
(v, φ), (3.19)

which is independent of the value of φ, and so we evaluate it at, e.g., φo. This way, the norm of a physical

state is
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||ψ||2 =

∫ +∞

−∞
dv|ψ(v, φ)|2

=

∫ +∞

−∞
dk|ψ̃

+
(k)|2.

(3.20)

The physical states of positive frequency are defined by the physical profiles ψ̃
+

(k), normalizable in

the physical Hilbert spaceHphys = L2(R, dk), so that the norm of a physical state is finite.

Semiclassical states: Gaussian profiles

In this description, we have made no restrictions to the physical states so far. However, in the interest

of agreeing with GR in the classical regime (low curvature), we are particularly interested in semiclassical

states. These are states that are peaked in classical trajectories for large volumes, such that the dispersions

of physical observables remain bounded, and can be defined by choosing an appropriate profile ψ̃
+

(k).

A profile that peaks the states in a certain k∗ of the classical trajectory is adequate, and the most obvious

formulation of such a function is a Gaussian.

Focusing on the positive frequency sector, from now on, we can write the physical states as:

ψ(v, φ) = ei
√

Θ̂(φ−φo)ψ(v, φo). (3.21)

We can choose the initial datum ψ(v, φo) as one that is peaked on a classical trajectory. To this end,

we will define a profile peaked on v∗ � 1 and π∗φ � 1 (in natural units c = G = 1 and also ~ = 1) at

φo [13]:

ψ(v, φo) =

∫ +∞

−∞
dk ψ̃

+
(k)ek(v)eiω(k)(φo−φ∗), (3.22)

with

ψ̃
+

(k) = N(σ)e−
(k−k∗)2

2σ2 , k∗ = −
π∗φ√

12πG~2
, φ∗ = − ln |v∗|√

12πG
+ φo. (3.23)

We choose N(σ) = 1√
2σ
√
π
e−

1
8σ2 , so that

(
ψ, V̂ |φψ

)
= 2πGγ

√
∆
(
ψ|v̂|φψ

)
= 2πGγ

√
∆|v∗|e

√
12πG(φ−φo)

= 2πGγ
√

∆ e
√

12πG(φ−φ∗),

(3.24)

i.e., under evolution, the state remains peaked on the classical trajectory [13]:
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φ =
1√

12πG
ln
|v|
|v∗|

+ φo. (3.25)

We obtain, in this description, an expanding evolution (3.24). The semiclassical state follows the

classical trajectory, contracting into the big-bang in the backwards evolution. If we had chosen to work

with positive k∗ (negative π∗φ), we would have obtained a contracting evolution and the semiclassical

state would follow the classical trajectory into a big-crunch in the forward evolution. Furthermore, the

expectation value of the dispersion of the volume observable is found to be bounded, and we conclude

that the states remain semiclassical throughout the evolution [13].

3.1.2 Klein-Gordon formulation

Now that the physical Hilbert space, physical states and inner-product are well defined in the v-

representation, we will find the appropriate changes of representations that simplify the form of the

constraint to a Klein-Gordon equation, building a map between the initial and final representations.

This correspondence was developed in [23] at the kinematic level. In this section, we will review this

procedure. However, the map at the physical level is not available in the literature yet, and is one of

the novelties of this work, which will be presented in section 3.1.3. This way, we will be able to take

a profile ψ̃
+

(k) defining a physical state ψ(v, φ) in the v-representation and obtain the corresponding

physical state in the Klein-Gordon representation.

The fact that changing representations cannot affect the physics is translated to the invariance of

expectation values between representations. Hence, we will check that the physical inner product agrees

when performing such a change.

b-representation

First, we need to change from the v-representation to the b-representation, through a Fourier trans-

formation. We want to map ψ(v, φ) ∈ L2(R, dv) to ψ̃(b, φ) ∈ L2(R, db). Since {b, v} = 2, Dirac’s rule

gives
[
b̂, v̂
]

= 2i and so, given the action of the operators v̂ and b̂ in the v-representation:

v̂ ψ(v, φ) = v ψ(v, φ), (3.26)

b̂ ψ(v, φ) = 2i∂v ψ(v, φ), (3.27)

we find the corresponding actions in the b-representation to be:
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v̂ ψ̃(b, φ) = −2i∂b ψ̃(b, φ), (3.28)

b̂ ψ̃(b, φ) = b ψ̃(b, φ). (3.29)

The states ψ(v, φ) and ψ̃(b, φ) are thus related through the Fourier transformation:

ψ̃(b, φ) =
1√
4π

∫ +∞

−∞
dve

i
2
vbψ(v, φ), (3.30)

ψ(v, φ) =
1√
4π

∫ +∞

−∞
dbe−

i
2
vbψ̃(b, φ). (3.31)

This way, v∂v transforms to (−1− b∂b) and the operator Ω̂ becomes:

Ω̂ = i
√

12πG(b∂b +
1

2
), (3.32)

defined in the Fourier transform of Dv, namely D̃v ⊂ L2(R, db). The physical inner product:

(
ψ

1
, ψ

2

)
=

∫ +∞

−∞
dv ψ

1
(v, φ)ψ

2
(v, φ)

=

∫ +∞

−∞
db ψ̃

1
(b, φ)ψ̃

2
(b, φ)

(3.33)

agrees, as it has to.

Rescaling

Keeping in mind that our goal is to change variable to one that transforms the constraint into a

Klein-Gordon equation, we will now perform another change of representation, in order to obtain Θ̂ =

−
√

12πG (b∂b)
2. This can be accomplished by rescaling the states:

ψ̃(b, φ) =
1√
|b|
ϕ(b, φ), (3.34)

with ϕ(b, φ) ∈ L2(R, 1
|b|db). This way, the constraint now reads

∂2
φϕ(b, φ) = 12πG(b∂b)

2ϕ(b, φ), (3.35)

and the physical inner product:
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(
ψ

1
, ψ

2

)
=

∫ +∞

−∞
db ψ̃

1
(b, φ)ψ̃

2
(b, φ)

=

∫ +∞

−∞

1

|b|
db ϕ

1
(b, φ)ϕ

2
(b, φ).

(3.36)

y-representation

Now, we can make another change of representation, by changing from b to the related variable y

[23]:

y =
1√

12πG
ln
|b|
bo
, (3.37)

|b| = boe
√

12πGy, (3.38)

where we take bo to be a positive constant. In the b-representation, this constant played no role, hence,

in this representation, physical results cannot depend on it. In fact, different choices for the value of bo

correspond to unitarily equivalent theories [23]. For convenience, we choose bo = 2.

In this representation, ϕ(y, φ) = ϕ(2e
√

12πGy, φ) ∈ L2(R, 1
|b(y)|db(y)) = L2(R,

√
12πG dy), and

the inner product reads:

(
ψ

1
, ψ

2

)
=

∫ +∞

−∞

1

|b|
db ϕ

1
(b, φ)ϕ

2
(b, φ)

=

∫ +∞

−∞

√
12πG dy ϕ

1
(y, φ)ϕ

2
(y, φ).

(3.39)

Physical states

With this change of variables, the constraint gets transformed to a Klein-Gordon equation:

∂2
φχ(y, φ) = ∂2

yχ(y, φ). (3.40)

The precise relation between the physical profiles χ(y, φ) and ϕ(y, φ) will be made clear in section

3.1.3, which I emphasize is one of the novelties of this work. The solution to the Klein-Gordon equation

can be split into left and right-moving modes χ
L

(φ + y) and χ
R

(φ − y), respectively [23]. Focusing

again on positive frequency solutions only:
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χ(y, φ) = χ
L

(φ+ y) + χ
R

(φ− y), (3.41)

χ
L

(φ+ y) =
1√
2π

∫ +∞

0
dω̃eiω̃(φ+y)e−iω̃φoχ̃(−ω̃), (3.42)

χ
R

(φ− y) =
1√
2π

∫ +∞

0
dω̃eiω̃(φ−y)e−iω̃φoχ̃(ω̃), (3.43)

where the factor e−iω̃φo was introduced for convenience, to match initial data with the previous formula-

tion. This way,

χ(y, φo) =
1√
2π

∫ +∞

−∞
dω̃e−iω̃yχ̃(ω̃). (3.44)

Defining y± = φ±y, notice that χ
L/R

(y±) can be any function which Fourier transform is supported

on the positive real line.

Physical inner product

The physical inner product in this representation is the Klein-Gordon product [23], namely:

(
χ

1
, χ

2

)
phys

= 2

∫ +∞

−∞
dω̃|ω̃|χ̃

1
(ω̃)χ̃

2
(ω̃)

= 2

∫ +∞

−∞
dy χ

1
(y, φo) |i∂y|χ2

(y, φo),

(3.45)

where i∂y is a positive definite self-adjoint operator on right-moving modes and a negative definite self-

adjoint operator on left-moving modes. Furthermore, the Klein-Gordon inner-product is independent of

the value of φ, and we have particularized it to, e.g., φ = φo.

Since the left and right-moving sectors of this physical Hilbert space are mutually orthogonal [23],

we can focus our analysis on the left-moving modes:

(
χ

1
, χ

2

)
physL

= −2i

∫ +∞

−∞
dy χ

1L
(y, φo)∂yχ2L

(y, φo), (3.46)

keeping in mind that the analysis for the right-moving modes is analogous (with a plus sign in the inner

product), and that the expectation value of an observable is given by the sum of the expectation value on

the left and right sectors.

Volume observable

Focusing on left-moving modes (3.42), with the Klein-Gordon product (3.45), the expectation value

of the volume observable is found to be:
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(
χ, V̂ |φχ

)
physL

= Vo e
√

12πG φ, (3.47)

Vo ≡ 2πGγ
√

∆ vo, (3.48)

vo ≡
1√

12πG

∫ +∞

−∞
dy+

∣∣∣∣dχL(y+)

dy+

∣∣∣∣2 e−√12πG y+ , (3.49)

for all physical states. Furthermore, we now find that, for a state χ
L

(y+) to belong to the domain of the

volume, it has to be such that (3.49) is well defined (i.e., the integral converges). Recall that it also needs

to have Fourier transform with support on the positive real line to be well-defined as an element of the

Hilbert space (see (3.42)). Then, the choice of such a function is quite complicated. The solution we

propose to provide explicit physical states that belong to the domain of the volume in this Klein-Gordon

formulation is to find the map between the v-representation and this one.

3.1.3 Relation between formulations

In the original v-representation, a Gaussian profile ψ̃(k) for the physical states peaked in a classical

trajectory leads to an expanding evolution for the expectation value of the volume observable (3.24).

In the Klein-Gordon representation, we find the same type of behaviour for the expectation value of

the volume (3.47), without specifying the profile χ
L

. However, it is not trivial to explicitly construct

a physical state in the domain of the volume. The profile χ
L

needs to be chosen such that its Fourier

transform has support on the positive real line and the integral in (3.49) converges. Thus, in this section,

we will build a clear dictionary at the physical level between the v and y-representations, in order to

determine the χ
L

that corresponds to a given ψ̃(k). Then, in particular, by choosing a Gaussian profile

for ψ̃(k) as in (3.23), we will obtain a well defined vo and physical states peaked on a classical trajectory

also in the y-representation.

Given a profile

ψ̃(k) ∈ L2(R, dk), (3.50)

in v-representation, and choosing an initial data as in (3.22), this corresponds to:

ψ(v, φ) =

∫ +∞

−∞
dk ψ̃(k)ek(v)eiω(k)(φ−φ∗) ∈ L2(R, dv). (3.51)

Through (3.30), we change from the v-representation to the b-representation and obtain:
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ψ̃(b, φ) =
1√
4π

∫ +∞

−∞
dk ψ̃(k)eiω(k)(φ−φ∗)

∫ +∞

−∞
dve

i
2
vb 1√

2π|v|
ei k ln |v|

=
1

π
√
b

∫ +∞

−∞
dk ψ̃(k)

∣∣∣∣2b
∣∣∣∣i k cos

(
1 + 2ik

4
π

)
Γ

(
1

2
+ ik

)
eiω(k)(φ−φ∗) ∈ L2(R, db).

(3.52)

Then, we perform the rescaling (3.34):

ϕ(b, φ) =
√
|b|ψ̃(b, φ) ∈ L2(R,

1

|b|
db), (3.53)

and change variable from b to y through (3.38):

ϕ(y, φ) = ϕ(b(y), φ) ∈ L2(R,
√

12πG dy). (3.54)

As pointed out before, these still are not the states χ(y, φ). The states ϕ(y, φ) live in a Hilbert space

with inner product (3.39) while χ(y, φ) live in a space with the Klein-Gordon product (3.45). We need to

perform first another change of representation from L2(R,
√

12πGdy) to L2(R, dy), which corresponds

to the rescaling:

χ̃(y, φ) = (12πG)1/4 ϕ(y, φ)

=
(12πG)1/4

π

∫ +∞

−∞
dk ψ̃(k)e−i

√
12πGky cos

(
1 + 2ik

4
π

)
Γ

(
1

2
+ ik

)
eiω(k)(φ−φ∗).

(3.55)

These states can be split into right and left moving modes χ̃(y, φ) = χ̃
L

(y+) + χ̃
R

(y−) with y± =

φ± y:

χ̃
L/R

(y±) =
(12πG)1/4

π

∫ +∞

0
dk ψ̃(∓k) cos

(
1∓ 2ik

4
π

)
Γ

(
1

2
∓ ik

)
eiω(k)(y±−φ∗). (3.56)

Focusing on left-moving modes, we take another Fourier transform:

χ̃
L

(ω̃, φ) =
1√
2π

∫ +∞

−∞
dye−iω̃yχ̃

L
(y+) ∈ L2(R, dω̃), (3.57)

and another rescaling

χ
L

(ω̃, φ) =
1√
2|ω̃|

χ̃
L

(ω̃, φ) ∈ L2(R, 2|ω̃|dω̃), (3.58)

which is finally transformed to:
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χ
L

(y+) =
1√
2π

∫ +∞

−∞
dω̃eiω̃yχ

L
(ω̃, φ). (3.59)

Putting everything together, we find that the left moving modes of the physical states of the Klein-

Gordon representation are given by:

χ
L

(y+) =
1√
2π

∫ +∞

0

dk√
k
ψ̃(−k) cos

(
1− 2ik

4
π

)
Γ

(
1

2
− ik

)
ei
√

12πGk(y+−φ∗). (3.60)

In summary, in the Klein-Gordon representation, the physical states χ(y, φ) can be split in left and

right-moving modes:

χ
L/R

(y±) =
1√
2π

∫ +∞

0
dkχ̃±(k)ei

√
12πGk(y±−φ∗), (3.61)

respectively, whose Fourier transform χ̃±(k) have support on the positive real line. These Fourier trans-

forms are the profiles that define the physical state, and are related to the profile ψ̃(k) defining (3.51)

by:

χ̃±(k) =
1√
π

1√
k
ψ̃(∓k) cos

(
1∓ 2ik

4
π

)
Γ

(
1

2
∓ ik

)
. (3.62)

Now, it is possible to compute the expectation value of the volume from (3.47), given a profile

ψ̃(k). For the gaussian profile (3.23), in order for the expectation value of the volume to agree in both

representations (3.24) and (3.47), we find that1 2vo = e−
√

12πGφ∗ . Without loss of generality, we can

choose φ∗ = 0, so that vo = 1/2, independently of the parameters of the profile.

3.2 Summary

In this chapter, we have shown that, in the WDW approach, the expectation value of the volume for

semiclassical states (3.24) follows the classical trajectory into the big-bang located at φ→ −∞. We can

also find the expectation value of the observable that represents the matter energy density. Classically,

this is given by ρ|φ = π2
φ/(2V |2φ) and so the corresponding operator is written as [23]:

ρ̂|φ =
1

2
Â|2φ , Â|φ = V̂ |−1/2

φ π̂φV̂ |
−1/2
φ . (3.63)

Thus, since the expectation value of V̂ |φ vanishes at the big-bang, the expectation value of the energy

1Note that the total expectation value is the sum of the expectation values on the right and left sectors. Furthermore, the
expectation value on the right sector is found to be the same as for the left sector. Hence, the expectation value of the volume
on left-moving modes is 1/2 of the total expectation value
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density diverges and, in this sense, the big-bang singularity is not resolved.

However, the analysis carried out in this chapter will be relevant also in the context of LQC. These

two approaches (WDW and LQC) share the physical Hilbert space in their Klein-Gordon formulation.

Thus, the states χ(y, φ) of the WDW approach and the corresponding χ(y, φ) of LQC live in the same

Hilbert space, and the difference between the two approaches in this representation lies in the form of

the operators that represent observables. A well defined χ(y, φ) is therefore also a suitable physical state

χ(y, φ) of LQC. Furthermore, writing explicitly the physical states that live in the domain of the volume

operator is not trivial in the Klein-Gordon representation of either approach. Their Fourier transform

has support only on the positive real line and the integral in (3.49) has to converge. By doing this

analysis, we managed to write explicitly the physical states in the Klein-Gordon representation in terms

of profiles ψ̃
+

(k) ∈ L2(R, dk). This way, we can simply choose any profile ψ̃
+

(k) ∈ L2(R, dk),

and find the corresponding physical state in the Klein-Gordon formulation through (3.61) and (3.62).

More importantly, this clarifies the mathematical conditions for semiclassicality in the Klein-Gordon

representation. In the v-representation, a semiclassical state ψ(v, φ) is simply defined by any physical

profile ψ̃
+

(k) peaked on a classical trajectory with bounded dispersions, whereas the choice of such a

state in the Klein-Gordon representation is not clear by itself, but it is made clear with this mapping.

The dictionary between the v and y representations of the WDW approach is not the same as the one

between the equivalent v and x representations of LQC, which is more complicated to obtain. Neverthe-

less, since the physical Hilbert space in the Klein-Gordon representations of both approaches is the same,

we can use for the states χ(x, φ) of LQC the same well defined states χ(y, φ) of the WDW approach,

even if the corresponding profile ψ(v, φ) in the v representation of LQC is not the same as ψ(v, φ) of the

WDW approach. We will use this in the next chapter.
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Chapter 4

Homogeneous and isotropic Loop

Quantum Cosmology

In the WDW approach, as shown in the previous chapter, the expectation value of the matter energy

density still diverges at the big-bang, and so this singularity is not generically cured. This leads to the

need to explore other inequivalent quantization procedures, such as LQC.

In LQG, the phase space is described in terms of suitable variables for a gauge theory: an SU(2)

connection and its canonically conjugate densitized triad [3]. The quantum configuration space is then

constructed from holonomies of the connection along discrete edges, leading to a discretization of the

geometry. LQC consists of the application of similar methods to cosmological models. For a flat FLRW

model with a massless scalar field, similarly to the WDW approach, a change of representation leads

to a transformation of the Hamiltonian constraint into a Klein-Gordon equation. This is usually called

the solvable formulation of LQC (or solvable LQC – sLQC) as it provides an analytical solution of the

physical states. The key result of this approach is that, as a consequence of the discretization of the

geometry, the expectation value of the volume observable is found to have a minimum positive value and

the energy density a maximum finite value. These quantities undergo a bounce, connecting a contracting

epoch of the Universe with an expanding one. Hence, the big-bang singularity is resolved and replaced

with a quantum bounce. Furthermore, this result is not restricted to any particular form of the physical

states. In this chapter, we will briefly review the quantization procedure for this simple model and analyse

its key results.

We will also address an issue that has been overlooked hitherto. Because the solvable formulation

was obtained only after the bounce had been found to occur in the original v-representation, by resorting

to heavy numerical computations [13], the analytical solutions of the solvable formulation were never

expressed for any specific physical state. Thus, the fact that it is highly non trivial to write an explicit

state in the domain of the volume operator in this formulation went unnoticed. We will provide a way
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of dealing with this issue, by taking advantage the of the fact that the physical Hilbert space of the

Klein-Gordon formulation is shared by LQC and the WDW approach.

Finally, the occurrance of a bounce is not particular to this simple model. For example, it has been

shown numerically [16] that in the presence of a cosmological constant the bounce still occurs. The

study of more realistic models requires the introduction of a potential for the scalar field, which generally

means that there is no analytical solution. The usual approach in the literature is to employ semiclassical

or effective treatments, where additional quantum corrections are considered negligible. As a conse-

quence, different formalisms and prescriptions in quantum cosmology cannot be suitably discriminated.

Therefore, it is important to explore procedures that go beyond the usual treatments.

In [24], a mathematical procedure is proposed to deal with the inclusion of a generic potential for the

scalar field, and extract the dominant contributions to the quantum dynamics. The treatment is based on

the solvable formulation of the case with vanishing potential, and so it is a natural continuation of this

chapter. In the next chapter, we explore this procedure and apply it to a constant potential.

4.1 Kinematics an physical Hilbert space in v-representation

In chapter 2, we have introduced the Hamiltonian formulation of the cosmological model of interest,

and found that the Hamiltonian of the system is simply the Hamiltonian constraint (2.16). We then

promoted the constraint to an operator, in chapter 3, using the Schrödinger-like representation of the

system following the WDW approach. We will now adopt a different representation of the system,

following the LQC approach.

LQC mimics the procedures of LQG, where there is no operator to directly represent b. Instead, there

is one to represent the holonomies êiλb/2. Denoting the quantum states as |v〉, the kinematical Hilbert

space of the geometrical sector,Hgrav, has the basic algebra:

ê
iλb
2 |v〉 = |v + λ〉, (4.1)

v̂|v〉 = v|v〉, (4.2)

such that the Dirac rule
[
êiλb/2, v̂

]
= i{ ̂eiλb/2, v} is satisfied. Remarkably, the inner product is discrete,

given by the Kronecker delta (instead of the Dirac delta, as in the WDW approach):

〈v|v′〉 = δv,v′ , (4.3)

which is a consequence of the fact that in this representation there is no infinitesimal generator b̂ of trans-
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lations in v, but only finite translations êiλb/2 are well defined. Thus, the basis states |v〉 are normalizable

and provide an orthonormal basis. If λ is any real parameter, the resulting geometric sector of the kine-

matical hilbert space is the Bohr compactification of the real line, which is non-separable. However, the

improved dynamics prescription [23] fixes λ = 1 and no other values for λ are considered.

Explicitly, the quantum counterpart of the Hamiltonian constraint is now given by:

Ĉ = −∂2
φ − Θ̂, (4.4)

The geometric part of the constraint is given by Θ̂ = 3
4πGγ2

Ω̂2
0, and Ω̂ is found to be [39]:

Ω̂0 =
1

2
√

∆
V̂ 1/2

[
ŝign(v) ŝin b+ ŝin b ŝign(v)

]
V̂ 1/2. (4.5)

where ŝin b =
(
êib − ê−ib

)
/(2i). Then, the operator Θ̂ is a difference operator of step 4, densely defined

in the semilattices L±ε :

L±ε = {v = ± (ε+ 4n) , n ∈ N}, ε ∈ (0, 4], (4.6)

such that it is essentially self-adjoint in the Hilbert spacesH±ε , the closure of L±ε with respect to the inner

product (4.3).

Its generalized eigenfunctions ek(v) verify a recurrence relation and do not admit a closed form. In

the limit of large v, they tend to a real linear combination of the two corresponding eigenfunctions of

the WDW approach for the same eigenvalue. In other words, they behave like standing waves with both

outgoing and incoming components, which then do not decouple unlike in the WDW approach [39].

For the matter field, a standard Schrödinger-like representation is adopted, like in the WDW ap-

proach, where φ̂ acts by multiplication and π̂φ = −i∂φ as derivative. These operators are defined on

the Hilbert space L2(R, dφ), with the domain Dφ of the Schwartz space of rapidly decreasing functions,

dense in L2(R, dφ).

The total kinematical Hilbert space is found to beHkin = H±ε ⊗L2(R, dφ). Hence, as in the WDW

approach, each of the operators act as the identity in the sector where they do not have a dependence.

With an analysis analogously to that exposed in section 3.1.1 for the WDW approach, we find that

the physical states are given by:

ψ(v, φ) =

∫ +∞

−∞
dk ek(v)

[
ψ̃+(k)eiω(k)φ + ψ̃−(k)e−iω(k)φ

]
. (4.7)

Note that, because the eigenfucntions ek(v) do not admit a closed form, this is a formal expression for

the physical states. Here, as in the WDW approach, the physical Hilbert state is Hphys = L2(R, dk) 3
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ψ̃±(k). Thus, ψ̃±(k) provide again superselected positive and negative frequency sectors, in the same

way as in the WDW approach.

4.2 Solvable LQC

For the case of a flat FLRW model with a massless scalar field, there is a specially useful representa-

tion to work with, which allows for the constraint to be solved analytically. This is obtained by following

the solvable LQC (sLQC) prescription [23]. The procedure is similar to that exposed in section 3.1.2.

Firstly, we change from the v-representation to the b-representation. This time, the Fourier transform

will not be the same as in the WDW approach, since now the kinematical Hilbert space is no longer

L2(R, dv). Instead, we need to perform a discrete Fourier transform. For this purpose, we need to define

Θ̂ in a lattice supported over the whole real line, symmetrically spread around v = 0:

L = {v = 4n, n ∈ Z}, (4.8)

so that L =
(
L+

4 ∪ L
−
4 ∪ |0〉

)
1. This way, the Hilbert space under consideration Hgrav is the closure of

L with respect to the inner-product (4.3). Given that the states ψ(v, φ) are symmetric under the change

from v to −v, as consequence of the fact that a change in the orientation of the triad does not have

physical meaning, the operator Θ̂ is still essentially self-adjoint in this domain, with non-degenerate

spectrum.

Then, the wave functions ψ(v, φ) and ψ̃(b, φ) of the v and b-representations are related by:

ψ̃(b, φ) =
∑
v∈L

e
ibv
2 ψ(v, φ), (4.9)

ψ(v, φ) =
1

π

∫ π

0
db e−

ibv
2 ψ̃(b, φ). (4.10)

Notice that this Fourier transform mapsHgrav to L2([0, π], db) (with periodic boundary conditions),

i.e., since v is supported on a lattice of equidistant points over the real line, b is now an angle. Then, we

introduce a scaling χ = ψ/(πv) and finally we implement a change of variable:

x =
1√

12πG
ln

[
tan

(
b

2

)]
, (4.11)

analogous to the change of variable from b to y in the WDW approach. The constraint in the x-

representation is simplified to:

1We define the states ψ(v, φ) to vanish at v = 0
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π̂2
φ − π̂2

x = 0, (4.12)

where π̂φ = −i∂φ and π̂x = −i∂x are the two momentum operators. This is precisely a Klein-Gordon

equation, making the quantum dynamics easily integrated. π̂φ and π̂x are Dirac observables, preserved

by the dynamics, and we take the operator π̂φ to be positive (to remove double counting of solutions,

given the time-reversal invariance). The operator x̂ satisfies:

x̂ = x̂0 + (φ− φ0)sign(π̂x). (4.13)

Here, x̂0 is the operator x̂ in the section where the configuration of the scalar field is φ0, which can be

seen as the initial section of the evolution. Physical states are found to have the form [13]:

χ(x, φ) =
1√
2

[χ(x+)− χ(x−)] . (4.14)

Here, x± = φ ± x correspond to the left and right moving modes, respectively, and χ is any function

with Fourier transform supported on the positive real line. Notice that, while in the WDW approach, the

left and right sectors are completely independent, in LQC they are not. The fundamental reason is that in

the WDW approach outgoing and incoming solutions are independent, while in LQC both contributions

are present [39]. Using only, e.g., left moving modes, the inner product on physical states is given by:

(χ1, χ2)L = −2i

∫
R

dxχ1(x+)∂xχ2(x+)

= 2i

∫
R

dx (∂xχ1(x+))χ2(x+),

(4.15)

while on right-moving modes

(χ1, χ2)R = 2i

∫
R

dxχ1(x−)∂xχ2(x−)

= −2i

∫
R

dx (∂xχ1(x−))χ2(x−),

(4.16)

such that the total inner product is

(χ1, χ2) =
1

2
[(χ1, χ2)L − (χ1, χ2)R] . (4.17)

Taking P̂R and P̂L to be projectors on the right and left-moving modes, it is shown [23] that:

v̂ =
1√

3πG

∑
j=R,L

P̂j cosh
(√

12πGx̂
)
π̂xP̂j . (4.18)

Hence, having the physical volume represented by the operator V̂ = 2πGγ
√

∆|v̂|, we find that the
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expectation value of the volume can be written as:

〈V̂ |φ〉 =
(
χ, V̂ |φχ

)
= 2πGγ

√
∆ (χ, |v̂|φχ) . (4.19)

Recalling that π̂x is positive (negative) on the sector of left (right)-moving modes2, we conclude that

〈V̂ |φ〉 = 〈V̂ |φ〉L, and finally:

〈V̂ |φ〉 =
4πGγ

√
∆√

3πG

∫ ∞
−∞

dx+

∣∣∣∣dχ(x+)

dx+

∣∣∣∣2 cosh(
√

12πGx)

= V+e
√

12πGφ + V−e
−
√

12πGφ,

(4.20)

with

V± =
2πGγ

√
∆√

3πG

∫ ∞
−∞

dx+

∣∣∣∣dχ(x+)

dx+

∣∣∣∣2 e∓√12πGx+ . (4.21)

Note that this imposes a strong condition on χ(x+): it has to be such that the integrals in (4.21)

converge, for χ(x, φ) to live in the domain of the volume. This issue will be addressed later.

It is straightforward to find analytically that there is a minimum VB for the physical volume,

VB = 2

√
V+V−
‖χ‖2

, (4.22)

at the bounce point φB ,

φB =
1√

12πG
ln

(
V−
V+

)
. (4.23)

One can also easily find that the internal-time evolution of the volume is exactly symmetric around

the bounce point for all states, by writing 〈V̂ |φ〉 as:

〈V̂ |φ〉 = VB cosh
[√

12πG(φ− φB)
]
. (4.24)

Finally, we can obtain the expectation value of the observable that represents the matter energy

density. Classically, this is given by ρ|φ = π2
φ/(2V |2φ) and so the corresponding operator is written as:

ρ̂|φ =
1

2
Â|2φ , Â|φ = V̂ |−1/2

φ π̂φV̂ |
−1/2
φ . (4.25)

By computing the spectrum of Â|φ, one finds that ρ̂|φ is bounded from above by:

ρsup =
3

8πG∆γ2
. (4.26)

2Which implies that |π̂x|χ(x±) = ±π̂xχ(x±).
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Note that there is no implicit dependence of ρsup on the choice of the finite cell V , proving that,

indeed, due to homogeneity, the analysis of this cell represents the dynamics of the whole Universe.

Moreover, remarkably, ρsup is universal, namely independent on the state. This is a special feature of the

improved dynamics prescription, which makes it a physically successful quantization choice.

Finally, for large values of φ, and thus for large volumes, V (φ) is proportional to the classical solu-

tions of the model e
√

12πG|φ|, agreeing with GR when the curvature is small.

The fact that these results have been derived in a purely analytical manner is a powerful feature, since

it does not restrict their validity to any specific type of sates. Nevertheless, it is important to recognise

that the choice of a specific function χ(x+) that defines the physical states in the domain of the volume

is not trivial. Its Fourier transform is supported on the positive real line and it has to be such that the

integrals in (4.21) converge. To date, this issue has been overlooked, due to the fact that the bounce

had been shown to occur already in the v-representation, with numerical treatments [13]. Thus, when

the analytical formulation was derived, there was no need to define explicit physical states. In the next

chapter, we will rely on the solvable formulation to explore the effects on the dynamics of including a

potential for the scalar field. To obtain results for specific forms of the potential, and compare to other

results obtained numerically in the literature, a specific state has to be defined, and this issue needs to be

addressed.

To this end, it is useful to compare this formulation with the Klein-Gordon representation of the

WDW approach. The integrals in (3.49) and (4.21) have the same structure. The functions χ
L

(y+)

of (3.49) play the same role as χ(x±) in (4.21). This way, we can choose χ(x+) to be the same as

χ
L

(y+) for a given profile ψ̃
+

(k) ∈ L2(R, dk). This will not correspond to the same profile in the

v-representation in the LQC approach, because the map from v to y of the WDW is not the same as

the map from v to x in LQC. However, we know that this makes the integral in (4.21) converge and is

therefore a suitable choice for χ(x±).

This analysis already showcases the most important results of LQC. As mentioned in the beginning

of this chapter, these are not particular to the simplest case of a flat FLRW model with a massless scalar

field. In the next chapter we will introduce a non-vanishing potential for the scalar field, thus enabling

the study of more interesting models.
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Chapter 5

Dealing with a potential in Loop Quantum

Cosmology

The next step towards the study of more realistic models is the introduction of a non-vanishing

potential for the scalar field W (φ). In this case, the form of the classical constraint is found to be [24]:

π2
φ −

3

4πGγ2
Ω2

0 + 8π2G2∆γ2v2W (φ) = 0. (5.1)

Consequently, as long as the potential is not constant, as we will see, the resulting Hamiltonian

becomes time dependent (in the internal time variable φ), and the system does not admit an analytical

solution. Furthermore, the term in W (φ) also depends on the geometrical variable v, and so, even if

the potential is constant (eliminating the time dependence in the Hamiltonian), the eigenfunctions of

the Hamiltonian do not admit an analytically closed form. It is necessary either heavy computational

power, and to generate the eigenfunctions numerically (as in [16] for constant potential), or the use of

approximations.

The usual procedure in the literature is to adopt effective or semiclassical treatments that consider

further quantum corrections negligible. This way, different prescriptions within quantum cosmology

cannot be properly discriminated. One possible avenue for the discrimination of distinct procedures is

through the quantum corrections to the power spectrum of primordial fluctuations. The treatment pro-

posed in [24] to extract as much as possible the contributions of the potential to the quantum dynamics

was motivated by this problem. A compromise between required computational power and the precision

of the final results is offered, by introducing approximations but going beyond the semiclassical or ef-

fective treatments usually employed in the literature. We will apply this method for the case of constant

potential, but in the following we will first introduce the proposal for a generic form of the potential.
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5.1 Generic potential

For this analysis, it is helpful to define the operator B̂ =
√

4πG/3γV̂ |Ω̂0|−1V̂ . The loop quanti-

zation provides the operator Ω̂2
0, acting on states |v〉, as a difference operator of step 4. To preserve the

lattices of step 4, we define the quantum counterpart of Ω0 by doubling the length of the holonomies.

Namely, for this operator, replacing the canonical set {v, b/2} with a new one {v/2, b}:

Λ̂0 = 2πGγ
v̂

2
ŝin(2b) = 2πGγv̂ ĉos b ŝin b. (5.2)

After a careful calculation in the x-representation, one finds [24]:

Λ̂0 = −
√

4πGγ2

3
tanh

(√
12πGx̂

)
π̂x, (5.3)

B̂ =
4πG∆γ2

3
cosh2

(√
12πGx̂

)
|π̂x|. (5.4)

Notice that, in sLQC, the quantum evolution of these operators is that dictated by the evolution of x̂

given in (4.13), having π̂x constant.

Now, we have the necessary tools to proceed with the analysis. The goal of this procedure is to

be able to compute expectation values of operators over the FLRW geometry. The main obstacle is to

compute the quantum evolution of FLRW states. In order to do this, we will take advantage of the fact

that the free dynamics (with vanishing potential) is known and easily dealt with (see chapter 4). Setting

W = 0, we would obtain the trajectory (4.13) and an analytical expression for the physical states (4.14)

along with the inner product (4.15). We can first take the generator of the FLRW dynamics, extract its

free geometric part (for W = 0) and use it to pass to an interaction picture.

Allowing for a non vanishing potential, the constraint is given by (5.1). We can write the quantum

counterpart as:

Ĉ = π̂2
φ − Ĥ

(2)
0 , (5.5)

Ĥ(2)
0 = π̂2

x − 2W (φ̂)V̂ 2. (5.6)

Interpreting φ as time, the quantum Hamiltonian is Ĥ0 = π̂φ = −i∂φ. Using the Hamiltonian

constraint (5.5), and considering only positive frequency solutions, we have that Ĥ0 is the positive square

root of Ĥ(2)
0 , and can be seen as a modification of the evolution generator along φ of the homogeneous

system with massless scalar field.

Now, we write the physical states as:
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χ(x, φ) = Û(x, φ)χ0(x), (5.7)

where χ0 is the initial FLRW state at a value φ0 for the homogeneous scalar field, and Û is the evolution

operator given by:

Û(x, φ) = P
[
e
−i

∫ φ
φ0
dφ̃Ĥ0(x,φ̃)

]
, (5.8)

where P denotes time ordering (with respect to φ). This way, expectation values are taken on the state χ

of the FLRW geometry, with the inner product of sLQC (4.15). For a non constant scalar field potential

W (φ), the dynamics is not solvable, since it requires the integration of the evolution of χ provided by

Ĥ0. Even in numerical computations complications arise [40]. To deal with this, we can first extract the

dynamics of the free case, corresponding to vanishing potential. Treating the remaining evolution as a

kind of geometric interaction, we can pass to an interaction picture.

Firstly, we define the operator Ĥ0 for vanishing potential (free dynamics) as:

Ĥ(F )
0 =

√
3

4πGγ2
|Ω̂0|. (5.9)

In particular for sLQC, Ĥ(F )
0 = |π̂x|. Then, the states in the interaction picture are written as:

χI(x, φ) = eiĤ
(F )
0 (φ−φ0)χ(x, φ), (5.10)

which from equation (5.7) becomes:

χI(x, φ) = eiĤ
(F )
0 (φ−φ0)P

[
e
−i

∫ φ
φ0
dφ̃Ĥ0(x,φ̃)

]
χ0(x) = ÛI(x, φ)χ0(x), (5.11)

ÛI(x, φ) = P
[
e
−i

∫ φ
φ0
dφ̃Ĥ1I(x,φ̃)

]
. (5.12)

Here, Ĥ1 = Ĥ0 − Ĥ(F )
0 . Any operator Ô in the Schrödinger-like picture has a corresponding operator

ÔI in the interaction picture:

ÔI = eiĤ
(F )
0 (φ−φo)Ôe−iĤ

(F )
0 (φ−φo), (5.13)

and in total we find:

〈Ô(φ)〉χ = 〈ÔI(φ)〉χI = 〈ÛI(φ)†ÔI(φ)ÛI(φ)〉χ0 , (5.14)
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where the dagger denotes the adjoint. Since the integration of the dynamics of the free case can be

performed analytically in the sLQC prescription, the form of the FLRW geometry operators in the inter-

action picture is easy to obtain. In fact, it simply corresponds to the substitution of their dependence on

x̂ by the same dependence on the evolved operator, according to (4.13):

x̂→ x̂(φ) = x̂+ (φ− φ0)sign(π̂x). (5.15)

Thus, the dynamical evolution of the expectation values reduces to the computation of the path-

ordered integral of (5.12). This computation is still too difficult and, at this point, one may treat the

evolution semiclassically. However, since we want to go further in the analysis, we will extract the

dominant contributions of the potential in the quantum evolution. assuming we can regard the potential

as a perturbation of the free case., i.e., 8π2G2∆γ2v2W (φ)� 3Ω2
0/(4πGγ

2).

The operator Ĥ1I is the counterpart of Ĥ1 in the interaction picture, and is thus obtained from Ĥ1

with the replacement (5.15). Up to first order terms in the potential, Ĥ1 can be represented in the

approximate form [24]:

Ĥ1 ≈ Ĥ2 = −W (φ)B̂. (5.16)

Generally, we can write

Ĥ1I = Ĥ2I + Ĥ3I , (5.17)

where Ĥ2I is Ĥ2 in the interaction picture, and Ĥ3I is the remaining part of Ĥ1I , at least of second order

in the potential. This way, the dominant contribution of the potential to the generator of the evolution in

the interaction picture is found, for sLQC, from (5.16) with the substitution (5.15) in the expression of B̂

given in (5.4). The dynamics generated by Ĥ2I can be obtained by passing to a new interaction picture

J . In this sense, we introduce:

Û2I = P
[
e
−i

∫ φ
φ0
dφ̃Ĥ2I(φ̃)

]
, (5.18)

and find that for any operator ÔI in the initial interaction picture, the corresponding operator in the new

interaction picture is given by:

ÔJ = Û †2IÔI Û2I . (5.19)

Finally, the expectation value of this operator can be found by:
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〈Ô(φ)〉χ = 〈ÔI(φ)〉χI = 〈Û †JÔJ ÛJ〉χ0 , (5.20)

ÛJ = P
[
exp

(
−i
∫ φ

φ0

dφ̃Ĥ3J(φ̃)

)]
. (5.21)

Now, the remaining obstacle is the integration of the evolution generated by Ĥ2I and Ĥ3I . Up to this

point, no approximations have been introduced and the treatment has been exact. At this stage, however,

we need to renounce to an exact treatment. We will first consider that the evolution generated by Ĥ3 can

be ignored. This way, ÛJ ≈ 1 and

〈Ô(φ)〉χ ≈ 〈ÔJ〉χ0 . (5.22)

Since the form of ÔI and χo are known, the only obstacle left is the computation of Û2I . To that end,

we will truncate the series expansion of Û2I in terms of path ordered integrals of powers of Ĥ2I , in order

to compute ÔJ up to a certain order of the potential:

Û2I = 1− i
∫ φ

φ0

dφ̃Ĥ2I(φ̃) +O(W 2). (5.23)

Keeping the linear contributions of the potential in the operator ÔJ and using the relation (5.16), we

find [24]:

ÔJ ≈ ÔI + i

[
ÔI ,

∫ φ

φ0

dφ̃W (φ̃)B̂I(φ̃)

]
. (5.24)

The relative order of the terms neglected in Û2I , with respect to the conserved ones is found to be

[24]:

RB =
√
Gγ(φ− φ0)W

V 2
I

|Ω0|
, (5.25)

where Ω0 is a constant of motion for the vanishing potential case and it is assumed that the change of

WV 2
I is negligible. This way, the truncation is valid if RB � 1.

Finally, it is necessary to determine when the remaining dynamics needs to be accounted for. It is

found [24] that the first contribution in powers of the potential in ÛJ are of the order of R2
BrB , where

rB =

√
Gγ

|Ω0(φ− φ0)|
. (5.26)

Then, the remaining dynamics, generated by ÛJ , can only be ignored if R2
BrB � 1. Furthermore,

if the first contributions of the potential in ÛJ (of order R2
BrB) are larger than the first terms neglected
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in Û2I (of order R2
B), then the remnant of the evolution cannot be ignored either. Hence, recalling that

RB � 1 for the truncation of Û2I to be valid, the dynamics generated by ÛJ can be ignored if rB < 1.

In the case where ÛJ needs to be considered, an effective approximation is required, since its quan-

tum evolution is too complicated to be manageable. By effective approximation, one means that the

considered state of the FLRW geometry needs to be peaked around an effective trajectory of the evolu-

tion generated by Ĥ3J . In this work, we will not concern ourselves with these details yet, as we will first

consider situations where the dynamics generated by ÛJ are negligible, i.e., where rB < 1 and RB � 1.

Under these conditions, given the inner-product of sLQC (4.15), one simply needs to compute (5.24)

to find the expectation value of an observable, since now 〈Ô〉χ ≈ 〈ÔJ〉χ0 . For this calculation, it is of

course necessary to particularize the discussion to a specific form of the potential.

5.2 Constant Potential

To apply this procedure to a specific potential, we choose to start with the simplest non trivial case

of a constant potential. Even though this is a simple case, it is already very relevant for cosmology, as it

is equivalent to considering a massless scalar field in the presence of a cosmological constant, by taking

W = Λ/(8πG) [16].

In this situation, taking φ as relational clock, we will still get a time-independent Hamiltonian. How-

ever, its eigenfunctions do not admit an analytical closed form. Hence, this is a suitable model for the

first application of the procedure outlined above. Alternatively, one could numerically try to diagonalize

the Hamiltonian of the system. Its eigenfunctions would have to be generated numerically, requiring

heavy computational power, as has been performed in [16].

For constant potential, the computation of (5.24) is quite simplified. It is simply necessary to compute

the integral
∫ φ
φ0
dφ̃B̂I(φ̃). This calculation is carried out in Appendix A.1, which yields an expression for

any operator ÔJ , to first order in the constant potential. This expression, together with the inner product

(4.15) of sLQC allows us to compute expectation values 〈ÔJ〉χ of certain operators.

We are interested in tracking the expectation value of the volume observable. We find that, in the

(x, φ) representation (where x and φ act by multiplication), V̂J can be written as (see Appendix A.2 for

further details of this calculation):

V̂J =
2πGγ

√
∆√

3πG
E(x, φ)π̂x, (5.27)

where we define E(x, φ) in equation (A.11) of the Appendix A.2.

Taking the inner-product of sLQC (4.15), the expectation value of V̂J on left-moving modes is found

to be:
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〈V̂J〉L = 2i

∫
R

dx (∂xχ(x+)|φo) V̂Jχ(x+)|φo

=
4πGγ

√
∆√

3πG

∫
R

dx |∂xχ(x+)|φo |
2E(x, φ),

(5.28)

where the states χ(x+) are evaluated at φ = φo before being acted on by the operators. A careful

calculation with a suitable change of variable in the integration variable leads to (see Appendix A.2):

〈V̂J〉 = V+e
√

12πGφ

[
1 +W

√
3πG

2πG∆γ2

3

(
3

2
√

12πG
+ 2(φ− φo)

)]
+ V−e

−
√

12πGφ

[
1 +W

√
3πG

2πG∆γ2

3

(
3

2
√

12πG
− 2(φ− φo)

)]
+W

πG∆γ2

6

[
e3
√

12πGφ
(
V3+ − 3V+e

−2
√

12πGφo
)

+ e−3
√

12πGφ
(
V3− − 3V−e

+2
√

12πGφo
)

− e5
√

12πGφ V3+e
−2
√

12πGφo − e−5
√

12πGφ V3−e
+2
√

12πGφo

]
,

(5.29)

with V± given in (4.21), and V3± defined as:

V3± =
2πGγ

√
∆√

3πG

∫ ∞
−∞

dx+

∣∣∣∣dχ(x+)

dx+

∣∣∣∣2 e∓3
√

12πGx+ . (5.30)

An inspection of the W = 0 case reveals that this agrees with the expectation value of V̂ of sLQC,

as it has to.

Ultimately, to evaluate it for specific states, the profile χ(x+) has to be chosen. Recall that these

have Fourier transform with support on the positive real line, i.e., they can be written as:

χ(x+) =

∫ +∞

0
dkχ̃(k)eikx+ . (5.31)

Thus, the states will be defined by χ̃(k). As previously discussed, this has to be such that the integrals

(4.21) and (5.30) converge. To find such a function is not trivial, and so we choose to use the same profile

χ̃±(k) (3.62) with a suitable profile for ψ̃
+

(k), as in the WDW approach. The Gaussian profile (3.23)

would be an appropriate choice, although others can be considered, such that the final form of χ̃(k) is

simplified. Specifically, it would be convenient to choose a profile such that the integrals in V± and V3±

can be solved analytically.

All that there is left to do upon defining this profile is to actually compute the expectation value

of the volume operator, tracking its evolution in φ. With this method, this is achieved with minimum

computation power. The only possibly numerical integrations are the values of V± and V3±. Notice that

these are independent of φ, and therefore only need to be computed once, for a given profile. In fact,

these values of V± do not even need to be computed, as they can be set by the normalization of χ̃(k).
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Then, it is straightforward to evaluate (5.29) for different moments in time φ.

Finally, the results can be compared with the ones obtained in [16] for the same model. That work

required a functional analysis of the Hamiltonian constraint operator, which involves the consideration

of self-adjoint extensions. Furthermore, the eigenfunctions of the Hamiltonian had be generated numer-

ically, requiring heavy computational power. Our method avoids such an analysis, which can be quite

complicated for more general potentials. Hopefully, we will reveal that the difference between these

methods is negligible, or at least that the qualitative nature of the two is the same, thus demonstrating the

power of this procedure to obtain accurate results while being computationally inexpensive, and without

the need of very complicated functional analysis.

This treatment can be extended to second order in the potential and, if necessary, we can consider the

evolution generated by ÛJ with an effective approximation. Ultimately, having proven the robustness of

this procedure, we intend to apply it to a more interesting model with non constant potential.
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Chapter 6

Conclusions

In this work, we first studied the WDW approach to quantum cosmology for a flat FLRW model

coupled to a massless scalar field. Even though this approach does not cure the big-bang singularity, in

the sense that Dirac observables still diverge in some instant of the evolution, it provides a simpler setting

to clarify some procedures that are analogous in the approach we are interested in, LQC. We managed

to establish the map between the original formulation and the Klein-Gordon representation of the WDW

approach, by finding the precise relation between the physical profiles of the two. This map, that had

not been explicitly established before at the physical level, allows one to write the same physical state

in both formulations. More importantly, it allows one to write a semiclassical state in the Klein-Gordon

formulation, by first defining a semiclassical profile in the original formulation, where the notion of

semiclassicality is clear. This was not addressed before, and has become clarified with this study.

Next, we focused our attention on the LQC approach, which has the appealing outcome of solving the

big-bang singularity, by replacing it with a quantum bounce. It also admits a Klein-Gordon formulation,

which allows for analytical solutions to be found. However, the result of the quantum bounce was already

found in the original representation, by means of numerical computations. Thus, when the Klein-Gordon

formulation was first studied, there was no need to build explicit physical states, since it was proven

analytically that the bounce occurs for any physical profile. It turns out that it is not trivial to find

physical states in the domain of the volume, our main physical observable, in this representation, but the

previous analysis of the WDW approach offers a simple way of doing so. The two approaches share the

physical Hilbert space of their respective Klein-Gordon formulations. By taking a semiclassical profile

of the original formulation in the WDW approach, we find a well defined physical profile in the domain

of the volume in its Klein-Gordon formulation. The same profile will define a state in the domain of the

volume also in the Klein-Gordon formulation of LQC. This way we tackled an issue that had not been

noticed before and provided a way of defining specific physical states in the domain of the volume in the

Klein-Gordon formulation of LQC.
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Having a full understanding at the physical level of the solvable formulation of LQC, we then pro-

gressed to the study of more realistic models, by introducing a potential for the scalar field. With this

intent, we exposed a treatment that aims at extracting the main contributions of the potential to the

quantum dynamics, by taking advantage of the fact that the dynamics of the free case is known. This

procedure had been proposed in [24], but never applied to a specific form of the potential. Thus, we

employed it to the simplest non trivial form possible, a constant potential. A final expression for the

expectation value of the volume observable was obtained up to first order in the potential. This allows us

to track this quantity, given a specific physical profile.

We intend to complete this analysis by providing a suitable physical profile, and comparing the results

of this method with other results in the literature. Finally, the same procedure can be applied to more

interesting forms of the potential, such as a mass term, which is a common model for inflation.
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Appendix A

Auxiliary computations for constant

potential

In this appendix we will provide some more details regarding the calculations of the constant poten-

tial case.

A.1 Form of an operator in the interaction picture J

Writing Ĥ2I = −WB̂I(φ), we find from (5.23):

Û2I = 1 + iW

∫ φ

φ0

dφ̃B̂I(φ̃) +O(W 2). (A.1)

And so, up to first order in W :

ÔJ ≈ ÔI + iW

[
ÔI ,

∫ φ

φ0

dφ̃B̂I(φ̃)

]
. (A.2)

Thus, it is only necessary to calculate the integral
∫ φ
φ0
dφ̃B̂I(φ̃), which is accomplished using

B̂I(φ) =
4πG∆γ2

3
cosh[2

√
3πGx̂(φ)]|π̂x|. (A.3)

This calculations involves a subtlety explained in Appendix A.3. We find that:

∫ φ

φ0

dφ̃B̂I(φ̃) =
2πG∆γ2

3
[F (φ)− F (φ0)] π̂x, (A.4)

where we define

F (φ) :=
1

4
√

3πG
sinh[4

√
3πGx̂(φ)] + φsign(π̂x). (A.5)
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A.2 Calculation of the expectation value of the volume to first order

From the procedures exposed in chapter 5, we find that the expectation value of the volume observ-

able is written as:

〈V̂ (φ)〉χL ≈ 〈V̂J〉χ0L
= 2i

∫ +∞

−∞
dx (∂xχ(x+)|φo) V̂Jχ(x+)|φo . (A.6)

From the previous calculations of this Appendix, V̂J is found to be, up to first order in the potential:

V̂J ≈ V̂I + iW
2πG∆γ2

3

[
V̂I (F (φ)− F (φo)) π̂x − (F (φ)− F (φo)) π̂xV̂I

]
, (A.7)

where

V̂I =
2πGγ

√
∆√

3πG

∣∣∣cosh(
√

12πGx(φ))π̂x

∣∣∣ . (A.8)

Recall that, in this formulation, we have defined the states as divided in the left and right-moving

components in such a way that the total expectation value of an observable is given by (4.17). As

explained below equation (4.19), this implies that 〈V̂J〉 = 〈V̂J〉L. Thus, we can focus on left-moving

modes, and V̂I can be written as:

V̂I =
2πGγ

√
∆√

3πG
cosh(

√
12πGx(φ))π̂x. (A.9)

Some careful mathematical manipulations lead to

V̂J =
2πGγ

√
∆√

3πG
E(x, φ)π̂x, (A.10)

where we define:

E(x, φ) := cosh
(√

12πGx(φ)
)
−W 2πG∆γ2

3

{√
12πG [F (φ)− F (φo)] sinh

(√
12πGx(φ)

)
− cosh

(√
12πGx(φ)

) [
cosh

(
2
√

12πGx(φ)
)
− cosh

(
2
√

12πGx
)]}

.

(A.11)

Before proceeding, it is worth it to inspect the form of 〈V̂J〉 so far:

〈V̂J〉 =
4πGγ

√
∆√

3πG

∫ +∞

−∞
dx |∂xχ(x+)|φo |

2E(x, φ). (A.12)

An appropriate change of the integration variable will simplify its comparison to the free case. To

this end, let us inspect the W = 0 case:
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〈V̂J〉|W=0 =
4πGγ

√
∆√

3πG

∫ +∞

−∞
dx |∂xχ(x+)|φo |

2 cosh
(√

12πGx(φ)
)

=
4πGγ

√
∆√

3πG

∫ +∞

−∞
d(x(φ))

∣∣∂x(φ)χ(x(φ)− φ+ 2φo)
∣∣2 cosh

(√
12πGx(φ)

)
,

(A.13)

At first sight, it is not obvious that this agrees with (4.20). To make it clear, we point out that, from

(5.7), using only left-moving modes,

χ(x+) = Û(x, φ)χ(x+)|φo

= Û(x, φ)

∫ +∞

0
dkχ̃(k)eik(x+φo).

(A.14)

For W = 0, Û(x, φ)|W=0 = e−i|π̂x|(φ−φo), and hence we find

χ(x+)|W=0 =

∫ +∞

0
dkχ̃(k)e−ik(φ+φo)eik(x+φo) = χ(x− φ+ 2φo), (A.15)

which shows that (A.13) agrees with (4.20). Furthermore, we now see that changing the integration

variable from x to x(φ) simplifies this comparison. Then, another change of variable from x(φ) to

x̃+ = x(φ)+φ will allow us to write the result in terms of the V± and similar functions. Thus, we obtain

〈V̂J〉 = V+e
√

12πGφ

[
1 +W

√
3πG

2πG∆γ2

3

(
3

2
√

12πG
+ 2(φ− φo)

)]
+ V−e

−
√

12πGφ

[
1 +W

√
3πG

2πG∆γ2

3

(
3

2
√

12πG
− 2(φ− φo)

)]
+W

πG∆γ2

6

[
e3
√

12πGφ
(
V3+ − 3V+e

−2
√

12πGφo
)

+ e−3
√

12πGφ
(
V3− − 3V−e

+2
√

12πGφo
)

− e5
√

12πGφ V3+e
−2
√

12πGφo − e−5
√

12πGφ V3−e
+2
√

12πGφo

]
,

(A.16)

with V± and and V3± given in (4.21) and (5.30), respectively.

A.3 Commutation subtlety

In these calculations, it was necessary to compute ∂φex̂(φ), where x̂(φ) = x̂0 + (φ − φ0)sign(π̂x).

This calculation is quite subtle.

Note that, even though classically ∂φex(φ) = sign(πx)ex(φ), in the quantum model we have:
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∂φe
x̂(φ) = sign(π̂x)

[
1 +

sign(π̂x)x̂0sign(π̂x) + x̂0

2
+ (φ− φ0)sign(π̂x) + ...

]
, (A.17)

sign(π̂x)ex̂(φ) = sign(π̂x) [1 + x̂0 + (φ− φ0)sign(π̂x) + ...] , (A.18)

where we have used:

ex̂(φ) =
∑
n

x̂n

n!

= 1 + x̂0 + (φ− φ0)sign(π̂x) +
1

2

[
x̂2

0 + x̂0(φ− φ0)sign(π̂x) +

+(φ− φ0)sign(π̂x)x̂0 + (φ− φ0)2

]
+ ... (A.19)

Note that (A.17) is different from (A.18) because sign(π̂x) and x̂0 do not generally commute and so:

sign(π̂x)x̂0sign(π̂x) 6= x̂0 (sign(π̂x))2 = x̂0. (A.20)

However, in the expressions where they appear, they are accompanied by π̂x on either side, and in

practice we can replace sign(π̂x)x̂0sign(π̂x) by x̂0.

This is more easily seen in the representation where π̂x acts by multiplication, having therefore

x̂ = i∂π̂x . We find that [x̂, sign(π̂x)] = iδ(π̂x). On the other hand, if π̂x is present, defining sign(0) to

be zero:

δ(π̂x)π̂x = 0, (A.21)

δ(π̂x)sign(π̂x) = 0. (A.22)

Then, π̂x[x̂, sign(π̂x)] = 0 = [x̂, sign(π̂x)]π̂x. Thus, π̂xsign(π̂x)x̂0sign(π̂x) = π̂xx̂0 and so π̂x∂φex̂(φ) =

π̂xsign(π̂x)ex̂(φ).
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