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Mini Review

The need to characterize the composition, structure and 
function of the red blood cells (RBCs) membrane, the presence 
of the acetylcholinesterase  (AChE) enzyme, which kinetically 
resembled the brain esterase, but markedly different from 
the cholinesterase found in serum was evidenced [1]. Human 
erythrocyte AChE enzyme activity is the highest one in the 
mammalian scale [2,3]. The presence of AChE far away of the 
neuronal system raises questions about its function beyond the 
enzyme action. Herzand Kaplan in their revision paper pointed 
that after in vitro hemolysis, acetylcholinesterase activity can be 
recovered in the erythrocyte membrane [4]. Also the tendency to 
couple ion transport mechanisms across erythrocyte membrane 
with AChE was explored with failure [4]. Later was reported 
AChE enzyme activity as a biomarker of human red blood 
cell aging and of RBC membrane integrity [5,6]. The blood of 
healthy humans presents a wide variety of a gradient scale with 
different aged classes from older to younger erythrocytes each 
one showing variable amount of RBCs resulting from its natural 
life span of 120 days. During this period, exovesicles enriched 
with AChE are released from erythrocyte membrane to blood 
circulation resting the older erythrocyte with lower enzyme 
activity [5,7,8]. Considering gender the human female has higher 
AChE enzyme activity than the men matched in age [9].

Higher human erythrocyte AChE enzyme activity were 
verified in patients with glaucoma, essential hypertension, and  

 
ALS [10]. These pathologies are inflammatory vascular diseases 
characterized by high concentration in blood of inflammatory 
molecules, reactive oxygen species, and reactive nitrogen species, 
[10]. The RBCs AChE enzyme activity data obtained in those 
above mentioned vascular diseases reinforce the Das`statement 
of erythrocyte AChE be considered a biomarker of inflammation 
[11]. Das verified also, that in blood samples of inflammatory 
diseases, with high enzyme activity of erythrocyte AChE, lower 
plasma acetylcholine (ACh) levels were obtained [11]. 

Acetylcholine molecule acting in the parasympathetic 
system and in the neuron muscular junction, was considered 
as a neurotransmitter during several decades. Further was 
also recognized also as an anti-inflammatory agent through the 
interplay between immune and neuronal systems, the nominated 
“cholinergic anti-inflammatory pathway” [12-14]. This consists 
in the activation of adrenergic neurons in the spleen that liberate 
nor- epinephrine near the T cell capable to secrete acetylcholine. 
This non-neuronal ACh acts on α7 subunit–containing nicotinic 
acetylcholine receptors expressed on macrophages which after 
binding induce suppression on the synthesis and on the secretion 
of inflammatory cytokines. Macrophages act as an interface 
between the brain and the immune system [15]. The activation 
of afferent vagus nerve by endotoxin or pro-inflammatory 
cytokines stimulates hypothalamic-pituitary-adrenal anti-
inflammatory responses conducted by the efferent vagus nerve.
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Back to erythrocyte membrane enzyme, AChE has the 
particularity to be inhibited by high concentrations of ACh 
meaning by its own natural substrate, [10,16]. So, different types 
of enzyme complexes may be presented namely, active, inactive 
and less active ones according the amount of ACh existent in 
the experimental medium [16,17]. The unusual AChE kinetic 
behavior  a non-neuronal  environment and the discover of nitric 
oxide (NO) produced in the lumen of rabbit aortic endothelium 
cells under the presence ACh, raised us the question if there is 
NO inside erythrocytes [18]. NO was observed, in erythrocytes 
with added ACh, by fluorescence microscopy [19]. Human 
erythrocyte suspensions, in presence of ACh, were loaded with 
the permeable non fluorescent probe diamino fluoresceine-2 
diacetate (DAF-2Da). Intra erythrocyte fluorescence intensity 
of triazolofluorescein (DAF-2T) was visualized as a result from 
the reaction between NO and the 4,5- diaminofluorescein. We 
concluded that ACh, in a dose-dependent way, is able to induce 
NO mobilization inside the erythrocyte [19].

Acetylcholine is known to be present in human blood 
circulation being produced by T lymphocytes and endothelial 
cells [20]. The circulating ACh induces vasodilation or 
vasoconstriction in dependence of integrity of the endothelium, 
via the NO synthesized and released to smooth muscle [21]. 
Also the NO released from endothelial cells can move to 
the lumen of the vessels where in the blood circulation is 
captured by free hemoglobin or scavenged by erythrocyte 
present [22]. The erythrocyte NO-heme-hemoglobin adduct  or 
nitrosylhemoglobin is formed at high tissues oxygen tension, 
for example, when deoxygenated blood enters into the vascular 
bed of pulmonary circulation [23]. After, NO is transferred to the 
thiol group of cysteine β93 of Hb forming S- nitrosohemoglobin 
(SNOHb) considered as a NO reservoir molecule [23]. Low tissue 
oxygen tension is perceived by erythrocytes with occurrence 
of structural allosteric transitions in SNOHb which favor the 
transfer of its NO to the thiol group of band 3 protein, allowing 
the NO efflux from erythrocytes to the capillaries spreading 
those tissues [24].

In in vitro studies with erythrocytes obtained from healthy 
donors under the presence of ACh it was evidenced increased 
of NO efflux, erythrocyte deformability (EE) and decreased 
erythrocyte aggregation and hemoglobin oxygen affinity [25]. 
Other in vitro study with blood samples taken from patients with 
vascular diseases such as hypertension, hypercholesterolemia 
and kidney transplant, showing lower EE than healthy persons 
that was ameliorate by the presence of ACh [24]. A negative 
association between EE values and NO efflux from erythrocytes 
was showed in blood samples of those patients [26].

The NO efflux measurements from erythrocytes are based 
on the ACh signal transduction pathway through the AChE–
ACh active enzyme complex ( active conformation), associated 
with Gαiprotein, adenylyl cyclase (AC) inhibition , band 3 
protein phosphorylation by protein tyrosine kinase (PTK), 
protein kinase C (PKC) activation, phosphodiesterase-3 (PDE3) 

activation, and low level of adenosine triphosphate (cAMP)
molecules [17,27-31]. Lower NO efflux from erythrocytes were 
obtained in presence of velnacrine and timolol, which are strong 
and moderate AChE inhibitors respectively, [27,31,32].

Erythrocyte S-nitrosoglutathione (GSNO) is other NO 
reservoir molecule existing inside erythrocyte but able to 
be secreted by the binding of ACh or timolol to AChE forming 
active and less active enzyme complex respectively [33]. At 
variance GSNO efflux from erythrocyte is null in absence of AChE 
substrate or inhibitor [33].  Meanwhile, inside the erythrocytes 
the presence of the inactive complex AChE-VM showed higher 
GSNO concentration in relation to the active enzyme complex 
AChE-ACh [27,31]. At opposite GSNO levels inside erythrocytes 
were lower in presence of the less active enzyme complex AChE–
timolol than in the case of the active enzyme complex AChE-ACh 
[33,34]. From all the data obtained in the above described studies 
we evidenced that erythrocyte AChE beyond its enzyme activity 
function as a receptor for signal molecules able to induce rescue 
or NO efflux from human erythrocytes and its mobilization from 
reservoir molecules. The NO derivative molecules inside them 
as nitrite, nitrate and peroxynitrite were also quantified in all 
mentioned studies.

The key protein molecules participants in the chemical 
signal transduction mechanism of NO under AChE receptor 
once identified were submitted to inhibitors or activators in in 
vitro models of hyper fibrinogenemia [35,36]. The acute phase 
protein fibrinogen binds to RBCs membrane CD47protein 
partner of the Rh macro-complex which is connected to the 
cytoskeleton via protein 4.2, and interacts also with the major 
RBC macro- -complex band 3 protein [37]. The presence of 
AChE-ACh and AChE-timolol complexes in RBCs induced the 
return to normal values the higher NO efflux obtained under 
high fibrinogen concentration [35,38-40]. Consequently this NO 
scavenged avoids the increase concentrations of the reactive 
nitrogen and oxygen species present in inflammatory conditions. 
Remembering that the inflammatory response is systemically 
associated with variable degree of endothelium dysfunction, 
high plasma ACh and fibrinogen concentrations, the above data 
are is accordance with others that consider acetylcholine as anti-
inflammatory agent. Our studies performed in vivo with animal 
models of inflammation demonstrated the anti-inflammatory 
function of ACh [41].

The erythrocytes obtained from blood samples of patients 
with open glaucoma evidenced ex-vivo higher NO efflux values, 
internal GSNO levels and AChE enzyme activity values, than those 
assessed in erythrocytes of healthy persons [34,42]. With these 
data we can understand the therapeutic efficacy of forskolin 
in glaucoma patients [43]. Forskolin is AC activator, meaning 
synthesis of cAMP levels inside RBCs, that reverted the higher 
NO efflux from erythrocytes model of hyper fibrinogenemia [44]. 
Fibrinogen binding to RBCs augmented the NO efflux under lower 
levels of cAMP [36]. It will be necessary to confirm in glaucoma 
patients under forskolin therapy whether normalization of NO 
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efflux and lower nitrogen reactive species occur [34,44]. Also 
NO donors like nitroglycerin acts in treatment and prevention of 
endothelium dysfunction [45].

Conclusion

In conclusion the proteins therapeutic targets to control the 
RBCs bioavailability in NO (efflux or scavenge) in inflammatory 
vascular disease are AChE, AC, Gi , PTP , PTK, PKC, PI3K and 
PD3 . Some activators and inhibitors of those proteins are 
already disposal for examples acetylcholine, velnacrine, timolol, 
adrenaline, forskolin, valsartan, wortmannin derivate  and 
iloprost.
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