UMA APLICAÇÃO DAS FUNÇÕES DE CONJUNTO CONVEXAS

João Ferreira do Amaral*

Consideremos uma situação comum em política económica; uma função de custos $f(x_1, \dots x_n)$ de n variáveis, sobre as quais o decididor não tem uma capacidade de controle total e que podem tomar valores em um conjunto $X \in R^n$. Se as variáveis forem instáveis, isto é, se não adoptarem uma vez por todas um certo valor, mas estiverem sujeitas a pequenas variações ao redor de um certo valor base, o decididor poderá estar interessado em dois tipos de avaliação:

- Qual o custo que tem de suportar para cada ponto de X, o que se limitará, no fundo, a calcular os valores de f.
- Supondo que cada ponto de X é um valor que as variáveis podem tomar, qual o acréscimo de custo que ele acabará por suportar se as variáveis flutuarem em pequenas variações ao redor de cada um dos pontos de X.

Seja um exemplo: Um decididor de política económica em Portugal terá de contar, como elementos importantes do seu custo, com o nível da taxa de juro internacional (i) e com o preço do petróleo (p).

Para programar a sua política futura poderá admitir, com razoável certeza, que i e p poderão tomar valores num certo subconjunto de R^2 . Se admitir como mais provável um certo ponto (i^*, p^*) desse conjunto, poderá calcular o custo que terá de suportar nesse ponto. Mas, como provavelmente a sua previsão estará sujeita a erro, deverá também avaliar qual o custo máximo que terá de suportar se, afinal, i e p flutuarem numa vizinhança de i^* e p^* . Como, porém, não conhecerá a dimensão dessa vizinhança, o mais que poderá obter é uma avaliação infinitesimal referente ao ponto $(i^* p^*)$.

É para resolver problemas como estes e talvez outros mais gerais que poderá ter interesse a utilização de uma derivada que vamos desenvolver neste artigo e que tem como base um conceito já anteriormente introduzido⁽¹⁾ — o de função de conjunto convexa. Já quando se publicou esse artigo se admitia a possibilidade de que a teoria das funções de conjunto fosse utilizada mais directamente na análise das funções de ponto, como o presente artigo poderá exemplificar.

Note-se, finalmente, que para a introdução de uma topologia não se utiliza o conceito de distância, mas sim uma certa função de conjunto.

^{*}Técnico do Departamento Central de Planeamento e assistente convidado do ISE.

⁽¹⁾ Albuquerque et al. (1969).

1 — Caracterização do espaço

Considere-se um espaço de vizinhanças, ou seja, um conjunto fundamental 1 onde para cada elemento $x \in 1$ se encontra atribuída uma família de vizinhanças \mathscr{F}_{v} a satisfazer as seguintes condições:

i)
$$F_x^{\alpha}$$
, $F_x^{\beta} \in \mathscr{F}_x \Longrightarrow F_x^{\alpha} \subset F_x^{\beta}$ ou $F_x^{\beta} \subset F_x^{\alpha}$

- iii) $1 = \sum_{\alpha} F_{x}^{\alpha}$ para cada $x \in 1$
- *iv*) Encontra-se definida, numa classe $\mathscr{C} \subset 2^1$ uma função real de conjunto $\Gamma(X)$ a satisfazer
 - a) Para cada $x \in 1, 0, \{x\} \in \mathcal{C}, \mathcal{F} \subset \mathcal{C};$
 - b) Para cada $x \in 1$, a cada número real $\alpha \in (0, +\infty)$ corresponde um e um só conjunto $F_x^{\alpha} \in \mathscr{F}_x$ tal que Γ $(F_x^{\alpha}) = \alpha$;
 - c) $\Gamma(X) = 0$ se e só se $Card(X) \le 1$;
 - d) $X, Y \in \mathcal{C} X \subset Y \Rightarrow \Gamma(X) \leqslant \Gamma(Y)$.

Com estas condições obtemos imediatamente o seguinte:

TEOREMA 1: Para cada $x \in 1$ existe uma correspondência biunívoca $\mathscr{F}_x \overset{\theta_x}{\longleftrightarrow} (0, +\infty)$ a satisfazer $\alpha \leqslant \beta \Longleftrightarrow \theta_x(\alpha) \subset \theta_x(\beta) \qquad \theta_x(\alpha), \theta_x(\beta) \in \mathscr{F}_x$

Dem: Com efeito, a cada $X \in \mathscr{F}_x$ corresponde, por a), c) e d) de iv), $\Gamma(X) \in (0, +\infty)$ e inversamente, por b) de iv). Se $\theta_x(\alpha) \subset \theta_x(\beta)$ então, por d) $\Gamma[\theta_x(\alpha)] \leq \Gamma[\theta_x(\beta)]$ ou seja, $\alpha \leq \beta$. Inversamente, se $\alpha < \beta$ não poderá ser $\theta_x(\alpha) \supset \theta_x(\beta)$ pois, neste caso, por d) $\Gamma[\theta_x(\alpha)] \geq \Gamma[(\theta_x(\beta)]]$. Então, por i), $\theta_x(\alpha) \subset \theta_x(\beta)$. Se $\alpha = \beta$, $\theta_x(\alpha) = \theta_x(\beta)$ e o teorema está demonstrado.

Com este teorema prova-se também o seguinte:

TEOREMA 2: Para cada $x \in 1$, a cada sucessão monótona de números reais positivos $\{\alpha_n\}$, $\alpha_n \geqslant \alpha_{n+1}$ a tender para $\alpha \geqslant 0$ é possível fazer corresponder uma sucessão monótona não crescente de conjuntos $F_x^{\alpha_n} \in \mathcal{F}_x$. Estendendo \mathcal{E} de uma forma conveniente a $\mathcal{E}^* = \mathcal{E} + \mathcal{D}_r$, onde \mathcal{D}_r , é a classe de todos os conjuntos $\mathcal{D}_x = \lim_{n \to \infty} F_x^n$ de todas as sucessões não crescentes de \mathcal{F}_x correspondentes a sucessões de números nas condições anteriores, tem-se Γ ($\lim_{n \to \infty} F_x^{\alpha_n}$) = α .

Dem: Se $\alpha > 0$, pelo teorema anterior, para cada sucessão de números nas condições da hipótese existe uma sucessão não crescente de conjuntos de \mathscr{F}_x que lhe corresponde. Ainda pelo teorema anterior existe $F_x^{\alpha} \in \mathscr{F}_x$ tal que $\Gamma(F_x^{\alpha}) = \alpha$, com $F_x^{\alpha} \subset F_x^{\alpha n}$ qualquer que seja n. Então, $F_x^{\alpha} \subset \prod_{k=0}^{\alpha} F_k^{\alpha n}$

Provemos agora que não existe nenhum $F_x \in \mathscr{F}_x$ com $F_x^\alpha \neq F_x \neq \prod_{n=0}^\infty F_x^{\alpha_n}$ tal que $F_x^\alpha \subset F_x \subset \prod_{n=0}^\infty F_x^{\alpha_n}$. De facto, se existisse F_x nestas condições, pelo teorema anterior existiria $\alpha^* \in (0, +\infty)$ tal que $\Gamma(F_x) = \alpha^*, \alpha^*, \alpha^*, \alpha^* < \alpha_n$ para qualquer n, o que é absurdo por definição de limite de uma sucessão de números. Então, para cada sucessão numerável de conjuntos $F_x^{\alpha_n}$ (sucessão não crescente) define-se, de uma forma inequívoca, um conjunto $F_x^\alpha \subset \prod_{n=0}^\infty F_x^{\alpha_n}$.

Desta maneira, a forma «conveniente» de estender a classe \mathscr{C} será a de pôr, por definição, $\Gamma\left(\prod\limits_{n=0}^{\alpha}F_{x}^{\alpha_{n}}\right)=\Gamma\left(F_{x}^{\alpha}\right)=\alpha$, o que prova o teorema. Se $\alpha=0$, a demonstração é idêntica, só que, em vez de um conjunto $F_{x}^{\alpha}\in\mathscr{F}_{x}$ teremos o conjunto $\{x\}\in\mathscr{C}$.

Uma condição bastante forte, mas que se revelará necessária para o prosseguimento da análise é a seguinte condição v):

v)
$$\prod F_{x}^{\alpha} = \{x\}$$
 para cada $x \in 1$.

Com esta condição v) poderemos demonstrar o seguinte:

TEOREMA 3: Para cada $x \in 1$ é possível construir sucessões monótonas não crescentes de conjuntos de \mathscr{F}_x tais que $\lim_{n \to \infty} F_x^n = \{x\} = \prod_{n=0}^{\infty} F_x^n$.

Dem: Consideremos a sucessão não crescente de todos os $F_x^{\alpha_n}$ em que α_n percorre o conjunto dos números racionais de $(0, +\infty)$. Seja $\prod_{n=0}^{\infty} F_x^{\alpha_n}$ e suponhamos que existia $F_x^{\alpha} \in \mathscr{F}_x$ tal que $\{x\} \subset F_x^{\alpha} \subset \prod_{n=0}^{\infty} F_x^{\alpha_n}$, $\Gamma(F_x^{\alpha}) = \alpha$, $F_x^{\alpha} \neq \prod_{n=0}^{\infty} F_x^{\alpha_n}$. Então, pelo teorema 1 existiria um número real α tal que $0 < \alpha < \Gamma(F_x^{\alpha_n})$ para todos os α_n . Deste modo, encontraríamos racionais β , $0 < \beta < \alpha$, ou seja, existiriam conjuntos F_x^{β} com β racional tais que $F_x^{\beta} \subset F_x^{\alpha}$, $F_x^{\beta} \neq F_x^{\alpha}$, o que seria absurdo.

Então, não existe nenhum conjunto de \mathscr{F}_x entre $\{x\}$ e $\prod_{n=0}^{\infty} F_x^{\alpha_n}$, isto é, para qualquer α real $\prod_{n=0}^{\infty} F_x^{\alpha_n} \subset F_x^{\alpha}$ ou seja, $\prod_{n=0}^{\infty} F_x^{\alpha_n} \subset \prod_{n=0}^{\infty} F_x^{\alpha_n}$

Como $x \in F_x^{\alpha_n}$ qualquer que seja α_n , pela condição v), $\{x\} = \prod_{n=0}^{\infty} F_x^{\alpha_n} = \lim_{n \to \infty} F_x^{\alpha_n}$ conforme se queria provar.

Podemos provar ainda o seguinte:

TEOREMA 4: Qualquer conjunto $X \in 2^1$ é coberto por uma cobertura numerável tirada de \mathscr{F} , para um qualquer x.

Dem: Provemos o teorema para X=1. Pela condição iii) tem-se, para cada $x\in 1$, $1=\sum_{\alpha}F_{x}^{\alpha}$. Então, para cada $y\in 1$ existe um $F_{x}^{\alpha y}$ tal que $y\in F_{x}^{\alpha y}$. Como Γ é definida em \mathscr{F}_{x} tem-se Γ ($F_{x}^{\alpha y}$) = α_{y} onde α_{y} é real. Então é possível encontrar um racional $r_{y}>\alpha_{y}$ e, pelo teorema 1, existe F_{x}^{ry} tal que $F_{x}^{ry}\supset F_{x}^{\alpha y}$ donde $y\in F_{x}^{ry}$ conforme se queria provar.

2 - Continuidade e derivação

Consideremos um conjunto fundamental 1, espaço topológico a satisfazer $i \rightarrow v$). Seja $X \in 1$ e $f: X \rightarrow R$ função real de ponto definida sobre o conjunto X, limitada, isto é, $-\infty < wf(X) \le f(x) \le Wf(X) < +\infty$ onde wf e Wf são, respectivamente, funções limite inferior e superior de Weierstrass da f sobre X.

DEFINIÇÃO: $f: X \to R$ é contínua no ponto $x \in X$ se e só se a cada vizinhança $S_x^f \deg f(x)$ corresponde uma vizinhança $F_x \deg x$ tal que $f(F_xX) \subset S_x^f$ (ou seja, qualquer que seja $y \in F_xX$ se tem $f(y) \in S_x^f$)

TEOREMA 5: $f: X \to R$ é contínua no ponto $x \in X$ se e só se $\lim_{n \to \infty} Wf(F_x^n X) = \lim_{n \to \infty} wf(F_x^n X) = f(x) \text{ para qualquer sucessão}$ monótona não crescente $\{F_x^n X\}, F_x^n \in \mathscr{F}_x \text{ tal que } \{x\} = \prod_{n=0}^{\infty} F^n X$

Dem: A condição é necessária.

Com efeito, por ser f(x) contínua, para qualquer $\mathcal{E}/2>0$ existe uma vizinhança $F_x^{(\mathcal{E}/2)}$ tal que, qualquer que seja $y\in F_x^{(\mathcal{E}/2)}X$ se tem

$$f(x) - \mathbf{E}/2 < f(y) < f(x) + \mathbf{E}/2$$

$$Wf(F_x^{(\mathbf{E}/2)} X) \le f(x) + \mathbf{E}/2$$
e, portanto
$$Wf(F_x^{(\mathbf{E}/2)} X) \ge f(x) - \mathbf{E}/2$$
ou
$$Wf(F_x^{(\mathbf{E}/2)}) - Wf(F_x^{(\mathbf{E}/2)} X) \le \mathbf{E}$$

Considere-se uma qualquer sucessão monótona $\{F_x^n X\}$ com $\lim_{n \to \infty} F_x^n X = \{x\}$. Fazendo $\frac{\mathbf{E}_n}{2} = \frac{1}{n}$ tem-se, para cada n uma vizinhança $F_x^{(1/n)}$ tal que $0 \le Wf(F_x^{(1/n)} X) - Wf(F_x^{(1/n)} X) \le \mathbf{E}_n$. Para cada n escolha-se $F_x^{\alpha_n} \in \{F_x^n\}$ tal que $F_x^{\alpha_n} \subset F_x^{(1/n)}$. Então, tem-se

$$0 \le S_{\alpha_n} = Wf(F_x^{\alpha_n} X) - Wf(F_x^{\alpha_n} X) \le \mathbf{\varepsilon}_n$$

Como a sucessão $S_n = Wf(F_x^n X) - wf(F_x^n X)$ é monótona não crescente com n ($S_n \ge 0$) e como S_{α_n} é uma subsucessão de S_n o limite de S_{α_n} será também o de S_n . Como $\mathbf{E}_n \to 0$ quando $n \to \infty$ lim $S_{\alpha_n} = \lim_{n \to \infty} S_n = 0$. Então, qualquer que seja a sucessão $\{F_x^n X\}$, $\lim_{n \to \infty} Wf(F_x^n X) = \lim_{n \to \infty} wf(F_x^n X) = f(x)$ por ser sempre $x \in F_x^n X$.

A condição é suficiente.

Com efeito, seja $\mathbf{\mathcal{E}} > 0$ qualquer. Existe $N = n(\mathbf{\mathcal{E}})$ e uma sucessão $\{F_x^n X\}$ tais que $Wf(F_x^N X) - wf(F_x^N X) < \mathbf{\mathcal{E}}$ com $\{x\} \subset F_x^N X, F_x^N X, \in \{F_x^n X\}$

Desta forma, $Wf(F_x^N X) < \mathbf{E} + wf(F_x^N X) \leq \mathbf{E} + f(x)$ $- wf(F_x^N X) < \mathbf{E} - Wf(F_x^N X)$ $wf(F_x^N X) > Wf(F_x^N X) - \mathbf{E} \geqslant f(x) - \mathbf{E}$

ou seja, para qualquer $\mathcal{E} > 0$ existe um $N(\mathcal{E})$ tal que, para qualquer $y \in F_x^{N(\mathcal{E})} X$ se tem $f(x) - \mathcal{E} < wf(F_x^N X) \le f(y) \le Wf(F_x^N X) < f(x) + \mathcal{E}$, conforme se queria provar.

Com este teorema demonstrado podemos apresentar a seguinte definição:

DEFINIÇÃO: Diz-se que $f: X \to R$, contínua em X tem derivada direita (esquerda) no ponto $X \in Int(X)$ se e só se existem os limites

$$\lim_{n \to \infty} \frac{Wf(F_x^n) - f(x)}{\Gamma(F_x^n)} \qquad \lim_{n \to \infty} \frac{f(x) - wf(F_x^n)}{\Gamma(F_x^n)}$$

$$\operatorname{quando}_{n \to \infty} F_x^n \to \{x\}, F_x^n \in \mathscr{F}_x$$

Observações: Γ é definida como em iv); f é contínua em X se e só se for contínua em cada $x \in X$; a derivada calcula-se para cada $x \in \operatorname{Int}(X)$, o que permite afirmar que existe uma ordem N tal que $m > N \Rightarrow F_x^m \subset X$ e é essa a razão de se ter posto $Wf(F_x^n)$ e não $Wf(F_x^n)$; a derivada terá de ser idêntica qualquer que seja a sucessão de conjuntos de \mathscr{F} , não crescente, a tender para $\{x\}$.

Recordemos também, do artigo já citado, uma definição que vai ser utilizada:

DEFINIÇÃO: Sendo \mathscr{C} uma cadeia de conjuntos, isto é, uma classe de conjuntos $C \in \mathscr{C}$ tais que C_0 , $C_1 \in \mathscr{C} \Rightarrow C_0 \subset C_1$ ou $C_1 \subset C_0$, diz-se que a função de conjunto λ definida sobre \mathscr{C} é convexa (côncava) em relação à função de conjunto monótona crescente μ definida sobre \mathscr{C} se e só se, com $C_0 \subset C_1$, C_0 , $C_1 \in \mathscr{C}$ se tem

$$\frac{\lambda(C) - \lambda(C_0)}{\mu(C) - \mu(C_0)} \leq \frac{\lambda(C_1) - \lambda(C_0)}{\mu(C_1) - \mu(C_0)} \qquad \frac{\lambda(C) - \lambda(C_0)}{\mu(C) - \mu(C_0)} \geq \frac{\lambda(C_1) - \lambda(C_0)}{\mu(C_1) - \mu(C_0)}$$

para qualquer $C \in \mathscr{C}, C_0 \subset C \subset C_1$.

Podemos agora demonstrar o seguinte teorema sobre funções f contínuas sobre um conjunto X.

TEOREMA 6: Se Wf for convexa em relação a Γ sobre a cadeia de conjuntos $\mathscr{C} = \mathscr{F}_x + \{\{x\}\}$ então existe derivada direita de f em cada ponto $x \in \operatorname{Int}(X)$ e essa derivada é independente da sucessão monótona de conjuntos de \mathscr{C} utilizada para o seu cálculo.

Dem: Se Wf for convexa em relação a Γ, tem-se, para quaisquer $F_x^{m_1}$, $F_x^{m_2} \in \mathscr{C}$, $F_x^{m_2} \subset F_x^{m_1}$:

$$0 \leqslant \frac{Wf(F_x^{m_2}) - f(x)}{\Gamma(F_x^{m_2})} \leqslant \frac{Wf(F_x^{m_1}) - f(x)}{\Gamma(F_x^{m_1})}$$

por ser
$$\Gamma(\{x\}) = 0$$
, $Wf(\{x\}) = wf(\{x\}) = f(x)$.

Então, quando $m_i \to \infty$, obtemos uma sucessão monótona não crescente de números positivos que tem, portanto, limite e a primeira parte do teorema está demonstrada. Consideremos agora duas sucessões $\{F_x^m\}$, $\{G_x^k\} \subset \mathscr{C}$ a tenderem para $\{x\}$. Qualquer que seja $F_x^{ms} \in \{F_x^m\}$ existe sempre $G_x^{kt} \in \{G_x^k\}$ tal que $G_x^{kt} \subset F_x^{ms}$ e inversamente. Então, existem sempre conjuntos F_x^{ms} , G_x^{kt} , G_x^{kr} , F_x^{mv} tais que

$$\frac{Wf(G_x^{kt}) - f(x)}{\Gamma(G_x^{kt})} \leq \frac{Wf(F_x^{ms}) - f(x)}{\Gamma(F_x^{ms})}$$

$$\frac{Wf(F_x^{mv}) - f(x)}{\Gamma(F_x^{mv})} \leq \frac{Wf(G_x^{kr}) - f(x)}{\Gamma(G_x^{kr})}$$

e, portanto existem conjuntos F_x^m , G_x^k , F_x^{m+h} , G_x^{k+j} tais que

$$\frac{Wf(G_x^{k+j}) - f(x)}{\Gamma(G_x^{k+t})} \leq \frac{Wf(F_x^{m+h}) - f(x)}{\Gamma(F_x^{m+h})} \leq$$

$$\leq \frac{Wf(G_x^k) - f(x)}{\Gamma(G_x^k)} \leq \frac{Wf(F_x^m) - f(x)}{\Gamma(F_x^m)}$$

e as duas sucessões não poderão ter limites diferentes.

Teoremas semelhantes se poderiam demonstrar para a concavidade e a função wf. A convexidade representou aqui um papel importante e irá também permitir uma aplicação a R^n , como se verá a seguir.

3 — Aplicação a Rⁿ

conforme se queria provar.

Seja um espaço R^n e tomemos como família de vizinhanças a família de esferas abertas de raio real positivo [que verifica as condições i) a v)] e para função Γ o diâmetro das esferas. Seja $X \in R^n$ conjunto compacto, convexo, não vazio. Demonstremos o seguinte teorema:

TEOREMA 7: Se f(x), função real contínua definida sobre X for convexa, então Wf(X) é função de conjunto convexa em relação a D sobre todas as cadeias de esferas de extremos $\{x\}$ e E_x , correspondentes a todos os $x \in \operatorname{Int}(X)$. Por E_x se designa a maior esfera aberta de centro x contida em X e por D se designa a função de conjunto Diâmetro de esferas $^{(2)}$.

Dem: Para cada $x \in \operatorname{Int}(X)$ seja $\mathscr{C}_{[\{x\}|E_x]}$ a cadeia de esferas abertas de extremos $\{x\}$ e E_x . Seja $E^* \in \mathscr{C}_{[\{x\}|E_x]}$. Pretende-se demonstrar que, com f convexa e $E_x^* \subset E_x'$, $E_x' \in \mathscr{C}_{[\{x\}|E_x]}$

$$\frac{Wf(E_x^*) - f(x)}{D(E_x^*)} \leq \frac{Wf(E_x') - f(x)}{D(E_x')}$$

Por ser f(x) convexa, o ponto $x^* \in X$ tal que $f(x^*) = Wf(E_x^*)$ pertence à fronteira de E_x^* . Isto é, $x^* \in F_r(E_x^*) = \left\{Z : d(Zx) = \frac{D(E^*)}{2}\right\}$

Consideremos agora o segmento que passa por x^* com uma das extremidades x e a outra (y) pertencente a $Fr(E'_x)$. Por ser f(x) convexa

$$f(x^*) \leqslant \mu f(x) + (1 - \mu) f(y) \qquad x^* = \mu x + (1 - \mu) y \qquad y \in F_r(E_x')$$
 ou, como
$$Wf(E_x^*) = f(x^*) \qquad \text{e por ser} \qquad f(y) \leqslant Wf(E_x')$$

$$Wf(E_x^*) \leqslant \mu f(x) + (1 - \mu) Wf(E_x')$$
 como
$$d(x^*x) = \frac{D(E_x^*)}{2} = ||x^* - x|| \qquad \text{e} \qquad d(yx) = \frac{D(E_x')}{2} = ||y - x||$$
 tem-se
$$\frac{D(E_x^*)}{2} = ||x^* - x|| = (1 - \mu) ||y - x|| = (1 - \mu) \frac{D(E_x')}{2}$$
 donde
$$1 - \mu = \frac{D(E_x^*)}{D(E_x')}, \qquad \mu = 1 - \frac{D(E_x^*)}{D(E_x')}$$
 Então,
$$Wf(E_x^*) \leqslant \left[1 - \frac{D(E_x^*)}{D(E_x')}\right] f(x) + \frac{D(E_x^*)}{D(E_x')} Wf(E_x')$$

 $^{^{(2)}}$ Note-se, porém, que o teorema só é demonstrável quando o conjunto C_0 da definição de convexidade é fixo e igual a $\{x\}$. Trata-se, pois, de uma convexidade mais restrita, mas que chega para os nossos propósitos.

Com este teorema podemos proceder ao cálculo da derivada num ponto interior de um conjunto do espaço R^2 .

Consideremos um conjunto Y, limitado, convexo, não vazio, de R^2 , $\operatorname{Int}(Y) \neq 0$. Seja $E_{(xy)}$ a maior esfera aberta de centro $(x,y) \in \operatorname{Int}(Y)$. Se f(xy) for convexa sobre Y então, pelo teorema anterior, Wf é convexa sobre a cadeia $\mathcal{C}_{\{(xy,E(xy)\}\}}$ e, portanto, pelo teorema 6 se $\Gamma = D$ com F_x família das esferas abertas, existe a derivada direita de f em todos os pontos $\operatorname{Int}(Y)$.

Seja f, além de contínua, também função de derivadas parciais contínuas e limitadas em Int (Y).

Sendo f(x,y) convexa sobre Y, tem-se

 $Wf[E'_{(xy)}] = f(x * y *)$ onde $E'_{(xy)}$ é a esfera aberta de raio r e centro (x, y) $E'_{(xy)} \subset E_{(xy)}$ e $(x *, y *) \in F_r$ $(E'_{(xy)})$, ou seja, $(x * - x)^2 + (y * - y)^2 = r^2$

Para determinarmos (x*, y*) construa-se a Langrangeana

$$L(x^*y^*) = f(x^*y) - \lambda[(x^*-x)^2 + (y^*-y)^2 - r^2]$$

derivando (3),

$$\frac{\delta f}{\delta x^*} - 2\lambda (x^* - x) = 0$$

$$\frac{\delta f}{\delta y^*} - 2\lambda (y^* - y) = 0$$

$$(x^* - x)^2 + (y^* - y)^2 = r^2$$

que nos dão as condições necessárias de máximo para $(x, y) \in E^r_{(x,y)}$.

Eliminando-se λ obtém-se:

$$\frac{\delta f}{\delta y^*} - \frac{y^* - y}{x^* - x} \quad \frac{\delta f}{\delta x^*} = 0$$

ou

$$\frac{\delta f}{\delta y^*} = \frac{y^* - y}{x^* - x} \quad \frac{\delta f}{\delta x^*}$$

elevando ao quadrado e substituindo $(y^* - y)^2$ pelo seu valor, vem

$$(x^* - x)^2 \left(\frac{\delta f}{\delta y^*}\right)^2 = [r^2 - (x^* - x)^2] \left(\frac{\delta f}{\delta x^*}\right)^2$$

donde

$$(x^* - x)^2 = \frac{r^2 \left(\frac{\delta f}{\delta x^*}\right)^2}{\left(\frac{\delta f}{\delta y^*}\right)^2 + \left(\frac{\delta f}{\delta x^*}\right)^2} \qquad x^* = x \pm \frac{r \left(\frac{\delta f}{\delta x^*}\right)}{\sqrt{\left(\frac{\delta f}{\delta y^*}\right)^2 + \left(\frac{\delta f}{\delta x^*}\right)^2}}$$

⁽³⁾ $\frac{\delta f}{\delta x^*}$ e $\frac{\delta f}{\delta y^*}$ nunca se anulam conjuntamente, pois nesse caso f(x,y) seria constante, por ser convexa. Por outro lado, admitimos $\frac{\delta f}{\delta x}$, $\frac{\delta f}{\delta y} \neq 0$ em (x,y)

$$(y - y^*)^2 = \frac{r^2 \left(\frac{\delta f}{\delta y^*}\right)^2}{\left(\frac{\delta f}{\delta y^*}\right)^2 + \left(\frac{\delta f}{\delta x^*}\right)^2} \qquad y^* = y \pm \frac{r \left(\frac{\delta f}{\delta y^*}\right)}{\sqrt{\left(\frac{\delta f}{\delta y^*}\right)^2 + \left(\frac{\delta f}{\delta x^*}\right)^2}}$$

e, portanto
$$wf(E'_{(x,y)}) = f \left[x \pm \frac{r \left(\frac{\delta f}{\delta x^*} \right)^2}{\sqrt{\left(\frac{\delta f}{\delta y^*} \right)^2 + \left(\frac{\delta f}{\delta x^*} \right)^2}} \right] + \sqrt{\frac{\delta f}{\delta x^*}} + \left(\frac{\delta f}{\delta y^*} \right)^2} \right]$$

dependendo o sinal dos argumentos da condição de segunda ordem de máximo. Verifica-se facilmente que os argumentos a tomar serão os obtidos com o sinal « + » e, portanto

$$wf(E'_{(x,y)}) = f \left[x + \frac{r \frac{\delta f}{\delta x^*}}{\sqrt{\left(\frac{\delta f}{\delta y^*}\right)^2 + \left(\frac{\delta f}{\delta x^*}\right)}} \right] + \sqrt{\frac{f \frac{\delta f}{\delta y^*}}{\left(\frac{\delta f}{\delta y^*}\right)^2 + \left(\frac{\delta f}{\delta x^*}\right)^2}} \right]$$

Com efeito, se $\frac{\delta f}{\delta x^*} > 0$ então $Wf(E'_{(x,y)}) = f(x^*,\bullet) \ge f(x,\bullet)$ se e só se $x^* \ge x$, o que apenas acontece no caso de ser

$$x^* = x + \sqrt{\frac{\delta f}{\delta x^*}} + \sqrt{\frac{\delta f}{\delta x^*}^2 + \left(\frac{\delta f}{\delta x^*}\right)^2}$$

Se $\frac{\delta f}{\delta x^*}$ < 0 então $f(x^*, \cdot) \ge f(x, \cdot)$ se e só se $x^* \le x$, o que apenas acontece no caso

$$x^* = x + \sqrt{\frac{\delta f}{\delta x^*}}$$

$$\sqrt{\left(\frac{\delta f}{\delta y^*}\right)^2 + \left(\frac{\delta f}{\delta x^*}\right)^2}$$

da mesma forma para y.

Para calcularmos agora a derivada direita em (x, y) teremos, aplicando a definição, de calcular

$$f'_{d}(x, y) = \lim_{r \to 0} \frac{Wf(E'_{(x,y)}) - f(x, y)}{2r}$$

ou seja,

$$2f'_{d}(x, y) = \lim_{r \to 0} \frac{\frac{\delta f}{\delta x^{*}}}{\sqrt{\left(\frac{\delta f}{\delta x^{*}}\right)^{2} + \left(\frac{\delta f}{\delta y^{*}}\right)^{2}}}$$

$$+ \frac{\frac{\delta f}{\delta y^{*}}}{\sqrt{\left(\frac{\delta f}{\delta x^{*}}\right)^{2} + \left(\frac{\delta f}{\delta y^{*}}\right)^{2}}}$$

$$+ \frac{\frac{\delta f}{\delta y^{*}}}{\sqrt{\left(\frac{\delta f}{\delta x^{*}}\right)^{2} + \left(\frac{\delta f}{\delta y^{*}}\right)^{2}}}$$

$$+ \frac{f(x, y^{*}) - f(x, y^{*})}{\sqrt{\left(\frac{\delta f}{\delta x^{*}}\right)^{2} + \left(\frac{\delta f}{\delta y^{*}}\right)^{2}}}$$

$$+ \frac{f(x, y^{*}) - f(x, y^{*})}{\sqrt{\left(\frac{\delta f}{\delta x^{*}}\right)^{2} + \left(\frac{\delta f}{\delta y^{*}}\right)^{2}}}$$

$$+ \frac{f(x, y^{*}) - f(x, y^{*})}{\sqrt{\left(\frac{\delta f}{\delta x^{*}}\right)^{2} + \left(\frac{\delta f}{\delta y^{*}}\right)^{2}}}$$

Como $x^* \to x$ quando $r \to 0$ e $\frac{\delta f}{\delta x}$ e $\frac{\delta f}{\delta y}$ são contínuas e limitadas, por hipótese, tem-se

$$2f'_{\sigma}(x,y) = \frac{\left(\frac{\delta f}{\delta x}\right)^{2}}{\sqrt{\left(\frac{\delta f}{\delta x}\right)^{2} + \left(\frac{\delta f}{\delta y}\right)^{2}}} + \frac{\left(\frac{\delta f}{\delta y}\right)^{2}}{\sqrt{\left(\frac{\delta f}{\delta x}\right)^{2} + \left(\frac{\delta f}{\delta y}\right)^{2}}} = \sqrt{\left(\frac{\delta f}{\delta x^{*}}\right)^{2} + \left(\frac{\delta f}{\delta y^{*}}\right)^{2}}$$

e obteremos uma expressão simples (generalizável sob certas condições para outras funções) que ilustra uma aplicação das funções de conjunto convexas.

JANEIRO 1982

REFERÊNCIAS

ALBUQUERQUE, J. - Topologia, AEISCEF, Lisboa, 1964.

ALBUQUERQUE, J.; AMARAL, Ferreira do; RIBEIRO, Silva — «Classes convexes et fonctions d'ensemble convexes», *Economia e Finanças* (anais do ISCEF), vol. XXXVII, 1969, p. 155.

MARLE, Charles-Michel — *Mesures et probabilités*, Hermann, Paris, 1974.