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Abstract — In this work, we present a preliminary study of 

three classifiers – Linear Discriminant Analysis (LDA), 
Support Vector Machines (SVMs) and k-Nearest Neighbors 
(kNN) – to differentiate between malignant and benign tumors 

extracted from Magnetic Resonance (MR) images, based on 
their morphological features. The dataset in this study 
comprises 24 tumors: 12 malignant and 12 benign. Twelve 

morphological features were initially considered for tumor 
classification. The Mann-Whitney test was employed for 
feature selection, and the performance of the classifiers was 

evaluated with accuracy, sensitivity, specificity, F1-score and 
Matthew’s Correlation Coefficient (MCC) metrics. kNN (with 
k=6 and Chebyshev distance) outperformed the other 

classifiers with an accuracy, sensitivity, and specificity of 
87.5%, 83.3% and 91.7%, respectively. 

Index Terms — breast cancer, tumor classification, 

morphological features. 

I.  INTRODUCTION 

In 2020, breast cancer reported over 2.2 million new 

cases, reaching the top of the most common types of cancers 

worldwide. It was also the fifth deadliest type of cancer with 

over 684.000 deaths in 2020 [1]. Early-stage diagnosis is the 

key for a successful treatment outcome, thereby improving 

the quality of life of cancer patients and survival rates. 

MicroWave Imaging (MWI) systems have been studied 

for early-stage breast cancer diagnosis [2-4] due to 

differences in dielectric properties between benign and 

malignant tissues at microwave frequencies [5]. To ensure 

the robustness and good performance of MWI systems in 

detecting and classifying breast tumors, complex scenarios 

mimicking the realistic conditions of a clinical exam must be 

tested. Hence, realistic models of breast tumors are needed. 

Malignant breast tumors generally have an irregular 

shape surrounded with spicules whereas benign tumors 

present roughly rounded or elliptical shapes [6,7]. So far, 

most of the breast models reported in literature to test MWI 

systems present an unrealistic simplified shape, generally, 

spherical, elliptical, and cylindrical. Mimicking tissues and 

structures inside the breast also tend to be represented by 

simplified shapes. In [8], spherical glass bulbs with 5, 10 and 

15mm radii containing saline solutions were used to mimic 

tumor tissues in phantom studies. An ellipsoid container with 

internal dimensions 10- and 20mm was 3D printed in [9] to 

study the feasibility of a radar-based breast MWI dry setup. 

A 20mm spherical phantom filled with a 10:90 ratio of water 

to glycerin was used to emulate a breast tumor in [10]. Two 

cylindrical shaped tumor phantoms with 10 and 20mm 

diameters and 30mm height were tested in [11]. A small 

cylindrical plastic container filled with water was used as a 

breast tumor phantom in experimental tests in [12]. 

More realistic breast tumors have been modelled with 

Gaussian Random Spheres and used for validation tests of a 

microwave imaging device in [13], and for tumor 

classification using a MWI prototype system in [14]. In [15], 

realistic benign and malignant breast phantoms were carved 

by hand resulting in approximately spherical and spiculated 

models for benign and malignant tumors, respectively. To 

emphasize that none are based on accurate anatomical 

representations of tumors. 

We aim to address a gap in literature: the lack of realistic 

breast tumor phantoms for MWI prototype testing. Hence, 

we have been preparing accurate MRI-derived models of the 

breast, which will be later 3D printed. In this paper, we 

evaluate the discriminative power of tumor morphological 

features in breast tumor classification.  

II. MATERIALS AND METHODS 

A. Dataset 

The dataset in this study comprises 24 breast tumors: 12 

malignant (scored with BI-RADS 5/6) and 12 benign (BI-

RADS 2/3) [6], which were segmented from breast MR 

images collected at Hospital da Luz – Lisboa. The clinical 

protocol included the acquisition of a Dynamic Contrast 

Enhanced (DCE) three-dimensional (3D) T1-weighted Fast 

Low Angle Shot 3D (fl3D) Spectral Attenuated Inversion 

Recovery (SPAIR) sequence, consisting of 6 sets of images: 

an image before the injection of gadolinium and 5 post-

contrast images. Subtractions of each post-contrast image 

from the pre-contrast image are also provided to enhance 

tumor regions and annul hypersignal regions formerly 

present in the pre-contrast image. For each case, the breast 

tumor was segmented from the subtraction image which 

provided better segmentation between tumor and non-



tumorous tissues. One must note that a larger tumor will 

require more time of contrast uptake to be revealed.  

This study was approved by the Scientific and Ethical 

Commission of Hospital da Luz – Lisboa, under references 

CES/44/2019/ME and CES/34/2020/ME. 

 

B. Tumor Segmentation 

A pre-processing segmentation pipeline was applied to 

the breast MR scans before tumor segmentation. The 

developed pipeline included: (i) correction of the bias field – 

an artifact which corrupts the grey level values across the 

image [16], (ii) data normalization between 0 and 255 using 

the Minimum-Maximum normalization approach [17], (iii) 

background subtraction using the Otsu’s method to create a 

binary mask of the body, followed by the implementation of 

(iv) a 3-by-3-by-3 median filter for edge smoothing [18]. 

Note: step (iv) of the pre-processing pipeline is removed in 

the case of infra-centimetric tumors as it produces 

substantial changes in the size and shape of tumors. 

A 3D region growing algorithm, based on [19], was 

implemented for tumor segmentation. The algorithm allows 

the growth of a region to adjacent points padj, whose 

intensity satisfy the condition: 

 seed value − threshold ≤ padj ≤  seed value + threshold (1) 

The seed of the algorithm – point from where the region 

starts growing – was automatically set to the highest 

intensity pixel of the slice provided by the user, and the 

lower bound of threshold was defined by the mean minus 

three times the standard-deviation of all body voxels. Both 

parameters should be confirmed and manually corrected, if 

necessary, especially in the case of large heterogeneous 

malignant tumors comprising a wide range of intensity 

values. The Hoshen-Kopelman algorithm [20] was used 

isolate the tumor region, by iteratively identifying the 

neighboring pixels to be included in the growing region. 

The developed segmentation procedure is detailed in [21]. 

 

C. Morphological Features 

Twelve morphological features were extracted from the 

segmented breast tumors: (i) number of voxels of the tumor, 

No. Voxels, (ii) length of the larger axis in each dimension, 

Length, (iii) radius of gyration [22], (iv) inertia tensor [23], 

(v) volume, (vi) surface area, (vii) compactness, (viii) 

sphericity, (ix) Normalized Radial Length (NRL) mean, (x) 

NRL entropy, (xi) NRL ratio, and (xii) roughness [24]. 

Compactness and sphericity provide a general knowledge of 

the tumor shape, high levels of compactness and sphericity 

are expected for round-shaped structures whereas irregular-

shaped structures, such as malignant tumors, are expected to 

present lower indexes of compactness and sphericity. The 

NRL-based features provide finer detail of shape, where 

NRL is the normalized Euclidean distance from center of 

mass to the contour pixels of the object. 

D. Feature Selection 

The nonparametric Mann–Whitney test was used for 

feature selection. Two independent populations were 

established: malignant versus benign tumors. The Mann-

Whitney compares the median values of each feature in the 

malignant and benign groups [25]. Hence, features whose 

median values showed a statistically significant difference 

between the two groups were selected for the classification 

algorithms. A p-value < 0.01 was considered significant for 

all tests. 

 

E. Classification Algorithms 

Three classifiers – LDA, SVMs and kNN – were studied 

to obtain an optimal classifier to differentiate between benign 

and malignant tumors based on morphologic features. The 

diagnostic performance of the classifiers was evaluated with 

accuracy, sensitivity, specificity, F1-score [26] and 

Matthew’s Correlation Coefficient (MCC) metrics [27]. 

As a pre-processing step, the selected morphologic 

features values were normalized to have zero mean and unit 

variance, since their values present different orders of 

magnitude. Then, the three classifiers were implemented. 

LDA classifier uses a linear function to discriminate 

classes with the same covariance matrix and multivariate 

normal Gaussian distributions [28]. kNN is a supervised 

machine learning algorithm which classifies a new 

observation based on the most common class among its k-

nearest neighbors. The k-nearest neighbors are determined 

based on a similarity measure, i.e., distance [26]. Both 

parameters, k and distance, must be optimized. We tested k = 

1, 2, …, 11 and considered four distances: Manhattan, 

Hamming, Chebyshev and Euclidean. The SVM methods 

allow the classification of either linear or nonlinear separable 

datasets. The original training data are transformed to a 

higher dimension by means of a kernel. We used the Radial 

Basis Function (RBF) kernel. Within the new dimension, the 

SVM algorithm searches for the optimal linear hyperplane 

which separates the training data into two classes [26]. 

Leave-One-Out cross validation was implemented to 

ensure robustness and prevent overfitting. 

III. RESULTS AND DISCUSSION 

A. Tumor segmentation 

Fig. 1 and 2 depict the results of the developed 

segmentation procedure of an extremely heterogeneous 

malignant tumor. Fig 1 shows the effects of the correction of 

the bias field, applied in a). The inhomogeneity between 

voxels intensities, shown in b) is corrected in c). Fig 2 

shows the results for each step of the developed tumor 

segmentation pipeline. In a) we present the torso mask used 

for background subtraction, the application of the median 

filter for edge smoothing is depicted in b), c) shows the 

segmented tumor, in white, resulting from the 3D region 

growing algorithm and d) the final tumor after the 

application of the Hoshen-Kopelman algorithm. 



Fig. 1. Correction of the bias field. a) image of the original exam, b) 

image with the inhomogeneity between the voxels intensities and c) 
corrected image. 

Fig. 2. Results of each step of the developed tumor segmentation 
pipeline. a) torso mask for background subtraction, b) median filtering for 

edge smoothing, c) segmented tumor, in white, resulting from the 3D 

region growing algorithm and d) final tumor after the application of the 
Hoshen-Kopelman algorithm. 

 

TABLE I.  MEDIAN, STANDARD DEVIATION AND P-VALUE 

OF EACH MORPHOLOGICAL FEATURE.  

Morphological 

Features 

Benign 

Tumors 

Malignant 

tumors p-value 

Median Median 

No. Voxels 102.5 970 0.001 

Length 6.5 14.5 0.001 

Radius of Gyration 1.574 3.837 0.002 

Inertia Tensor 429.5 2.855e+4 0.001 

Volume 111.2 963.3 0.001 

Surface Area 64.06 470.9 0.001 

Compactness 47.40 243.6 0.002 

Sphericity 3.258 2.556 0.236 

NRL mean 0.588 0.383 0.035 

NRL entropy 5.898 8.785 0.001 

NRL ratio 0.128 0.146 0.436 

Roughness 0.078 0.200 0.030 

 

B. Feature Selection 

Table I reports the median value of each morphological 

feature in both groups, and the p-value calculated from the 

Mann-Whitney test. 

 

 

TABLE II.  OPTIMAL DIAGNOSTIC PERFORMANCE OF THE 

LDA, SVMS AND KNN CLASSIFIERS.  

 Accuracy Sensitivity Specificity 
F1-

score 
MCC 

LDA 0.583 0.417 0.750 0.500 0.177 

SVMs 0.833 0.750 0.917 0.818 0.676 

kNN 0.875 0.833 0.917 0.869 0.753 

 

The median values of all morphological features 

presented a statistically significant difference between the 

benign and malignant groups, except sphericity, NRL mean, 

NRL ratio and roughness. The remaining features were 

included in the study of three classifiers – LDA, SVMs and 

kNN – to differentiate between malignant and benign tumors. 

 

C. Classification Algorithms 

Table II reports the optimal diagnostic performance of 

the LDA, SVMs and kNN classifiers. Chebyshev distance 

and a number of k-nearest neighbors of 6 were the optimal 

parameters obtained for the kNN classifier. The kNN 

classifier outperformed LDA and SVMs classifiers.  

IV. CONCLUSIONS AND FUTURE WORK 

The developed segmentation framework is suitable to 

segment tumors with a varying level of heterogeneity 

regarding voxel intensity. The proposed pipeline is flexible 

since it does not operate under the assumption that generally, 

biological tissues are well separated within the grayscale of 

the image. The realistic breast tumors derived from MRI 

exams will be 3D printed and used to test a MWI prototype 

system for real-time breast tumor diagnosis. The use of 

accurate anatomically realistic tumor models will be a 

novelty in the experimental MWI testing field.  

From the initially considered twelve morphological 

features, only eight – No. Voxels, length, radius of gyration, 

inertia tensor, volume, surface area, compactness and NRL 

entropy – were found statistically significant for a 

significance level of 0.01.  

The kNN classifier (with k=6 and Chebyshev distance) 

outperformed LDA and SVMs classifiers. Additionally, the 

results of this study indicate the importance of shape 

information in predicting breast tumor type (benign or 

malignant), which will be included in MWI future studies. 

 Moreover, future classification work will also include 

texture features to study and optimize the performance of the 

classifiers.  
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