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TREND AND CYCLE IN THE PORTUGUESE OUTPUT 

Isabel Andrade(*) 

It is common practice in Macroeconomics to decompose the real GDP 
or GNP, and many other time series, into a secular or permanent component, 
named Trend, and a transitory or cyclical component, named Cycle. The tradi­
tional view assumes that the cyclical fluctuations dissipate quickly and that the 
series reverts to the Trend, which moves slowly and smoothly over time.The 
method used to «detrend» the series is a regression on a time trend (or a poly­
nomial in time). The residuals are interpreted as the Cycle. 

Nelson and Plosser (1982) (hereafter N-P) question this traditional approach 
and suggest that many macroeconomic time series are non-stationary stochastic 
processes with highly permanent fluctuations and no tendency to return to a 
linear time trend, i.e., they have a stochastic trend. The «detrend» method is, 
therefore, the differentiation of the series. To decompose the series into Trend 
and Cycle, N-P use the Beveridge-Nelson Decomposition [Beveridge and Nel­
son (1981)] where the Trend is defined as a random walk and the Cycle as 
a stationary process. Furthermore, they conclude that the issue here is whether 
or not the series contain a unit root in their autoregressive representation. 
Dickey and Fuller (1979) first developed tests of the unit root hypothesis. Ever 
since, much research has been carried out, particularly by Phillips and Perron. 

This paper is organized as follows: in subsection 1.1 we discuss the defi­
nitions of the deterministic and the stochastic trend, and the two decomposi­
tions that support them (deterministic and Beveridge-Nelson); in subsection 1.2 
we review the main tests of the unit root hypothesis, and some of its late 
developments; in subsection 1.3 we refer recent developments in this area; in 
section 2 we apply this methodology to the study of Portuguese real per cap­
ita GDP; finally, in section 3 we present our conclusions, namely that we can­
not reject the unit root in the Portuguese output, and give some perspectives 
of future developments of this study. 

1 - Stochastic trend and unit root tests 

1-1 - Stochastic trend 

Traditionally, time series are decomposed into the sum of a smooth Trend, 
a deterministic function of time, and a Cycle that incorporates all the fluctua-

(*) Assistente do Institute Superior de Economia e Gestao. 

453 



tions of the series around the Trend. This decomposition originates the class 
of processes defined by N-P as Trend-Stationary (TS): 

Yt =[a + fJf] + Ct 

~(B)ct = e(B)E.t , E.t-i.i.d.(O, an 
(1.1a} 

(1.1b} 

where Yt is the natural log of the series, Ct is the Cycle, B is the lag opera­
tor, and ~(B) and e(B) are polynomials in B (1) that satisfy the stationarity and 
invertibility conditions (all its roots are outside the unit circle). The determinis­
tic character of this type of processes is clear: in the long run the only availa­
ble information on Yt is given by its expected value (a + fJf). 

Alternatively, N-P define a class of processes which they call Difference­
Stationary (DS): 

(1-B)Yt=f3+dt 

o(B)dt = J..(B)r.t , E.t-i.i.d.(O, an 
(1.2a} 

(1.2b} 

where o(B) and J..(B) are also stationary and invertible polynomials in B. If a 
shock occurs, it will persist over time and nothing will make Yt return to its 
previous path: the fluctuations of the series are permanent. 

The Beveridge-Nelson Decomp~sition can now be used to decompose the 
series into the sum of the Trend, Yt, and the Cycle, Ct, perfectly correlated. 
Illustrating it for the MA (1) model, often identified as the generator process 
of (1 -B) Yt using the Box-Jenkins Methodology [Box and Jenkins (1976)], 

(1 - B) Yt = Yt - Yt _ 1 = 1-l + E.t - e1 E.t -1 , 1 e1 1 < 1 

and letting Yo = E.o = /A = 0, we have: 

t t-1 

Yt = Yt- 1 + E.t - e1 E.t- 1 = 2:::; r., - e1 2:::; r., 
r = 1 r = 1 

where the Trend is defined as a random walk and the Cycle as a white noise. 
The innovations in both components are perfectly correlated since they are both 
proportional to E.t. 

(1) The Decomposition Theorem of wold is used throughout the paper. It says that any sta­
tionary stochastic process can be modelled as a MA model w1 = J.l + £t + A1£t-1 + ... , where J.l is 
the long run mean of the w series, At are constants and £'S are the uncorrelated random distur­
bances with {O,o~, often referred to as innovations. 
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The fundamental difference between the TS and the DS processes (2) is 
well described in terms of the roots of the AR and MA polynomials of (1.1) and 
( 1.2). The differentiation of the TS process (1.1 a) gives: 

(1 - B) Yt = (3 + (1 - B) Ct 

and replacing Ct for its expression from (1.1 b) we have: 

~(B)[(1 - B)Yt] = (3' + (1 -B) e (B) E.t (1.4) 

meaning that there is a unit root in the MA polynomial of the ARMA (non­
invertible) representation of (1 - B)Y1, whereas its DS process [given by (1.2)] 
is stationary and invertible. For the DS process (1.2), the representation of Yt 
in the levels is: 

[d(B) (1 -B)] Yt = (3* + l(B) E.t (1.5) 

which contains an unit root in the AR polynomial and is non-stationary. On the 
contrary, the TS representation of Y1 is both stationary and invertible. 

Put this way, the distinction between series generated by TS or DS 
processes is on the exact «location» of the unit root on their ARMA represen­
tations. As Dickey, Bell and Miller (1986) say, «the critical issue in choosing 
between differencing and fitting polynomial trends is not whether Yt in fact fol­
lows a polynomial trend, since both approaches allow for this, but whether the 
deviations of Yt from the polynomial require differencing». Therefore, we have 
to investigate whether the series contains a unit root or not. Dickey and Fuller 
(1979) first developed tests for the DS process as the null (unit root in the AR 
polynomial) and the TS as the alternative (stationary representation). In next 
subsection we will survey the most important and widely used tests of the unit 
root hypothesis. 

(2) Chan, Hayya and Ord (1977) and Nelson and Kang (1981 and 1984) have studied by simu­
lation the consequences of the types of misspecification that arise from inappropriate detrending 
of time series. If the series is generated by a TS model, the use of first differences for its detrend­
ing does not produce a stationary series; rather, it induces a negative spurious level at the first 
lag of the ACF (autocorrelation function), attenuates the low and exaggerates the high frequencies 
of the spectrum. On the contrary, when the series is generated by a model of the DS class, the 
regression on a time trend originates, on average, an R2 of 0.443; the value of the ACF for the 
first lag is approximately equal to (1-10/n), where n is the sample size. In the spectrum, the low 
frequencies are now exaggerated. The spurious regressions thus obtained can be «uncovered» 
through the use of the Durbin-Watson statistic or the Durbin h statistic (when lagged variables 
are present). 
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1.2- Unit roots tests 

Let 
Yt = c + 4>Yt-1 + f.t <* (1- 4>8)Yt = c + f.t (1.6) 

be an AR (1) model where r.1 - iid (0, o2). The root of its characteristic poly­
nomial, (1 - 4>8), is 8 = 1/q,. If the absolute value of the root is outside the 
unit circle, I 8 I > 1 <* q, < 1, then Yt is said to be stationary; when 181 < 1, 
Yt is called explosive; finally, when 181 = 1 <* q, = 1 the polynomial has a unit 
root, i. e., (1.6) is a random walk (with drift if ci=O), or as Granger puts it, (1.6) 
is integrated of order one. 

Dickey and fuller tests 

It is known that the traditional OLS test statistics do not have the same 
distributions, even asymptotically, when 181 is smaller, equal or bigger than 
one [see, for example, Fuller (1985)]. In the case of interest here (unit root), 
Dickey Fuller (hereafter D - F) show that the distributions of the test statis­
tics n(~- 1) (3) and i = (~- 1)/&t are strongly biased to the left, and have 
calculated their percentiles [tables in Fuller (1976)]. Using these tables it is pos­
sible to test the unit root hypothesis in autoregressive models (4). 

To test the unit root hypothesis in AR (1) models, D - F (1979) define 

Ho:Yt= Yt-1 +r.t <* 4>= 1 

H 1: Yt = q, Yt- 1 + f.t 

H2: Yt = c + q, Yt-1 + f.t 

H3: Yt = c + q, Yt- 1 + {3t + f.t 

(1.7) 

(1.8) 

(1.9) 

where, for simplicity, we consider only the case q, > 0. Under H1 we use 
the tables for n(~- 1) and i = (~- 1)/&t; under H2 we use the ones for 
n(~~'- 1) and i~' (5); finally, under H2 we use the tables for n(~T- 1) and iT, all 
in Fuller (1976) (6). D- F expand their results to the test of a unit root in AR 
(p) models. 

(3) When +<1, ~has an asymptotic normal distribution. However, when +=1, it is n(~-1) 
that has a non-degenerate limiting distribution. 

(4) Bhargava (1986) and Ahtola and Tiao (1987) take a different approach to deduce tests 
of the unit root hypothesis in pure autoregressive models. In empirical studies the conclusions 
obtained using theirs and the D- F tests do not differ. 

(5) The indices of ~ and i denote the exogenous variables present in the model under the 
alternative, where J.l stands for the intercept and T for the time trend, according to Fuller's notation. 

(6) Out of practical considerations, D - F suggest the use of regressions of the type 
v Yt = c +a Yt-1 + Bt + £1, where the t value given by the packages corresponds to the value of 
iT since a=(+-1). 
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D- F (1981) extend their procedures to the test of joint hypothesis, 
tabulating F tests for the three alternative models considered (1). For the test 
of Ho (c , + , fJ) = (0 , 1 , O) against H,: (c , + , fl} = (c , + , 0), they obtain 
a likelihood ratio that is a monotone function of 

(1.10) 

where 56" is the estimated variance of the OLS residuals under the alterna­
tive. The percentiles are given in their table IV. For testing Ho against H2, i. e., 
the joint test of (c, +. {3) = (0, 1, 0) on (1.8), the likelihood ratio is a monotone 
function of 

(1.11) 

with percentiles given in table v. Finally, to test H2-: (c, +. fJ) = (c, 1, 0) against 
H,, the likelihood ratio is a monotone function of 

(1.12) 

independent of c (table VI). D - F also tabulate the percentiles for the t statis­
tics of c and fj in models (1.8) and (1.9') (tables 1, 11 and 111). 

The power of all the D- F tests is rather small (8), which is not surpris­
ing since it is difficult to distinguish between a unit root and a root close but 
smaller than one using finite samples. 

When chasing which alternative model (1.7)-(1.9') to use, it should be taken 
into consideration that as D - F (1979) say: «The limiting distributions of ~~ 
and i~ are obtained under the assumption that the constant term JA is zero. 
Likewise, the limiting distributions of ~T and iT are derived under the assump­
tion that the coefficient for time, {3, is zero. The distributions of ~T and iT, are 
unaffected by the value of IJ.· If wi'O [under (1.8)] or {3'1=0 [under (1.9)], the limit­
ing distributions of i" and iT are normal. Thus, if the maintained model (has 
a constant term) and the statistic i" is used to test the (unit root) hypothesis, 
it will be accepted with probability greater than the nominal level where !J.'I:O.» 
However, Hylleberg and Mizen (1989) simulation study shows that in small sam­
ples «one may be better off using the Dickey-Fuller tables». 

Evans and Savin (1981 and 1984) and Nankervis and Savin (1985) study 
the problem from the point of view of the invariance of the test statistics to 
JA, {3, and Yo. Perron (1988) discusses their results and proposes a test 
strategy to limit its pernicious effects. For instance, if we suspect the series 

(?) D- F (1981) introduce a correction in the definition of the time trend in (1.9): instead 
of {Jt, they define {J(t-n/2). We denote the new specification of the model as (1.9') and will use 
it from now on. 

(8) Dickey and Fuller (1979 and 1981) and Dickey, Miller and Bell (1986) present studies of 
the power of these tests. 
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has a non-null mean (which is a common feature of macroeconomic time ser­
ies), we should use model (1.9'} and its test statistics instead of (1.8}, although 
those tests have less power than the ones based on the last model. 

The D - F tests procedures ar not valid unless the residuals from the OLS 
estimation are i.i.d. Often this is not the case (9), and D - F use a paramet­
ric (autoregressive) correction for the autocorrelation present. They define the 
Augmented Dickey-Fuller model (ADF): 

s 
Yt = c + cj> Yt- 1 + (Jt + ~ cj> I j v Yt- j + E.t 

j=1 
(1.9') 

where v # (1 -B) and the number of lags «S» is chosen in a way the residuals 
are no longer serially dependent (using the Ljung-Box Q or the Durbin h tests). 
This procedure has the disadvantage of implying the estimation of a number 
of nuisance parameters with all its consequences. 

Perron and Phillips tests 

Perron and Phillips (hereafter P - P) have made a decisive contribution 
to tests of the unit root hypothesis. Unlike D- F, they use a non-parametric 
correction of the autocorrelation and allow for very general conditions on the 
error structure [see Perron and Phillips (1988), for example]. They prove that 
their test statistics incorporating the non-parametric correction are transforma­
tions of the D - F ones, and converge to the same limiting distributions. 

To test Ha: (c, cj>, (3} = (c, 1, 0) in the (1.9') model the P- P test statis­
tics are: 

Z(cj>,) = n(cj>,- 1)- - (Sn,- S,) ~ ~ ( n6 ) 2 2 

24Dx 
(1.13) 

(1.14) 

Z(<!>3) = ( 8
')

2

<1>3 - (~) (S~,- s;) [n(~,- 1) - (~) (S~,- s;)] 
Snt 28 nl 48Dx 

(1.15) 

where Dx is the determinant of X'X under H1, s; and s~, are consistent esti­
mators of a; and u 2

, and i,. and <1>3 are defined as in D- F. s~, is the non­
parametric counterpart of the autoregressive correction of D- F. The com­
plete list of the P- P test statistics for the three alternatives can be found 
in Perron (1988). 

(9) Many macroeconomic time series are best modelled as MA or ARMA models. Said and 
Dickey (1984 and 1985) developed tests of the unit root hypothesis in ARMA (p, q) models. In the 
(1984) paper they show that ARMA (p, q) models can be well approximated by a pure AR (/) with 
I= 0 (n 113). In the (1985) paper they test an ARMA (p, 1, q) model against an ARMA (p + 1, q) alter­
native. 
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The consistent estimation of a 2 proves to be rather complicated. Phillips 
suggests the use of the Newey and West consistent and non-negative (by con­
struction) estimator of the variance, which takes the form 

2 1 n A2 2 1 n 
S nl = - ~ E.t + - ~ WTI ~ E.t E.t- T 

n t=1 n T=1 t=T+1 
(1.16) 

where I is the truncation lag parameter, wT, = 1 - Tl(/ + 1) is the Bartlett win­
dow, and it are the estimated residuals under the relevant alternative. 

Perron (1988) concludes that in general the properties of the estimators 
are more influenced by the choice of the truncation lag than by the choice 
of the window (1°) and gives clues to the choice of /. Furthermore, taking 
into account the poor power of these tests, he proposes a test strategy (1 1) 

that we will follow in our empirical application. In the published empirical 
studies, the P- P tests generally confirm the results of the D- F tests (non­
rejection of Ho)-

Hall tests 

When the errors are generated by a MA process, the P - P tests have 
particular low power [see Schwert (1987)]. Hall (1989) suggests new tests using 
the same general conditions as P- P for the errors structure, and the 
Instrumental Variables method of estimation (IV). 

Let Yt be a time series generated by 

(1.17) 
and 

E.t = Ut - e1 Ut- 1 - ... - eq Ut- q (1.18) 

where an intercept can be included in (1.18), and the models (1.7)-(1.9') are 
estimated consistently using the IV with instruments Yt-k for Y1-1 (k > q). Hall 
takes k = q + 1, where q is the order of the MA model in (1.18) identified by 
the Box-Jenkins Methodology, but advices a conservative choice of k, in order 
to avoid any correlation between Yr-k and E.t- Next, he proves that the limit­
ing distributions of n(cPIV- 1 ), n(cP~IV- 1) and n(cPTIV- 1) are the ones tabulated 

(10) Stock and Watson (1986) suggest a test also making a non-parametric correction and 
using the Tukey-Hanning window. However, the test is only valid for null drift series which strongly 
limits its popularity. 

(11 ) Start with the estimation of model (1.9 ') and use Z (~T), Z (iT) and Z (<1>3) (only the last 
one is invariant in (3) to test H0 . If we reject Ho, the test is over; otherwise, providing Z (<1>2) sug­
gests that c = 0, we use the test statistics based on model (1.8) - Z (~~), Z (i~) and Z (<1>1)- which 
have more power than the previous ones but are not invariant in c. 

459 



by Dickey whereas the i statistics are transformations of the D - F statistics. 
For models (1.8) and (1.9 ') we have: 

H(i~) = ( ~·) i~ (1.19) 

(1.20) 

where s; and S 2 are consistent estimators of a; e a2
• Hall defines them as 

(1.21) 

where S~ is a consistent estimator of the variance of u, and 

2 2 ( q q-J ~ ~) 2 
S = S, + 2 V:

1 
,:

0 
e,+, e, Su (1.22) 

By simulation, Hall concludes that his tests improve substantially the power 
of the P- P tests for the IMA (1, 1), in particular for positive parameters. When 
e = 0, they are inferior, thus suggesting a complementary utilization of these 
tests for the unit root hypothesis. 

Solo test 

For testing the unit root hypothesis in ARMA models, Solo {1984) deduces 
a Lagrange Multiplier test (LM) defining the alternative as an ARMA (p + 1, q) 
stationary model. Under the null, from the minimisation of the Lagrangean, Solo 
obtains 

X -_elf, -_elf,- [e(B)]-1Y 
1-1 - "Oa1 - ~ - 1-1 

(1.23) 

To perform the LM test, we adjust an ARMA (p, q) to the differenced ser­
ies (i. e., under Ho) and estimate (1.23) using the Box-Jenkins method [see Box 
and Jenkins (1976)]. We then regress E., on X,, thus obtaining the auxiliary 
regression of this test. The test statistic is the usual nf12, where f12 is the 
coefficient of determination of the auxiliary regression. Its limiting distribution, 
as Solo shows, is T2 (the square of the i distribution) (1 2) and has a bilateral 
critical region. 

As Dickey, Bell and Miller (1986) admit, this test is much easier to imple­
ment than the other tests for unit roots in ARMA models. However, its power 
remains unknown. 

(12) As macroeconomic time series often have a non-null mean, we should substract it in 
(1.23). The limiting distribution of nR2 becomes ~· 
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Dickey and Pantula tests 

We consider a final test for the existence of a multiple unit root in the 
series. This test was proposed by Dickey and Pantula (1987) (hereafter D - P) 
after realizing that when the series contains a multiple unit root, the existing 
tests tend to reject the null at a higher level of significance than a (1 3). On the 
contrary, their test has a probability of rejection of the null that converges to 
the significance level as n-+oo. The strategy is the following: never test the exis­
tence of a unit root before having tested, and rejected, the existence of a dou­
ble unit root, i. e., «the order of testing should begin with the highest (practi­
cal) degree of differencing and work down toward a test on the series level», 
exactly the opposite of what is usually done. 

To test a triple unit root in an AR (3), we define Zt = v Yt, Wt = v 2 Yt, and 
Xt= V 3 Yt which allow us to rewrite the AR (3) as 

(1.24) 

Denoting the usual t statistic to test ~~ = 0 as ft(3), i = 1, 2, 3, D - P 
show that an appropriate consistent test is obtained considering the t statistic 
t*3 (3) in the regression of Y1, only on W1_, where, implicitly, ~~ = ~2 = 0. Then, 
if t* 3 (3) :5r, we reject the null of a triple unit root. To test the null of a dou­
ble unit root, we regress Xt on Z1_, and Wt_,; if t*2 (3) :5r in addition to t*3 (3) 
=?i, we reject it. Finally, to test a single unit root against a stationary alterna­
tive, we regress Xt on Zt-t, Wt-t and Yt-t and reject it if t*i (3) ::5-T, i= 1, 2, 
3. D- P prove that the limiting distribution of t* is i (1 4

). 

The poor power of the tests of the unit root hypothesis, already mentioned, 
is well known [see, for example, Schwert (1987)]. Perron (1988) shows that when 
there is a change in the sample period, more observations do not mean a more 
powerful test; Shiller and Perron (1985) show that the power of the tests of 
the unit root against both stationary and explosive alternatives depends more 
on the time interval of the data than on the actual number of observations avail­
able. This result is coherent with the nature of the phenomenon under study 
- trend reversion - which, if it does, occurs in the long run. 

1-3 - Recent developments 

We must take into account that long series are bound to include trand 
breaks (possibilities are 1929- the Great Crash- and 1973- the oil price 
shock). Rappoport and Reichlin (1989) define a class of processes with a Seg­
mented Trand (ST) which moves away from the traditional dichotomy TS/DS 

(' 3) Hasza and Fuller (1979) develop a test for a double unit root, which behaves the same 
way when the series contain a triple unit root. 

(' 4) The inclusion of an intercept in the various regressions implies that this limiting distri· 
bution is -r~. 

4 
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processes by the consideration of a Trend that changes irregularly and infre­
quently over time, and is well characterized by different segments limited by 
breaks. Perron (1989) introduces dummies for the modelling of the presence 
of a one-time change in. the level or in the slope of the trand caused by the 
shocks, taken as exogenous (1 5} and not as a realization of the underlying 
data-generating mechanism. 

Perron defines three different models: the «crash model>) (model A) where 
the null is characterized by a dummy wich takes the value one at the time 
of the break; the «changing growth modeln (model B) where, under the alterna­
tive, a change in the slope of the trend function without any sudden change 
in the level is allowed at the time of break; and model C which allows for both 
effects, i. e., a sudden change in the level followed by a different growth path 
of the trend. To test these three models, Perron uses three regressions that 
extend directly from the D - F test procedures, and are constructed nesting 
the null and the alternative hypothesis C6): 

k 

A :Yt =~A+ lJA OUt+ fJAt + dAO(TB}t + 0A Yt-1 + ~ CiVYt-i + E.t 
i=1 

k 

a:Yt=~8 +fJ8 t+y80T*t+a8 Yt-1 + ~civYt-i+E.t 
i=1 

k 

(1.25) 

(1.26) 

C:Yt = ~c + lJA OUt+ pet+ ycOTt + dcO(TB}t + a.cyt-1 + ~ciVYt-i + E.t (1.27) 
i=1 

where TB is the time of the break, and the dummies are defined as 

OUt= 1 , OTt= t and OT*t= t- TB , if t> TB 
0 (TB}t = 1 , if t = TB + 1 0 , otherwise 

Under the null, we have for the three models aA = a 8 = aC = 1 ' rr = {38 = [JC = 0 ' 
(JA = ec = 0 , y8 = yc = 0 , and cfA, cJC substantially different from zero. Under the 
alternative we have aA, a8 , ac < 1 , (JA , (38 , {Jc::foo , (JA, ec::foo , y8 , yC::foO , and cfA, cJC 
close to zero. Via simulation, Perron has calculated the critical values for .Y. the 
three models and for different values of A= TB!n (though they do not seem to 
vary much with A). These critical values are larger (in absolute value and con­
sidering the left tail} than the Dickey-Fuller ones. The application of these tests 
leads to the rejection of the unit root null in most US macroeconomic time series. 

(15) «The exogeneity assumption is not a statement about a descriptive model for the time 
series representation of the variables. It is used here as a device to remove the influence of these 
shocks from the noise function [ ... ] into the trend function without specific modeling of the stochas­
tic nature of the behaviour of the constant term and slope of the trand.» [Perron (1989)]. 

(16) To choose the value of k, the number of extra lags in the ADF type of models (1.25)­
(1.27), Perron takes a «liberal» procedure. He chases k = k* if the t statistic on Ct is greater than 
1.60 in absolute value, and the t statistic on c, is less than 1.60, with a maximum of k = 8. 
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Christiano (1988) is very skeptical about this rejection and shows that it 
is spurious and due to the non-consideration of the use of «a priori» informa­
tion in the selection of the hypothesized date for the break in the critical values 
of the test statistics. Using bootstrap methods, Christiano shows that there is 
no statistical evidence for a trend break in the post-war quarterly USA GNP. 
Andrade and Proenc;:a (1990) discuss the evidence for the Portuguese GDP. 

Diebold and Rudebusch (1989) define the ARFIMA (Fraction Integrated 
ARMA) models through the generalization of the FARMA models of Hosking, 
and Granger and Joyeux, where the degree d of differentiation of a series is 
defined as a real number. Studying the USA GNP, they conclude that the usual 
d = 0 or d = 1 values implicit in the unit root tests are too restrictive, and esti­
mate d= 0.7 for that annual series. 

The most influential development in this area is probably the definition of 
the Co-integrated Models of Engle and Granger (1987) and the test of common 
trends among time series. 

An alternative and totally different approach to the decomposition of a ser­
ies into Trend and Cycle is developed by Harvey (1985), Watson (1986), and 
Clark (1987) using Unobserved Components models. Their results are highly 
contradictory to those obtained with the Beveridge-Nelson Decomposition, con­
cluding, in general, that the series are trend-reverting and that the shocks dis­
sipate rather quickly. Another approach is proposed by Campbell and Mankiw 
(1987), and Cochrane (1988). They define measures of the persistence (both 
parametric and non-parametric) of the shocks to the output, and, thus, are able 
to estimate the importance of the permanent component in the output. 

2 - Trend and Cycle in the Portuguese output 

2.1 - Stochastic trend 

We study the Portuguese real annual per capita GDP 1958-1987 (1 7
) (1 8

). 

To start with, we perform the traditional decomposition of the output in its de­
terministic Trend and Cycle. We regress the (logarithm) real GDP on an inter­
cept and time: 

Yt = 3.352,339 + o.041, 145,55 t 
t 87.693,99 19.107,98 

R 2 =0.928,774 OW=0.1304 

(17) Real GOP is the most comprehensive measure of the macroeconomy. Nevertheless we 
focus our attention on real per capita GDP because the movements induced in the aggregate out­
put by a varying population may obscure the persistence intrinsic to the economy. 

(1B) For the period 1958-1985, we use the series of annual GDP at 1977 prices of Cartaxo 
and Rosa (1986) updated with the growth rates in volume published in the annual reports of the 
Banco de Portugal. For the population, we use the series of C6nin (1979) and Carrilho (1985) up­
dated with values taken from «Estatfsticas Demograticas» and «Anuarios Estatfsticos>> of INE. 
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which is a spurious regression. The Trend is defined as Yt = 3.352,339 + 
+ 0.041,145,55 t, a deterministic function of time, and the Cycle as the series 
of the estimated residuals of the regression. In the figures (original non-logari­
thmised values) we see the exponential trend around which the real GDP os­
cillates, and a «hump shaped» (non-stationary) Cycle which incorporates all the 
fluctuations of the GDP: 

.rDP 

year• 

Det (:ycle 

0 • .,.__-=-=• 9~6-=-o --:-• ""'o6:-:4----:lc:9~6 .,:---:-:, 9:-::7-=-2 --:-, 9:::-:7:-:6----:lc:9::-:eo=--"'t::-::9:=114-:---

The application of the Beveridge-Nelson decomposition and the identifica­
tion of the stochastic Trend and stationary Cycle is much more complex. Us­
ing the Box-Jenkins Methodology and the Automatic Criteria (1 9), we identified 
an MA (1) as the generating process of the first differences of the real per capita 
GDP, i. e., an ARIMA (0, 1, 1) for the level of the series [see Andrade {1990) 

(19) We used the criteria defined by Akaike (AIC and BIC), Schwartz (SC), Hurvich and Tsai 

(AICc), and Geweke and Meese (BEC). 
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for details]. The estimation of the MA (1} by the Box-Jenkins method of estima­
tion produced 

Xt = 0.040,1 00,83 +it+ 0. 788,818 Et-1 
4.005,749 7.340,924 0(7)= 10.1972 

(t statistics under the estimates) which is stationary and invertible: the root of 
the characteristic polynomial, B= 1.267,719,5, is outside the unit circle. Since 
the estimated AR (1) is still close to the MA (1 ), we tested the two models ag·ainst 
each other using a non-nested models test developed by McAleer, McKenzie 
and Hall (1988) which uses auxiliary regressions to calculate the test statistics 
(very similar to the ones used in the Lagrange Multiplier tests). We are not able 
to reject one of the models at the 5% level, but at 25% we are able to reject 
the AR (1) against the null MA (1 ). We also checked the properties of the esti­
mated residuals of the MA model. We could neither reject their normality at 
5 % level using the skewness and kurtosis measures [tables for small samples 
in White and MacDonald (1980)], nor their homoscedasticity using the ARCH 
test of the residuals developed by Engle (1982}. 

The application of the Beveridge-Nelson decomposition is now simple. The 
stochastic Trend is given by Yt= Yt-1 +0.040,100,83+ 1.788,818 it, a random 
walk with drift, and the Cycle is Ct=-0.788,818 it, a white noise: 

CDP 

,. .. ,.. 
S't.OC Cycle 

o.eL----------------
,. .. ,. 

A substantial part of the fluctuations of the data is affected to the Trend, 
whereas the Cycle oscillates very little around its mean. 
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2.2 - Unit root tests 

We now apply the unit root tests to confirm the existence of a unit root 
in the data, and therefore, the stochastic Trend we have estimated. We start 
with the D - F tests (1979 and 1981 ). We employ the test h of Durbin (20) to 
determine the number s of lags to be included in the ADF model: 

s=O s=1 

0.954,78 0.961,30 
?<<1>--1) ................. . -1.311,49 

T" -2.671,43 -2.029,84 
h .......... . 1.689,56 1.291,46 

<I> .... 0.959,92 0.912,28 
n(<i>T-1) ... -1.162,44 . 
TT .. -0.609,77 -1.302,90 
h ................. . 1.839,18 1.010,22 
<1>3 . 3.307,94 2.313,91 

2.599,56 3.514,97 
0.155,81 0.253,56 

We can never reject Ho at the 5% level. The estimates of the intercept 
and the time trend (not included} are never significant also at 5%. The non· 
rejection of Ho in <1>2 test means that we cannot reject the joint hypothesis 
(c,t,f3} = (0, 1, 0). Next, we implement the P - P tests considering I= 0, ... ,3 
and the Bartlett window: 

1=0 /=1 1=2 1=3 

z (<i>T) ......... . . . . -0.974,24 -1.469,09 -1.469,51 -1.391,23 
Z (TT) .. -0.570,08 -0.712,79 -0.712,93 -0.687,75 
z (<1>3) ... . . . . . . . . . . 3.627,99 3.154,97 2.925,25 3.009,73 

z (<1>2) ... . . . . . . ... 2.858,42 2.468,04 2.287,50 2.356,71 

z <~-) .... ... ' -1.297,44 -1.334,89 -1.335,61 -1.330,44 

z (.f") ...... -2.509,91 -3.056,64 -3.069,29 -2.977,74 
z (<i>,) . . . . . . . . . . . ' . 0.098,12 0.237,54 0.239,74 0.223,48 

The conclusion is the same - non rejection of Ho - for any test statis· 
tic and truncation lag /. Since we do not reject Ho using the test statistic 

(20) The h statistic has an asymptotic normal distribution when we test Ho: no first order 
autocorrelation in the residuals against H1: positive or negative autocorrelation. 
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Z(<l>2), indicating that c = 0, we can use the more powerful test statistics based 
on model (1.8). The Hall tests confirm the non-rejection of Ho: 

n(~~,v-1) .. . 
H('i:~) ......... . 

n(~TIV- 1) 
H('i:T) 

q=t 

-1.509,70 
-2.095,93 

-2.343,81 
-0.941,89 

q=2 

-1.545,08 
-1.962,07 

-2.637,32 
-0.792,18 

as well as the Solo test, where we have nR 2 = 1.077,05 for the MA (1) null. 
We now check that the GOP contains a single unit root with the 0-P test. 

First, we reject a triple and a double unit root at 5% level because t*s (3) = 
= - 5.934,19 and t*2 (3) =- 3.029,93; next we cannot reject a simple unit 
root, as before, because f*t (3) =- 2.236,47. 

Finally, we perform the trend break test of Perron (1989) considering the 
trend break, TB, at 1974 (and not 1973 as Perron), simultaneously close to the 
date of the oil price shock and the year of the Portuguese Revolution, and the 
«changing growth» model (1.26). The estimation of this model produce 

Yt = 2.803,5 + 0.054,141 t-0.038,386 DT* t + 0.110,84 Yt-t + 0.598,53 V Yt-t 
4.939,7 4.647,9 -4.535,5 

where i = -4.842,08 allows us to reject the null [the critical values for A.= 0.6 
are -3.95 at 5% level and -4.57 at 1 %, from table V.B in Perron (1989)]. 
Also, we have (3=FO, y=FO highly significant. This result means that our previous 
non-rejection of the null was probably due to confusion between a one time 
innovation, the break trend, and the yearly innovations, making these seem more 
lasting than they actually are. However, as Perron admits, the rejection of the 
null does not mean that the trend function including its changes are determinis­
tic, but rather that the timing of the occurrence of the shocks is rare relative 
to the sequence of innovations. 

3 - Conclusion 

In this study we cannot reject that the Portuguese output in the period 
1958-1987 contains a unit root using the Dickey and Fuller, Perron and Phil­
lips, Hall, Solo, and Dickey and Pantula tests. According to Nelson and Plosser, 
and now using the Beveridge-Nelson decomposition, this means that the Por­
tuguese output has a stochastic Trend and a small stationary Cycle, and that 
we can reject its traditional deterministic decomposition, and the hump shaped 
Cycle which had been taken as «One of the few undisputed facts in macroeco-
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nomics» [Blanchard (1981)] for a long time. Nevertheless, these conclusions 
must be taken carefully. First of all, it is very difficult to distinguish between 
trend-reverting series and series with a stochastic trend based on finite sam­
ples. Second, we may be ignoring a trend break and take its permanent effect 
as if it were provoked by the yearly innovations, as Perron recent unit root test 
points out. We should also take into consideration that univariate models have 
a limited capacity to interpret reality. 

The economic implications of the existence of the unit root are enormous. 
Following Nelson and Plosser (1982), we can say that the real shocks drive 
the output fluctuations, and thus find empirical support for the Real Business 
Cycle Theory. We can also conclude that the stabilization policies, in particular 
the «Stop and go» policies implemented in Portugal under the IMF supervision 
during the last years of the period studied, have not driven the output back 
to its smooth long run trend simply because that does not exist. On the con­
trary, the effects of those policies will be persistent over time, and will affect 
the structure of the Portuguese economy itself. Finally, the fluctuations of the 
output are largely structural and the Business Cycle is not very significant. 

This work may be extended in two directions. One is to use the same tech­
niques to study more and longer Portuguese macroeconomic time series, 
namely quarterly series that, so far, are not available. Another, and more deci­
sive one, is to use multivariate models, such as the Co-Integrated models, to 
study Portuguese macroeconomic time series. 
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