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RESUMO 

Descoberta de novas enzimas celulossomais de bactérias anaeróbias que 

degradam hidratos de carbono 

As enzimas que na natureza degradam os hidratos de carbono (CAZymes) são capazes de construir, quebrar ou 

modificar ligações glicosídicas. Estas enzimas actuam sobre polissacáridos complexos e recalcitrantes, como a 

celulose e a hemicelulose, e apresentam geralmente uma estrutura modular, podendo incluir módulos catalíticos 

fundidos através de sequências de ligação a domínios não catalíticos, sendo os mais comuns os módulos de 

ligação a hidratos de carbono (CBMs). Em algumas bactérias anaeróbias, estas enzimas podem associar-se em 

complexos multi-enzimáticos de elevada massa molecular designados de celulossomas. Os organismos que 

produzem estes complexos apresentam um vasto repertório de enzimas envolvidas na degradação da parede 

celular vegetal e constituem um bom ponto de partida para a descoberta de novas CAZymes. Actualmente, 

verifica-se uma crescente acumulação de informação genómica e metagenómica a um ritmo superior à 

capacidade de identificação da função biológica de uma plêiade de genes e proteínas de funções 

desconhecidas. Para além disso, para a maioria das CAZymes já conhecidas, não foi ainda efectuada uma 

caracterização estrutural e/ou bioquímica. Neste estudo foram desenvolvidas metodologias inovadoras para a 

descoberta de novas CAZymes em bactérias celulossomais, bem como se procedeu a uma caracterização 

bioquímica detalhada para algumas destas enzimas. Desenvolveu-se uma plataforma de alta capacidade para a 

clonagem, expressão e produção de proteínas celulossomais recombinantes em Escherichia coli, tendo como 

objectivo descobrir novas CAZymes codificadas nos genomas de Clostridium thermocellum e Ruminococcus 

flavefaciens. Como resultado, foi construída uma nova série de vectores de expressão (pHTP) a fim de 

sustentarem um método de clonagem independente de ligação. Para possibilitar a total automatização do 

processo foram desenvolvidos novos meios de cultura celulares e métodos de purificação de proteínas 

adaptados a um esquema de produção de alta capacidade. A pesquisa de novas enzimas nos módulos 

celulossomais de função desconhecida possibilitou a descoberta de uma nova α-L-arabinofuranosidase em R. 

flavefaciens, que se constitui como a enzima fundadora de uma nova família de CAZymes. A fim de potenciar a 

solubilidade de proteínas recombinantes em E. coli, foram desenhadas novas tags de fusão, as quais foram 

incorporadas em vectores derivados do pHTP. Tanto as tags Rf1 como Rf47, derivadas de componentes 

celulossomais, mostraram possuir uma capacidade elevada para potenciar a solubilidade de proteínas, uma vez 

que as proteínas de fusão contendo quer uma quer outra destas tags foram produzidas na forma solúvel em 

níveis mais elevados do que com parceiros de fusão anteriormente descritos. Confirmou-se que os CBMs 

afectam a actividade catalítica das CAZymes associadas, tal como ilustrado pelo CBM32 da CtMan5A. Este 

trabalho forneceu indicações de que os CBMs membros da família 35 têm a capacidade de se ligarem a 

polímeros de β-manose. A caracterização bioquímica das PL1A, PL1B e PL9 aqui descrita constituiu o primeiro 

relato de actividade pectinolítica no celulossoma de C. thermocellum. Estas enzimas podem estar associadas a 

CBMs que revelam pouca especificidade de ligação aos substratos. Testou-se a aplicação de β-glucanases na 

suplementação alimentar animal, tanto como enzimas isoladas, como associadas em mini-celulossomas. Os 

dados apresentados aqui revelam que são as β-1,3-1,4-glucanases e não as β-1,4-glucanases as enzimas 

responsáveis por melhorar o valor nutritivo de dietas à base de cevada para frangos. Por outro lado, os 

resultados mostram que a eficácia dos mini-celulossomas para melhorar o desempenho das enzimas exógenas 

usadas na suplementação alimentar requer um mecanismo eficaz para proteger as regiões de ligação entre os 

componentes celulossomais da degradação por proteases. 

 

Palavras-chave: Enzimas degradativas de hidratos de carbono, celulossomas, técnicas de alta 

capacidade, expressão de proteínas recombinantes, suplementação alimentar animal  
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ABSTRACT 

Discovering novel Carbohydrate-Active Enzymes in the cellulosome of 

anaerobic bacteria 

Carbohydrate-active enzymes (CAZymes) include a range of enzymes that, in nature, make, break or 

modify glycosidic bonds. CAZymes act on highly recalcitrant polysaccharides, such as cellulose and 

hemicellulose, and often exhibit a modular architecture including catalytic domains fused through 

flexible linker regions to non-catalytic domains such as carbohydrate-binding modules (CBMs). In 

some anaerobic bacteria these enzymes can associate in high molecular mass multi-enzyme 

complexes termed cellulosomes. Cellulosomal organisms express a vast repertoire of plant cell wall 

degrading enzymes and constitute a promising source for the discovery of novel CAZymes. Presently, 

an exponential accumulation of genomic and metagenomic information is observed while the 

identification of the biological role of both genes and proteins of unknown function is sorely lacking. In 

addition, for most of the known CAZymes, structure and/or biochemical characterization is missing. In 

this study we have developed innovative approaches for the discovery of novel CAZymes in 

cellulosomal bacteria and provide a detailed biochemical characterization of some of those enzymes. 

A high-throughput platform was designed for cloning, expression and production of recombinant 

cellulosomal proteins in Escherichia coli, aiming at looking for novel cellulosomal CAZymes encoded 

in the genomes of Clostridium thermocellum and Ruminococcus flavefaciens. As a result, a series of 

novel prokaryotic expression vectors (pHTP) were constructed to allow ligation-independent cloning 

with high levels of soluble recombinant protein production. In addition, to allow total automation of the 

procedure, both novel cell culture media and protein purification methods have been established. The 

platform allowed the production of 184 cellulosomal proteins of unknown function that after the 

implementation of an enzyme discovery screen lead to the discovery of a novel family of α-L-

arabinofuranosidases. In order to achieve recombinant soluble expression in E. coli, novel fusion tags 

were designed and incorporated into pHTP-derivatives. Both Rf1 and Rf47 tags, derived from 

cellulosomal components, were shown to display a high capacity to enhance protein solubility, as 

fusion proteins containing both these tags were expressed at high levels and in the soluble form in E. 

coli. CBMs were confirmed to affect the catalytic activity of appended CAZymes, as it was illustrated 

by the CBM32 of CtMan5A. This work revealed that members of family 35 CBM have the capacity to 

bind β-mannose-containing polymers. The biochemical characterization of PL1A, PL1B and PL9 

reported here describes the pectinolytic activity expressed by C. thermocellum cellulosome. These 

enzymes are appended to CBMs that display considerable ligand promiscuity. The application of β-

glucanases in animal feed supplementation was tested either in the free state or while associated in 

mini-cellulosomes. This study revealed that β-1,3-1,4-glucanases and not β-1,4-glucanases are 

necessary to improve the nutritive value of barley-based diets for broilers. In addition, it was shown 

that mini-cellulosomes designed to improve the efficacy of exogenous enzymes used for feed 

supplementation require an effective mechanism to protect linker regions from proteolytic cleavage. 

 

Key-words: Carbohydrate-active enzymes, cellulosomes, high-throughput techniques, recombinant 

protein expression, animal feed supplementation  
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1. INTRODUCTION AND THESIS OUTLINE 

In the post-genomic era there is an urgent need to assign biological functions to proteins of 

unknown role encoded by sequenced genomes and metagenomes. Even for annotated 

proteins, structural and biochemical characterization would allow a more insightful 

understanding of their biological roles in nature. This knowledge is obviously of fundamental 

importance to science but could also uncover a large range of biotechnological applications 

of great importance to our societies, since they may present remarkable impacts in the 

industry, agriculture, and medicine sectors. Plant cell walls represent the most abundant and 

renewable source of carbon available in nature and their biotechnological utilization remains 

elusive due to the recalcitrance of their major constituents, cellulose and hemicellulose. 

Recently, as a consequence of pressures for an increasingly green society, aiming to 

develop sustainable approaches to degrade plant biomass for the generation of biofuels, 

there is an exponential increase in the identification of carbohydrate active-enzymes 

(CAZymes). These enzymes are involved in plant cell wall deconstruction by breaking or 

modifying glycosidic bonds in a multitude of structural polysaccharides. Besides their use in 

the production of renewable fuels through the production of fermentable sugars from plant 

biomass, CAZymes can also be applied in other industrial and agricultural processes, such 

as animal feed supplementation. Addition of exogenous enzymes in dietary preparations for 

simple-stomach animals enhances the nutrient availability through the degradation of anti-

nutritive soluble polysaccharides in the gastrointestinal tract. The major impacts of adding 

exogenous enzymes to monogastric animal diets relate with the significant reduction in 

digesta viscosity associated with enzyme activity. Today, genetic engineering allows the 

development of appropriate tailor-made strategies to design more efficient enzymes which 

could improve the cost-effectiveness of converting biomass to fuels and also improve feed 

nutritive value. The remarkable gene diversity and complexity found in genomes of the 

microbial flora colonizing ecosystems capable of deconstructing polysaccharides provides an 

ideal resource for mining novel CAZymes. In particular, genomes of organisms containing 

cellulosomes, which are highly efficient nanomachines involved in the deconstruction of 

cellulose and hemicelluloses, usually comprehend a large array of potentially effective plant 

cell wall-degrading enzymes. The optimal utilization of genomic sequence data requires, 

however, the development of high-throughput methods for gene cloning, recombinant protein 

expression and protein purification that could support the rapid characterization of proteins, 

including their structure determination. In this respect, several high-throughput strategies for 

parallel cloning and expression of large numbers of genes are being applied in laboratories 

worldwide. Ligation-independent cloning methods allow efficient cloning of multiple targets 

simultaneously, while miniaturization of cell growth conditions and automation of the 

expression and purification steps accelerate the process of recombinant protein production. 
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In addition, several approaches are being designed for the efficient production of soluble 

recombinant proteins in economic and simple bacterial expression systems, which usually 

involve the application of protein fusion technologies. 

The focus of this thesis was the development of novel methods for the discovery of novel 

CAZymes in cellulosomal bacteria, which will permit the isolation and biochemical 

characterisation of several unkown enzymes. The aim of this project was not only to provide 

highly efficient biocatalysts that could benefit many biotechnological applications, but also to 

elucidate several questions concerning the function and properties of cellulosomal enzymes. 

The work described here was developed with the aim of establishing fundamental research 

that could support the development of innovative applied science. Thus, what was envisaged 

in this project was a link over the fundamental work that has been developed at the 

University and an applied perspective given by a Company, which has in its genetic make-up 

the drive for exploring the applications driven from scientific knowledge. Besides the 

integration of the novel CAZymes described here in the NZYTech’s market portfolio, many 

other contributions of this project to improve the competitiveness of the Company can be 

reported, being the development of a completely novel high-throughput strategy that could be 

used for cloning, expression and recombinant protein production in Escherichia coli the most 

prominent one. 

 

Following this introductory section, this thesis is divided into 7 additional chapters. The 

second chapter reviews our current knowledge on the microbial degradation of plant cell 

walls by CAZymes, with a special focus on the cellulosomes, in particular the cellulosomes of 

Clostridium thermocellum and Ruminococcus flavefaciens. Subsequently, the 

biotechnological use of CAZymes and cellulosomes are revised to allow extrapolating the 

relevance of genomic information data that is currently available. A description of the high-

throughput methods for recombinant protein expression in the post-genomic era is provided. 

At the end of the bibliographic review, the objectives of this work are clearly defined. 

Chapters 5, 6 and 7 are organized in papers based on scientific manuscripts, already 

published or submitted to international peer reviewed journals. Chapters 3 and 4 are also 

based on scientific manuscripts which are currently in preparation. Finally, the last chapter 

discusses and integrates the results presented. Future perspectives for the scientific 

knowledge attained with this work will also discussed. 
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2. BIBLIOGRAPHIC REVIEW AND OBJECTIVES 

 

2.1. Microbial degradation of plant cell wall 

2.1.1. Plant cell wall components 

Plant cell walls are composed of complex polymers tightly organized in a meshwork with a 

well-defined structural organization within each cell type, allowing cell walls to perform their 

mechanical and biochemical functions. Although the overall architectures of grasses and 

dicotyledonous cell walls are similar in that they both consist of a network of cellulose 

embedded in a matrix of non-cellulosic polysaccharides, they differ significantly in the type 

and relative amounts of these constituent polymers (Carpita & Gibeaut, 1993). During cell 

wall maturation the appearance of a secondary cell wall leads to a chemical composition 

change, which reflects the dynamic nature of plant cell walls (King et al., 2011).  

Plant cell wall structural polysaccharides are generated directly from the products of 

photosynthesis, which are used by plants, not only as building blocks, but also as their only 

source of energy (Sarkar, Bosneaga, & Auer, 2009). Around one-third of the total mass of 

several plants is cellulose, mainly in the form of crystalline microfibrils (Somerville, 2006). 

Cellulose plays a vital role as a load-bearing network and, due to its physical properties, it is 

important in determining the structural bias of the cell wall (Cosgrove, 1997). In addition to 

cellulose, the other polysaccharides of plant cell walls can be divided into two main groups: 

(1) hemicelluloses, such as xyloglucans, xylans, mannans or glucomannans (Scheller & 

Ulvskov, 2010) that bind to cellulose thus preventing the direct contact of each microfibril by 

acting as a lubricating coating, and (2) pectins, which act as a gel matrix in which the 

cellulose-hemicellulose network is embedded (Cosgrove, 1997) and modulate the cell wall 

porosity by constituting the major adhesive material between cells (Willats et al, 2001). In 

addition to polysaccharides, plant cell walls also contain structural proteins, enzymes with 

diverse roles and phenolic compounds, such as lignin (Cosgrove, 1997). 

Based on their polysaccharide composition, primary cell walls are usually classified as type I 

or type II. Type I walls consist of a cellulose-xyloglucan framework (about 50% of the wall 

mass) surrounded by a hydrated matrix of pectic polysaccharides (about 30% of the total 

mass). Other hemicelluloses such as gluco- and galactoglucomannans, can also interlock 

the cellulose microfibrils (Carpita & Gibeaut, 1993). In Type II walls, arabinoxylan and/or 

glucomannans constitute the major hemicellulose. Furthermore, type II walls contain a higher 

percentage of cellulose and residual amounts of pectins and proteins. When the secondary 

walls form (a process that does not occur in all cell types), water is largely replaced by lignin. 

Lignin confers great mechanical strength and structural reinforcement and allows cell walls to 

become more resistant to the action of enzymes and solutes (Pauly & Keegstra, 2008).  
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2.1.1.1. Cellulose 

Cellulose, the major constituent of plant cell walls, represents the most abundant renewable 

natural resource produced on the planet. Its biodegradation by microbial cellulases 

represents a major step in the carbon flux from fixed carbon present in cellulosic biomass to 

atmospheric CO2. Cellulose consists of a collection of parallel β-1,4-linked glucan chains that 

interact with each other through an extensive hydrophobic and hydrogen bond network 

(Somerville, 2006). Sequential glucose molecules are twisted 180°, forming a snap wherein 

the repeating unit is cellobiose. The degree of polymerization, n, varies between 10.000 and 

15.000, depending on the cellulose source material (Samir, Alloin & Dufresne, 2005) (Figure 

2.1). The assembly of large number of glucan chains forms a crystalline microfibril, cable-like 

structure, contributing to the robust nature of plant cell walls (Taylor, 2008). Microfibrils cover 

the plant cell walls in spatially oriented overlapping layers by providing resistance to 

enzymatic hydrolysis (Cosgrove, 2005) as well as to osmotic pressures (Somerville, 2006).  

 

Figure 2.1| Molecular structure of cellulose. 
 

 

 

 

Parallel glucan chains aggregate through hydrogen bonds. The repeating unit cellobiose is indicated showing the 

β-1-4 glucosidic bond. Adapted from Poletto, Pistor, & Zattera (2013). 

 

There are many polymorphs of crystalline cellulose (I, II, III and IV). Cellulose I, or “native” 

cellulose, is the structure found in nature and comprises two forms (Iα and Iβ) that coexist in 

various proportions depending on the cellulose source. Iα contains one single chain in a 

triclinic unit and is the dominant form of the cellulose produced by bacteria and algae, while 

Iβ, containing two chains in a monoclinic unit cell, dominates in the cellulose produced by the 

higher plants (Attala & Vanderhart, 1989; Sullivan, 1997). It is important to note that, within 

cellulose fibrils there are regions where the cellulose chains are arranged in a highly ordered 

crystalline structure, making the hydrolysis there more difficult, and regions that are loosely 

ordered termed “amorphous” (Nishiyama, 2009). 
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2.1.1.2. Hemicelluloses 

Hemicelluloses constitute a heterogeneous group of noncrystalline glycans that bind tightly to 

the surface of cellulose microfibrils, thereby strengthening the cell wall (Cosgrove, 1997). 

These polysaccharides are characterized by β-1,4-linked backbones of sugars in an 

equatorial configuration that include xyloglucans, xylans, mannans, glucomannans and β-

1,3-1,4-glucans (Scheller & Ulvskov, 2010). The backbone of hemicelluloses resembles that 

of cellulose. However, the presence of branches and other modifications that can decorate 

their backbones prevent them to form microfibrils (Cosgrove, 2005) (Figure 2.2). In xylans, 

mannans, and xyloglucans, the backbone sugars are β-1,4-D-Xyl, β-1,4-D-Man, and β-1,4-D-

Glc, respectively, while in glucomannan the backbone consists of randomly dispersed β-1,4-

Glc and β-1,4-Man sugars. Xyloglucan and arabinoxylan are two of the most abundant 

hemicelluloses. Xyloglucan is present in large quantities in the primary cell wall of 

dicotyledons and has the glucan backbone decorated with xylose branches on 3 out of 4 

glucose residues. Some of the xylosyl side chains are extended by the addition of galactose 

(Gal) or galactose-fucose (Fuc) residues (McNeil et al., 1984; Cosgrove, 2005). Arabinoxylan 

consists of a β-1,4-D-xylan linked backbone branched with arabinose and is predominantly 

found in the cell walls of monocotyledons. Other residues, such as glucuronic acid (GlcA) 

and ferulic acid esters, may also be found decorating arabinoxylans (Cosgrove, 2005). 

 

Figure 2.2| Chemical structure of the most abundant hemicelluloses. 

 
 

Examples of hemicelluloses structures present in plant cell walls, including monosaccharides, and their linkage 

and ester constituents. Glc – D-Glucose; Gal – D-Galactose; Man – D-Mannose; Xyl – D-Xylose; Ara – L-

Arabinose; Fuc – L-Fucose; GlcA – D-Glucuronic acid. (Pauly & Keegstra, 2008). 



 

6 
 

2.1.1.3. Pectins 

Pectins, the most soluble of the cell wall constituents, form a complex and heterogeneous 

group of acid-rich polysaccharides (Cosgrove, 1997). Homogalacturonan (HG), 

rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II) are three of the major pectic 

polysaccharides that occur in all primary cell walls and all of them are rich in galacturonic 

acid (GalA). HG (also known as polygalacturonic acid) is a linear homopolymer of 1,4-α-

linked-D-galacturonic acid that is deposited in the cell wall in a form that has 70–80% of the 

GalA residues methyl esterified (O’Neill, Albersheim & Darvill, 1990). RG-I consists of as 

many as 100 repeats of the disaccharide (1,2)-α-L-rhamnose-(1,4)-α-D-galacturonic acid. 

The rhamnose residues can be substituted with β-1,4-galactan, branched arabinan, and/or 

arabinogalactan side chains (Willats et al., 2001; Harholt, Suttangkakul, & Vibe Scheller, 

2010). RG-II is a highly complex branched carbohydrate containing an HG backbone with 11 

different sugar residues and forms dimers through borate esters (Cosgrove, 2005).  

 

2.1.2. Plant cell wall models 

It is well established that all plant cell walls are composed of cellulose microfibrils that form 

the scaffold of the wall and a cross-linked matrix phase that fills the space among the fibrils 

framework (Carpita & Gibeaut, 1993; Cosgrove, 1997; Popper, 2008; Keegstra, 2010). At the 

same time, it is also clear that not all plant cell walls have the same chemical composition 

and architecture (Carpita & Gibeaut, 1993; Cosgrove, 1997; Scheller & Ulvskov, 2010; King 

et al., 2011). Over the years, many models have been proposed to illustrate how structural 

polysaccharides are organized in such ordered structures that are plant cell walls. The most 

popular and generally accepted models were proposed by Hayashi (1989) and Fry (1989) 

and both defend that long xyloglucan chains tether the cellulose microfibrils together while 

pectin polysaccharides and structural proteins occupy the space between the cellulose-

xyloglucan network without being covalently bound to them. More recently, other two models 

were suggested: (1) the multicoat model, which proposes cellulose microfibrils to be coated 

with several sheaths, being hemicelluloses the inner and most tightly bound sheath; the 

linkage between microfibrils is made via non-covalent bindings between polysaccharide 

layers (Talbott & Ray, 1992), and (2) the stratified model that proposes that the cellulose-

hemicellulose framework is separated by pectic layers (Ha, Apperley, & Jarvis, 1997). 

 

2.1.3. Plant cell wall hydrolysis 

Plant cell wall polysaccharides, primarily cellulose and hemicelluloses, are the most 

abundant source of organic carbon and energy on the planet. The photosynthetically fixed 

carbon is recycled by the initial action of microbial enzymes that convert cell wall 

polysaccharides to oligosaccharides and monosaccharides, a fundamental biological process 

that is of immense industrial importance. However, plant cell walls are considered to be 



 

7 
 

recalcitrant structures to biological depolymerisation, which makes the carbon cycle a 

relatively inefficient process. The physical association between polysaccharides and between 

polysaccharides and lignin restricts the accessibility to the microbial enzymes that participate 

in plant cell wall polysaccharide deconstruction (Gilbert, 2010) and only a limited number of 

microorganisms have acquired the capacity to produce these enzymes (Fontes & Gilbert, 

2010). So, at one side we have plant cell strategies to protect their rich chemical energy 

stores, while on the other side we have microbial strategies for the efficient breakdown of cell 

walls and thus breach of such protective efforts developed by plants.  

Throughout evolution, microbes have evolved an extensive arsenal of hydrolytic enzymes, 

generally termed as Carbohydrate-Active enZymes (CAZymes), for the efficient attack of a 

heterogeneous insoluble and highly recalcitrant substrate that constitutes the majority of 

plant cell wall. The plant cell wall-degrading apparatus of aerobic and anaerobic 

microorganisms differ in their macromolecular organization (Warren, 1996). Aerobes produce 

extracellular enzymes in large quantities, which although do not physically associate, display 

extensive biochemical synergy to convert polysaccharides to soluble products that are 

transported into the cells. In contrast, in most anaerobic microorganisms, plant cell wall-

degrading enzymes frequently assemble into a large multienzyme complex, termed the 

“cellulosome” (Gilbert, 2007; Fontes & Gilbert, 2010). It is believed that the anaerobic 

environment imposes selective pressures for the evolution of this highly efficient plant cell 

wall degrading nanomachine (Bayer et al., 2004). 

 

2.1.3.1. Carbohydrate-Active Enzymes (CAZymes) 

As polysaccharides exhibit remarkable diversity, it is not surprising that their degradation by 

microbes involves diverse enzymes with different specificities and modes of action (Warren, 

1996). Carbohydrate-active enzymes (CAZymes) are frequently modular, where a module 

can be defined as a structural and functional unit (Figure 2.3). Usually, CAZymes contain one 

catalytic module connected through a flexible linker sequence to non-catalytic modules 

involved in protein-carbohydrate interaction, also termed carbohydrate-binding modules 

(CBMs, see section 2.1.3.3) or modules involved in protein-protein interactions (the most 

predominant of those being the dockerins, see section 2.1.3.4). In the last years, many 

CAZymes have been identified, characterized and their individual modules grouped into 

multiple families according to their sequence and structural similarities (Henrissat, 1991; 

Henrissat, Teeri & Warren, 1998). These protein families are accessible at the constantly 

updated CAZy database (http://www.cazy.org) (Cantarel et al., 2009). CAZymes of the same 

family display a common fold, while the catalytic apparatus and mechanism are similarly 

conserved (Gilbert, 2010). Significant sequence similarity (usually over 30%) is a strong sign 

of folding similarities. Thus, if the three-dimensional structure of one member of a family is 

known, it is possible to do homology modelling and deduce structural insights for other family 
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members. Consequently, this system of cataloguing CAZymes in families is used to classify 

protein modules of unknown function, of which the only recognised feature is sequence 

similarity. When novel families are created (sequence homology less than 30%), previously 

released information is reanalyzed to take the additional new family into account (Henrissat, 

1991; Cantarel et al., 2009). However, it should be noted that classification of a protein 

module within a family does not directly establish a function for an enzyme, since substrate 

specificity is not conserved among CAZyme families.  

CAZymes are a class of enzymes which make, break or modify glycosidic bonds and they fall 

into four main categories: glycoside hydrolases (GHs), polysaccharide lyases (PLs), 

carbohydrate esterases (CEs) and glycosyl transferases (GTs). It is important to note that not 

all of these enzymes contribute to degrade carbohydrates from the plant cell wall, as 

exemplified by lytic polysaccharide mono-oxygenases (LPMO) included in the Auxiliary 

Activities (AA) families recently incorporated on the CAZy database, which also includes 

lignin degrading enzymes (Levasseur et al., 2013). 

CAZyme terminology was proposed by Henrissat et al. (1998) based on the family to which 

the enzyme belongs and its target substrate. Thus, the first three letters of the enzyme 

abbreviation identify the substrate, followed by the family number and by an uppercase letter 

corresponding to the order by which the catalytic domain was reported. For example, a family 

5 GH will be named Cel5 or Man5, depending on its substrate (cellulose or mannose 

respectively) and by Cel5A or Cel5B if there were two catalytic domains with the same 

specificity but reported at different times. The microorganism abbreviation may also be 

included before the enzyme name, in order to differentiate similar enzymes of different 

origins. For example, the enzyme from Clostridium thermocellum composed of a licheninase 

family 26 A (first to be discovered) catalytic domain fused to a cellulase of family 5 E (fifth 

one to be published) will be CtLic26A-Cel5E, written in the conventional sense from the 

amino- to the carboxyl-terminus of the protein. 

 

Figure 2.3| Modular architecture of Carbohydrate-Active enZymes (CAZymes). 
 

 
 

Examples of modular CAZymes. (a) cellobiohydrolase I from Hypocrea jecorina (SP P00725); (b) alginate lyase 

from Sphingomonas sp. A1 (GB BAB03312.1); (c) xylanase from Cellulomonas fimi (GB CAA54145.1); (d) 

xylanase D/licheninase from Ruminococcus flavefaciens (GB CAB51934.1). Adapted from Cantarel et al. (2009). 
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2.1.3.1.1.  Glycoside hydrolases (GHs) 

Glycoside hydrolases (EC 3.2.1.-) also referred as Glycosidases or Transglycosylases attack 

either β- or α-glycosidic bonds in di-, oligo and polysaccharides. The CAZy database 

categorizes GHs in 133 families (data collected on February 2015). They can be retaining or 

inverting enzymes, when catalyze transglycosylation or hydrolysis reactions with retention of 

configuration at the anomeric center, or when they catalyze hydrolysis reactions with 

inversion of configuration at the anomeric center, respectively (McCarter & Withers, 1994). 

Glycoside hydrolases also differ in the products they release when act on a particular 

substrate. Exo-acting enzymes remove units of one or more sugars from the ends of the 

polysaccharide chain. Endo-acting enzymes randomly hydrolyze glycosidic bonds within the 

chains, thereby producing more ends for the exoenzymes to act on (Warren, 1996). 

Exoenzymes and endoenzymes act in synergy, which increases the efficiency of 

polysaccharide hydrolysis. This is crucial for long linear substrates, such as cellulose, where 

the numbers of polysaccharide ends for exo-enzyme attack are limiting factors. However, it is 

not clear the distinction of these two types of enzymes since some exo-acting enzymes have 

some residual endo-acting activity (Ståhlberg, Johansson & Pettersson, 1993). The 

distinction can also be reflected by the architecture of the active sites, which fall into three 

general classes (Figure 2.4). Endoglucanases, for example, are commonly characterized by 

the presence of a groove or cleft into which any part of a cellulose chain can fit. In contrast, 

exoglucanases bear tunnel-like active sites, which can only accept a substrate chain via its 

terminus, being the hydrolysis processed in a sequential manner resulting the term of 

“processive enzymes” (Davies & Henrissat, 1995). Nevertheless, structural changes can 

convert endo-acting glycoside hydrolases into exo-acting enzymes (Gilbert, 2010). Finally, 

enzymes acting on the removal of decoration of the polysaccharide backbone contain 

pockets that recognize sugar side-chains. Glycoside hydrolases exhibit different degrees of 

substrate specificity; some enzymes have an exclusive target, while others act on different 

substrates (Warren, 1996). Recent observations in the bacterium Clostridium thermocellum 

suggest an evolutionary adaptation of some GHs to function as polysaccharide binding 

agents (like carbohydrate-binding modules) rather than enzymatic components, thus serving 

as extracellular carbohydrate sensors of the microorganism (Bahari et al., 2011).  
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Figure 2.4| The three types of active sites found in glycoside hydrolases. 

 

 

 

The catalytic residues are highlighted in red. a) The pocket or crater found in non processive exo-acting enzymes 

(glucoamylase from Aspergillus awamori); b) The cleft or groove found in endo-acting enzymes (endoglucanase 

E2 from Thermononospora fusca; c) The tunnel found in processive exo-acting enzymes (cellobiohydrolase II 

from Trichoderma reesei). Adapted from Davies & Henrissat (1995). 

 

2.1.3.1.2.  Polysaccharide lyases (PLs) 

Polysaccharide lyases (EC 4.2.2.-) cleave the glycosidic bonds of uronic acid-containing 

polysaccharides by β-elimination instead of a hydrolytic mechanism and thus generate an 

unsaturated hexenuronic acid residue and a new reducing end at the point of cleavage (Yip 

& Withers, 2006) (Figure 2.5). The CAZy database categorizes PLs in 23 families (data 

collected on February 2015). As described for GHs, members of PLs are frequently 

polyspecific, including enzymes acting on different substrates or that generate different 

products. Concerning to folds and structures, PLs show a large variety of fold types (or 

classes), ranging from β-helices to α/α barrels (Lombard et al., 2010). 

 

Figure 2.5| Comparison of the products generated by a polysaccharide lyase (PL) and a 

glycoside hydrolase (GH) exemplified by polygalacturonate (pectate) cleavage. 

 

Both enzymes PL and GH generate a new reducing chain end (light grey). GHs cleave the glycosidic bond (C-

1’:O-4) by the addition of water, maintaining the 4-OH group at the new non-reducing chain end. PLs generate a 

hexeneuronic acid moiety at the new non-reducing end by elimination of the O-4:C-4 bond (Lombard et al., 2010). 

 

2.1.3.1.3. Carbohydrate esterases (CEs) 

Carbohydrate esterases remove ester- based modifications present in mono-, oligo- and 

polysaccharides and thereby facilitate the action of GHs on complex polysaccharides (Figure 
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2.6). Two classes of substrates for CEs are considered: those in which the sugar plays the 

role of "acid", such as pectin methyl esters, and those in which the sugar behaves as 

“alcohol”, such as in acetylated xylan (Cantarel et al., 2009). The CAZy database categorizes 

CEs in 16 families (data collected on February 2015). 

 

Figure 2.6| Carbohydrate esterases and glycoside hydrolases involved in hemicellulose 

degradation, exemplified by xylan cleavage. 

 

 

Feruloyl esterases or ferulic acid esterases (FAE) increase the release of sugars from xylan by removing the 

ferulic acid residues, thus destabilizing the structure and making it more susceptible to the action of hydrolytic 

enzymes. Acetyl esterases promote deacetylation of cellulose acetates by acting on carboxylic ester bonds. 

Adapted from DeBoy et al. (2008). 

  

2.1.3.1.4. Glycosyl transferases (GTs) 

Glycosyl transferases (EC 2.4.x.y) catalyze the transfer of a sugar moiety from an activated 

donor to a specific acceptor molecule to create a glycosidic bond. According to the 

stereochemistry of the substrates and reaction products, GTs can be classified as either 

retaining or inverting enzymes (Sinnott, 1990). The CAZy database categorizes these 

enzymes in 97 families (data collected on February 2015). 

 

2.1.3.2. Non-catalytic modules and linker regions 

As described above, the molecular architecture of most carbohydrate-active enzymes is 

frequently modular with different degrees of complexity, which may range from two to six or 

more domains bound through linker sequences of different lengths and amino acid 

composition. Linkers supply enzyme flexibility and provide the required spatial distance 

between modules to contribute to enhance enzyme-substrate interactions (Noach et al., 

2009). Usually, linker regions are rich in serine and threonine (Coutinho & Reilly, 1994) and 

may be glycosylated conferring protection against proteolysis (Tomme et al., 1995). In 

addition to catalytic domain(s), CAZymes may contain one or more non-catalytic CBMs often 

organized in tandem. The CBMs’ main function is to recognize and bind specifically to 

carbohydrates (Boraston et al., 2004). Other non-catalytic modules identified in CAZymes 

http://en.wikipedia.org/wiki/Ester
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include, in addition to dockerins, thermostabilizing domains (Fontes et al., 1995b), S-layer-

homologous (SLH) domains for cell attachment (Sa & Sleytr, 2000), or fibronectin type III-like 

sequences that may have different functions, such as ligand-binding modules, peptide linkers 

or spacers between other domains, cellulose-disrupting modules or even help large enzyme 

complexes remain soluble (Alahuhta et al., 2010). In theory, the number of possible 

combinations of domains is enormous (Fernandes et al., 1999; Lombard et al., 2010). The 

modular nature of CAZymes constitutes an adaptation strategy to overcome the restrict 

access of the enzymes to the polysaccharides linkages within plant cell walls. 

 

2.1.3.3. Carbohydrate-Binding Modules (CBMs) 

CBMs, small sequences that contain from 30 to about 200 amino acids, constitute the 

majority of non-catalytic modules identified in CAZymes. They constitute auxiliary domains 

with autonomous folding and specific capacity to recognize heterogeneous and complex 

carbohydrates, thus promoting the association of the enzyme with their target substrates. 

CBMs can be located at the N- or C-terminal ends of CAZymes, between two catalytic 

modules, as a single unit or arranged in tandem (Guillé et al., 2010). CBMs can also be 

found independently from catalytic domains, such as the CBMs located in cellulosomal 

scaffolding proteins, such as the CBM3 of C. thermocellum scaffoldin CipA, which binds 

strongly to the crystalline cellulose (Bayer et al., 2004). 

Initially, these modules were defined as cellulose-binding domains (CBDs) because they 

were first described to have a binding capacity to crystalline cellulose (Gilkes et al., 1988). 

Subsequently, in order to reflect the diverse ligand specificities identified in these modules, 

the more inclusive term of CBM was proposed (Boraston, et al., 1999). Today, the ligand 

specificity of CBMs was recognized for a large variety of polysaccharides including crystalline 

cellulose, non-crystalline cellulose, chitin, β-1,3-glucans, β-1,3-1,4-mixed linkage glucans, 

xylan, mannan, galactan or starch (Boraston et al., 2004). As described for CAZymes, CBMs 

are divided into families based on amino acid sequence similarity on the continuously 

updated CAZy database (Cantarel et al., 2009). There are currently 71 defined families of 

CBMs (data collected on February 2015). With respect to nomenclature, the rules employed 

to describe CBMs are similar to the ones described for CAZymes. At its simplest, a CBM is 

named by its family but one may also include the organism and even the enzyme from which 

it is derived. If there are many modules of CBMs belonging to the same family in tandem, a 

number corresponding to the position of the CBM in the enzyme relative to the N-terminus is 

included. For example, Clostridium stercorarium contains an enzyme with a triplet of family 6 

CBMs, being the first CBM referred as CsCBM6-1, the second as CsCBM6-2 and the third as 

CsCBM6-3 (Boraston et al., 2004). 

CBMs with similar fold are observed to present different ligand specificities (Guillén et al., 

2010). The most common fold of CBMs is the β-sandwich followed by the β-trefoil. The β-
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sandwich fold comprises two β-sheets, each of which consisting of three to six antiparallel β-

strands. An example of a β-sandwich conformation is the C. thermocellum CBM11 (Carvalho 

et al., 2004). In contrast, CBMs with the β-trefoil fold contain 12 β-sheets, forming six hairpin 

turns. An example of a β-trefoil conformation is the C. thermocellum CBM42 (Ribeiro et al., 

2010). 

Based on the topology of CBM-ligand binding site, CBMs have been classified into three 

types: A (“surface binding”); B (“glycan chain binding”) and C (“small sugar binding”) 

(Boraston et al., 2004) (Figure 2.7). Type A CBMs have a flat or platform-like hydrophobic 

surface composed of aromatic residues. Due to complementary conformations, the flat type 

A binding sites interact with the flat surfaces of crystalline polysaccharides such as cellulose 

or chitin. The binding-sites of Type B CBMs have a cleft arrangement in which aromatic 

residues decorating the concave ligand-binding surface interact with free single 

polysaccharide chains. Aromatic side chains are oriented in such a way that forms twisted or 

sandwich platforms. The binding site architecture of Type B allows binding to amorphous 

cellulose or xylan. These CBMs also recognize substrates like β-1,3-glucans, mixed β-1,3-

1,4-glucans, β-1,4-mannan, glucomannan, and galactomannan. Type C CBMs or lectin-like 

CBMs only bind mono-, di-, or trisaccharides due to steric restriction in the binding site 

(Boraston et al., 2004; Guillén et al., 2010). Recently, some refinements to the classification 

in Types A, B and C were proposed by Gilbert et al. (2013) whereby the Type B CBMs are 

classified as CBMs that bind internally on glycan chains (endo- type) and Type C CBMs are 

defined as CBMs that bind the termini of glycans chains (exo-type) (Gilbert, Knox & 

Boraston, 2013). The importance of the side chains of aromatic amino acids for carbohydrate 

recognition, in particular tryptophan but also tyrosine, is well known. They form stacking 

interactions with sugar rings resulting in strong Van der Waals interactions that stabilize the 

structure of the protein-carbohydrate complexes (Guillén et al., 2010). Also hydrogen bonds 

and calcium-mediated co-ordination play a key role in ligand recognition by CBMs (Boraston 

et al., 2004). According to binding affinity, proteins that bind to carbohydrates can be divided 

into two groups: group I include proteins which bind carbohydrates tightly (Ka>106 M-1), and 

group II comprises proteins that bind carbohydrates weakly (Ka<106 M-1). This group include 

all CBM-carbohydrate interactions (Quiocho, 1986).  
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Figure 2.7| Structures representatives of the three CBM types distinguished by the topology of 

carbohydrate binding site. 

 

A B C

 

A) Type A - CBM1 from Trichoderma reesei cellobiohydrolase I (PDB code 1CBH); B) Type B - CBM4 from 

Cellulomonas fimi endo-1,4-glucanase C (PDB code 1GU3); and C) Type C - CBM9 from Thermotoga maritima 

xylanase 10A (PDB code 1I82). Adapted from Guillén et al. (2010) 

 

It is well established that the main function of CBMs is to recognize and bind specifically to 

carbohydrates. When appended to catalytic modules, CBMs fulfill the following three different 

roles to potentiate the efficiency of the associated enzymes: (1) proximity effect, (2) targeting 

function and (3) disruptive function (Boraston et al., 2004). CBMs can increase the 

concentration of the enzymes on the polysaccharide surface, which improves the proximity 

between the enzyme and the substrate, thus enhancing catalysis (Bolam et al., 1998). 

Therefore, it is clear that removal of CBMs from their appended enzymes, or from 

cellulosomal scaffoldins significantly decreases the activity of the associated catalytic 

modules on insoluble carbohydrates (Bolam et al., 1998; Boraston et al., 2003). However, 

resulting activity of truncated enzymes on soluble substrates is not frequently affected 

(Gilkes et al., 1988; Bolam et al., 1998; Boraston et al., 2003; Kleine & Liebl, 2006). Recent 

studies show that xylan- and cellulose-targeting CBMs can modulate the activity of appended 

catalytic modules against polysaccharides. Thus, CBMs may target either the substrate 

hydrolyzed by the catalytic module or non-substrate polysaccharides, promoting the enzyme 

activity. This capacity is greatly advantageous for the tightly packed cell walls in which the 

access to the polysaccharides is highly restricted. Nevertheless if the target for the CBM is 

absent or present at reduced levels, the impact of the CBM on enzyme activity is absent or 

significantly reduced (Hervé et al., 2010). CBMs may also enhance enzymatic activity by 

disrupting the interface between the substrate and other polysaccharides within the wall 

thereby improving substrate accessibility. Gao et al. (2001) suggested that binding of the 

cellulose-binding domains (CBD) to cotton fibers leads to structural changes in the 

polysaccharide and release of short fibers. Later, the same group reported that attachment of 

a CBM to cotton fibers promotes severe weakening of the cellulose-interchain hydrogen 

bonds (Wang, Zhang & Gao, 2008). It has been hypothesized that cellulose-specific CBMs 

might have a common mechanism of action with plant proteins termed expansins which 
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disrupt the structure of cellulose. However, in contrast to expansins that break hydrogen 

bonds between cellulose microfibrils and matrix hemicelluloses resulting in a decrease in the 

rigidity of plant cell walls, CBMs are not involved in a reduction of plant cell wall rigidity 

(Bolam et al., 1998).  

 

2.1.3.4. Cellulosomes 

In the early 1980s, a cell-bound, multicellulase complex designated “cellulosome” was first 

identified in the anaerobic thermophilic bacterium Clostridium thermocellum. At that time it 

was postulated that cellulosomes were responsible for both adherence and hydrolysis of the 

cellulose substrate (Lamed et al., 1983). In addition, it was suggested that arrangement of 

multiple cellulolytic enzymes (each of which containing intrinsic affinity for the substrate) into 

a large complex may serve to collectively enhance the catalytic efficiency of the entire 

complex (Bayer, Setter, & Lamed, 1985). More recently, cellulosomes have been identified in 

many anaerobic bacteria from the genera Clostridium, Acetivibrio, Bacteroides or 

Ruminococcus, which colonize different environmental niches, as well as in fungi (Fontes & 

Gilbert, 2010). It is known that besides cellulases, these complexes also contain 

hemicellulases, pectinases and other enzyme activities that include polysaccharide lyases, 

carbohydrate esterases, proteases and protease inhibitors (Doi et al., 2003; Tamaru & Doi, 

2001). Cellulosomes were identified at the surface of C. thermocellum located in 

protuberances present on the cell envelope (Bayer & Lamed, 1986) (Figure 2.8). Since the 

primary sequences of all known cellulosomal polypeptides present a signal peptide (Béguin 

& Lemaire, 1996), it is believed that cellulosome assembly takes place in the extra-cellular 

media after protein sortage (Bayer & Lamed, 1986). It is well established that cellulosomes 

are more efficient to deconstruct plant structural polysaccharides than the “free” enzymes 

produced by aerobic bacteria and fungi (Fontes & Gilbert, 2010). This efficiency is justified by 

the potentiation in enzyme synergy afforded by enzyme proximity when enzymes are 

organized in cellulosomes together with the complexity of their multimodular enzymes. 

 

Figure 2.8| Cellulosomes at the surface of Clostridium thermocellum. 

 

Transmission Electron Microscopy (TEM) of cationized ferritin (CF)-labeled cellobiose-grown cells of C. 

thermocellum YS. Cells were grown on cellobiose. Cellulosomes correspond to the nodulous protuberances 

which appear in large numbers over the entire cell surface. Adapted from Bayer & Lamed (1986) 
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Integration of cellulosomal components occurs via highly ordered protein:protein interactions 

established between non-catalytic dockerin domains located on the cellulosomal enzymes 

with cohesin domains located on a molecular scaffold. In some cases, two or more types of 

scaffoldins may be involved in cellulosome assembly: primary scaffoldins and cell-surface 

anchoring scaffoldins. Cellulosome assembly promotes enzymes synergism, due to spatial 

proximity, and enzyme-substrate targeting. Cohesins are ~150-amino-acid-residues modules 

typically presented in tandem in scaffolding proteins, while the dockerins are modules 

comprehending two ~22-amino-acid duplicated segments usually located as a single copy at 

the C-terminus of the enzymes (Bayer et al., 2004). Calcium is required for dockerin stability 

and function and consequently for the cellulosomal integrity; treatment of the cellulosomes 

with EDTA, which chelates calcium, decreases the hydrolytic capacity of the cellulosome as 

dockerins are unable to bind cohesins (Lytle et al., 2000; Choi & Ljungdahl, 1996). Both 

cohesins and dockerins are highly homologous within the same species and residues 

supporting the protein:protein intractions are highly conserved (Fontes & Gilbert, 2010). It is 

important to note that these modules are also present in non-cellulosome-producing 

microorganisms, where they can be components of non-degrading carbohydrates enzymes 

(Peer et al., 2011).  

Assembly and polypeptide composition of cellulosomes vary among microorganisms as well 

as with the nature of carbon source available, making these higly complex nanomachines 

extraordinary dynamic structures. Bacterial cellulosomes can be classified in two types: one 

that presents multiple types of scaffoldins (both primary and anchoring as described in C. 

thermocellum, for example), and a second type which contains a single primary scaffoldin 

(most of them from mesophilic microorganisms). Thus, these simplest cellulosomes do not 

interact with the bacterial cell surface (Fontes & Gilbert, 2010).  

 

2.1.3.4.1. The cellulosome of Clostridium thermocellum 

The cellulosome of the anaerobic thermophilic bacterium C. thermocellum is one of the best 

characterized and presents one of the highest rates of cellulose degradation known to date 

(Demain, Newcomb, & Wu, 2005). The molecular base of C. thermocellum cellulosome 

assembly depends on the presence of a primary scaffoldin, called CipA, which bear up to 

nine catalytic subunits (Figure 2.9). The attachment of a given catalytic subunit is mediated 

by the interaction of its type I dockerin domain with one of the nine type I cohesin domains of 

the primary scaffoldin CipA (Kruus et al., 1995). Between the second and third cohesin 

repeats of CipA there is a family 3 CBM which targets the entire complex to crystalline 

cellulose (Poole et al., 1992). CipA is, in turn, attached to the cell surface through the 

interaction of its type II C-terminal dockerin domain with the type II cohesin domain of one of 

three S-layer anchoring scaffoldins: SdbA (contains one type II cohesin), Orf2 (contains two 

type II cohesins), or OlpB (contains seven type II cohesins) (Leibovitz & Béguin, 1996; 
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Demain et al., 2005). A fourth anchor protein containing seven type II cohesins, Cthe_0736, 

is believed to be exclusively extracellular. Type I cohesins modules were identified in two cell 

surface proteins (OlpA and OlpC) suggesting that, in addition to CipA-attachment, 

cellulosomal enzymes can also adhere directly onto the cell surface through their type I 

dockerins (Fontes & Gilbert, 2010)  

 

Figure 2.9| Organization of C. thermocellum cellulases and hemicellulases in cellulosomes. 

 

 

 

Schematic drawing depicting C. thermocellum cellulosomes attachment to the cell surface through the type II 

dockerin-cohesin interaction with cell surface proteins SdbA, OlpB and Orf2 (in orange). The cellulosome complex 

is boxed. On the other hand, OlpA and OlpC, both of which contains a type I cohesin, are presumed to anchor an 

enzyme or protein containing a type I dockerin. The type II dockerin from CipA can also binds specifically to type 

II cohesins of the extracellular Cthe_0736. Adapted from Fontes & Gilbert (2010) 

 

The presence of contiguous repetitions of type II cohesins in anchoring scaffoldins allows the 

formation of polycellulosomes. In C. thermocellum, three polycellulosomes can be 

assembled containing 9, 18 and 63 catalytic units if all type II cohesins of SdbA, Orf2 and 

OlpB, respectively, are bound to type II dockerins of CipA (Fontes & Gilbert, 2010). The 

structural organization of the cellulosome and its attachment to the cell surface depends on 

protein-protein interactions of similar type, which retain the spatial flexibility required to 

optimize the catalytic synergy within the enzyme complex (Carvalho et al., 2003). 

Nevertheless type I and type II cohesins-dockerins pairs do not interact, ensuring a clear 

distinction between the interactions involved in cellulosome assembly and the cell surface 

attachment, respectively (Leibovitz & Béguin, 1996). It should be noted that, in C. 
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thermocellum, cellulosomes are released to the extracellular medium in the latter phase of 

the growth, which may indicate the requirement for a more mobile enzyme complex to target 

more recalcitrant forms of cellulose (Fontes & Gilbert, 2010). The complexes are constructed 

extracellularly, probably at the cell surface maybe mediated by Ca2+ present outside the cell 

(Demain et al., 2005). Despite various studies dedicated to C. thermocellum cellulosome, 

several questions concerning the structure, function and its importance for polysaccharide 

hydrolysis still remain to be elucidated. 

  

2.1.3.4.2. The cellulosome of Ruminococcus flavefaciens 

The cellulosome of the ruminal cellulolytic bacterium R. flavefaciens represents the most 

elaborate and potentially versatile multi-enzyme complex known to date, as judged by the 

recent genome sequencing and subsequent biochemical and bioinformatics analysis of the 

bacterium genome (Bayer et al., 2008). Initial observations suggested that its cohesin 

modules clearly diverge in sequence and structure from the previously described type I and 

type II systems of C. thermocellum, so cohesin-dockerin pairs of R. flavefaciens were termed 

type III (Ding et al., 2001). Several studies suggest that cellulosome structural organization 

varies amongst different strains of R. flavefaciens, which may reflect the complexity of the 

rumen anaerobic environment and the heterogeneity of lignocellulosic substrates (Jindou et 

al., 2006).  

Work on R. flavefaciens strain 17 revealed four scaffoldins (ScaA, ScaB, ScaC and ScaE) 

carrying one or more cohesin domains (Ding et al., 2001; Rincon et al., 2003). ScaE is 

covalently attached to the bacterial cell envelope and provides the anchoring point of the 

largest structural protein ScaB. In contrast to the anchoring scaffoldins from Clostridia, in 

which cell-surface attachment is mediated via the nonconvalent binding of SLH modules to 

the S-layer of the host cell, ScaE is covalently attached to the cell wall through a sortase-

mediated mechanism (Rincon et al., 2005). ScaB carries seven homologous cohesin 

modules that exclusively interact with the dockerin of ScaA. Both ScaA and ScaC contain 

cohesins (three and one, respectively) capable to bind to a wide range of enzyme subunits 

as well as many yet uncharacterized proteins (Rincon et al., 2003). The single cohesin of 

ScaE shows significant divergence from ScaA, ScaB, and ScaC cohesins and its binding 

with ScaB occurs via a novel cohesin-dockerin interaction (Rincon et al., 2005). In R. 

flavefaciens strain FD1 (Figure 2.10), which encodes more than 200 dockerin-containing 

proteins (Bayer et al., 2008), the equivalent ScaB scaffoldin differs in the type and number of 

cohesins. It carries nine cohesins that present two different specificities: four bind directly to 

dockerins appended to catalytic units and five bind to the C-terminal dockerin of ScaA 

(Jindou et al., 2006). ScaA carries only two cohesins, in contrast to the three that are present 

in ScaA from R. flavefaciens 17. In addition, ScaC, a small dockerin-bearing protein with a 

single divergent cohesin module, is able to bind both ScaA and ScaB dockerins and also 
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other dockerins from catalytic units or proteins of unknown functions. Thus, ScaC has been 

proposed to function as an adaptor protein that expands the dockerin-binding repertoire of 

the cellulosome (Rincón et al., 2004). There is a fifth protein reported in both strains 17 and 

FD1, called CttA, of which the C-terminus resembles that one of ScaB. This protein is also 

able to bind to the ScaE anchoring scaffoldin, thereby becoming attached to the bacterial 

envelope and carries two putative CBMs that may mediate the primary anchorage to 

cellulosic substrates. CttA likely provides a mechanism for substrate binding, perhaps 

compensating for the absence of an identified cellulose-binding module in the major 

cellulosomal scaffolding proteins identified in this specie (Rincon et al., 2007). 

 

Figure 2.10 | The complexity of R. flavefaciens strain FD-1 cellulosome. 

 

The single cell-surface scaffoldin ScaE may bind CttA or ScaB, which contains cohesins with two different 

specificities. One cohesin type (red) exclusively interacts with the adaptor scaffoldin ScaA. The other cohesin type 

of ScaB (yellow) binds cellulosomal enzymes or ScaC. In addition, ScaA contains two cohesins that present a 

similar specificity to the second set of cohesins of ScaB. Like ScaA, ScaC is an adaptor scaffoldin that recognizes 

a different set of dockerin-containing proteins. Other adaptor scaffoldins, presenting a similar structure to ScaC 

but displaying a yet unknown specificity, exist in R. flavefaciens. Adapted from Bayer et al. (2008) 
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2.2. Biotechnological use of cellulases and hemicellulases 

2.2.1. Enzymatic supplementation of cereal-based diets for poultry 

In recent years we have observed an increased usage of exogenous enzymes in animal 

nutrition. It is known that dietary soluble non-starch polysaccharides, such as β-glucans and 

arabinoxylans, which are present in cereals such as barley and wheat, respectively, display 

an anti-nutritive effect for poultry and pigs. Solubilization of these non-starch polysaccharides 

after feed ingestion leads to an increase in digesta viscosity, which affects the digestive 

process by decreasing nutrient availability and, ultimately, animal performance (Choct, 

1997). 

Non-starch polysaccharides (NSPs) are a large variety of polysaccharides molecules which 

differ in composition and structure from starch (the predominant carbohydrate in cereals) and 

comprise some of the most representative compounds of the plant cell wall, such as 

cellulose, hemicelluloses and pectins (Morgan & Bedford, 1995; Williams et al., 1997). 

Different cereals contain different levels of NSPs. Choct & Annison (1992) classified different 

plants based on their total NSP content from low to high as follows: rice, sorghum, maize, 

wheat, triticale, rye and barley. Nevertheless, the NSP content also varies within the same 

plant species due to genotype and the geographical location where cereals are grown 

(Williams et al., 1997; Khattak et al., 2006). As mentioned before, plant cell wall 

polysaccharides have complex physical structures and different chemical inter-linkages. 

Single-stomach animals, such as poultry, do not possess endogenous enzymes capable of 

cleaving the β(α) linkages of NSPs and thus these polysaccharides are not well digested by 

these animals (Adams & Pough, 1993). Water-insoluble NSPs, which include cellulose, can 

be considered practically undigested by poultry and pigs and have the ability to absorb large 

amounts of water and to maintain the normal motility of the gut. In contrast, soluble NSPs are 

more susceptible to biological hydrolysis and are partially digested by birds in the last 

compartments of the gastrointestinal (GI) tract, particularly in the caecum (Carré, 1993). 

However, soluble NSPs display an anti-nutritive effect for poultry due to the resulting 

increase in digesta viscosity in the upper regions of the GI tract (Choct, 1997). An increase in 

digesta viscosity decreases feed passage rate leading to a reduction in feed intake. The 

efficiency of nutrient absorption through the intestinal wall also decreases as soluble NSPs 

form a viscous gel that reduces the capacity of digestive enzymes to interact with their 

substrates (Johnson & Gee, 1981; Edwards, Johnson, & Read, 1988). In addition, 

modifications in gut physiology include enlargement of digestive organs and an increased 

secretion of digestive juices which increases the energy maintenance needs of these 

animals. The lower passage rate of high viscous digestas also result in the proliferation of a 

fermentative anaerobic microflora in the upper compartments of the GI tract that can lead to 

the production of toxins and to the deconjugation of bile salts, which are essential for the 

digestion of fat (Choct, 1997). All these effects result in wet beds and outbreaks of 
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coccidiosis due to the production of wet feaces (Ribeiro et al., 2008). The conjugation of all 

these digestive problems lead to a poor growth performance as a result of the reduction of 

both feed intake and feed digestibility. Other factors that influence NSP digestion by poultry 

include age, solubilty and amount of NSPs in the diet (Choct et al, 1996). Young chicks are 

affected to a greater degree by anti-nutritional compounds than older birds due to a poor 

development of the repertoire of endogenous digestive enzymes (Marquardt et al., 1996)  

Monogastric animals like poultry lack the repertoire of enzymes required to depolymerize the 

anti-nutritive NSPs, and thus addition of exogenous enzyme to animal diets becomes 

necessary. Therefore, exogenous enzymes are used either to supplement an endogenous 

deficiency or to supply a digestive capacity nonexistent in the host animal (Creswell, 1994).  

Enzymes catalyze depolymerisation of NSPs and thus decrease their viscosity when in 

aqueous solutions. Consequently, decreased intestinal viscosity leads to an improvement of 

the digestibility of nutrients by improving gut performance (Williams et al., 1997; Khattak et 

al., 2006). To reduce the viscosity of digesta, exogenous enzymes need to randomly 

hydrolyse the polysaccharide chain thus reducing the degree of polymerization of the 

carbohydrates (Williams et al., 1997). As a result of the decrease in digesta viscosity, feed 

enzymes were shown to enhance feed digestibility and absorption of nutrients. In addition, as 

a result of the action of exogenous enzymes there is an improvement in the Apparent 

Metabolizable Energy (AME) value of the diet, an increase in feed intake, weight gain and an 

improvement of feed conversion ratios. Moreover, feed enzymes have physiological impacts 

in animals as the reduction in digesta viscosity leads to a decrease in the size of the GI tract 

and a change in the population of microorganisms colonizing the hind gut. Finally, enzymes 

contribute to reduce water intake, water content of excreta and the output of excreta, 

including the reduction of N and P (Khattak et al., 2006). Over the years, CAZymes such as 

β-cellulases, β-glucanases, β-xylanases, β-galactosidases, β-mannanases or pectinases 

have been extensively used by the animal feed industry to reduce the detrimental effects 

associated with the ingestion of NSPs. Furthermore, complementary activities including 

phytases, proteases and lipases are known to be effective when associated with CAZymes. 

The use of a combination of CAZymes with different specificities acting in synergy has been 

proved to be highly advantageous in some circunstances. For example, the supplementation 

of a poultry diet containing rye and wheat using a combination of xylanase and β-glucanase 

results in a significant increase in body-weight and feed intake (Pettersson & Aman, 1989) 

when compared with the use of a single exogenous enzyme. However, a considerable 

number of cases have been described showing a lack of response to enzyme 

supplementation due, in some circunstances, to the low efficiency of the exogenous enzyme 

mixtures. For barley- and oat-based diets for non-ruminant animals, β-glucanases or 

cellulases appear to be beneficial enzymes, while the xylanases, or more specifically the 

endoxylanases, are more appropriate for diets rich in wheat, triticale and rye. It is crucial to 
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ensure that the exogenous enzyme preparations have the appropriate activities to target the 

hydrolysis of the predominant NSPs present in the diet. The effect of the exogenous 

enzymes is influenced by the type and concentration of NSPs as well as by the origin of the 

cereals and age of poultry. The evolution of the digestive capacity with the animal age 

influences the response of birds to enzymatic supplementation (Marquardt et al., 1996). 

Furthermore, the activity of exogenous feed enzymes must not be affected by feed 

processing, such as expansion or pelleting, which may involve raising feed temperatures 

above 95°C, or by the low pH (<4) of the GI tract. Moreover, exogenous enzymes need to 

resist to inactivation by endogenous proteases present in the GI tract. The development of 

highly thermotolerant CAZymes that retain significant activity at mesophilic temperatures 

would be significantly advantageous in the majority of industrial processes involving feed 

supplementation (Bedford, 2000; Munir & Maqsood, 2012). Therefore, there are several 

aspects related with the activity of exogenous enzymes in vivo that await clarification, 

including those related with their mode of action, the selection of the best activities to 

different feedstuffs and the understanding of the mechanisms of resistance of the exogenous 

enzymes to the variable environment of the animal's gut. Exploring correct enzyme cocktails 

is crucial in order to formulate more efficient and economically viable diets that use a wider 

range of ingredients in feed formulation (Khattak et al., 2006). Following the above 

discussion, it is also believed that cellulosomes may open novel perspectives for feed 

supplementation with exogenous enzymes. Cellulosome architecture provides a biological 

blue print to design more efficient enzymatic complexes that synergistically combine multiple 

cellulases, hemicellulases and CBMs with different specificities in order to achieve higher 

activities against plant cell wall carbohydrates when compared with the “free” enzyme 

systems (Fontes et al., 2004; Guerreiro et al., 2008). 

 

2.2.2. Bioenergy production from lignocellulosic materials 

Plant cell wall biodegradation, an important step of the carbon cycle, is also important in 

several agricultural and waste treatment processes. CAZymes are the key to produce first 

(maize, sugar cane) and second-generation (cellulosic materials) biofuels and other 

bioproducts to replace depleting fossil fuels (Percival et al., 2006). Various cellulosic 

feedstocks, such as agricultural residues, wood residues, specifically grown crops, as well as 

municipal and industrial wastes may be used as substrates for the production of bio-fuels 

(Aristidou & Merja, 2000). These waste residues are usually highly abundant and, in some 

regions, may be available at low costs. 

The production of second-generation biofuels from plant cell-wall materials requires the 

degradation of structural polysaccharides (cellulose and hemicelluloses) to monosaccharides 

and their subsequent conversion to ethanol in a fermentation process mediated by yeast or 

other ethanol producing organism (Schubert, 2006) (Figure 2.11). Nevertheless, plant cell 



 

23 
 

walls are highly recalcitrant to hydrolysis either by physical means or by the action of 

microbial hydrolases. As described previously, cellulose forms a tightly packed crystalline 

structure resistant to degradation and, in addition, it is protected by hemicelluloses and lignin 

that reduce the access of cellulases to their target substrates. As such, many strategies have 

been developed to overcome the recalcitrance of natural lignocellulosic materials (Pauly & 

Keegstra, 2008). During the last decades, there has been increasing interest in enhancing 

the enzymatic hydrolysis of these materials, with several studies exploring novel strategies to 

achieve an efficient and cost-effective pre-treatment and develop novel enzyme mixtures to 

lignocellulosic conversion (Mosier et al., 2005). Cheaper and/or more efficient cellulases and 

hemicellulases mixtures that can transform lignocellulosic materials to reduce the harshness 

of chemical pre-treatment and/or enzyme costs would be advantageous to the emerging 

biofuel industry (Aden et al., 2002). Cellulase production at large scale is relatively expensive 

and to generate a more efficient biorefinery process, the strategies to develop cellulase-

based mixtures must include: increased volumetric productivity of commercial enzymes, the 

production of enzymes using cheaper substrates, the production of enzyme preparations with 

greater stability for the specific processes, and production of cellulases with higher specific 

activity on solid substrates (Percival et al., 2006).  

 

Figure 2.11 | The different steps involved in the bioconversion of lignocellulose to ethanol. 

 

Lignocellulose is hydrolyzed by a combination of acid and enzymatic processes involving delignification to liberate 

cellulose and hemicelluloses from lignin. The monosaccharides produced are subsequently converted to ethanol 

by appropriate microorganisms. Adapted from Aristidou & Merja (2000)  

 

With the current increase in the sequencing information and the observed advances in 

metagenomics, microbial communities and their genomes have become a major resource for 

bioprospecting. This is the case of thermophilic cellulolytic microorganisms, which produce 
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highly thermostable enzymes ideal for a large range of biotechnological applications such as 

the production of biofuels. For this application the anaerobic bacterium C. thermocellum may 

have a particular interest for several reasons. Besides having a highly efficient cellulase 

system, resulting from the production of cellulosomes, C. thermocellum anaerobiosis is 

advantageous since the provision of oxygen for cellulase production using the current fungal 

systems is very expensive. In addition, growth at high temperatures facilitates the recovery of 

ethanol (Lynd et al., 1991). A co-culture of C. thermocellum (cellulase producer) and 

Clostridium thermosaccharolyticum (cellobiose user and ethanol producer) was shown to 

have great potential for the production of ethanol from a cellulose based substrate (Demain 

et al., 2005). In addition, cellulolytic and/or saccharolytic microorganisms could be 

engineered to improve their capacity to produce ethanol from lignocellulose biomass (Shaw 

et al., 2008; Fontes & Gilbert, 2010). 

Different strategies related with the manipulation of plant cell wall composition have also 

been proposed to overcome the recalcitrant nature of lignocellulose, which could sustain the 

creation of a cost-effective biofuel industry. Pauly & Keegstra (2008) reported several 

strategies to manipulate cell-wall carbohydrate composition to increase its solubility and 

hence the access of enzymes to the polysaccharide linkages which could result in an 

increased number of monomer units available for fermentation by yeast (hexoses, such as 

glucose and mannose, rather than pentoses). Genetic manipulation of plants to express 

cellulases and other plant-cell-wall-degrading enzymes has also been reported. Tayler and 

co-workers (2008) reported several examples of microbial glycoside hydrolases genes 

expressed in plants for applications related with the conversion of biomass to biofuels (Taylor 

et al., 2008).  

 

2.2.3. Mini-cellulosomes for biotechnological applications 

The artificial design of multiprotein complexes with selected enzymes appropriately directed 

to a particular biotechnological application is a feasible challenge using the cellulosome 

concept as template. Several studies have been reported aiming the construction of 

cellulosome chimeras, or mini-cellulosomes, in which appropriate dockerin-containing 

cellulolytic enzymes are precisely assembled into a mini-scaffolding protein (Fierobe et al., 

2001; Fierobe et al., 2002). These mini-cellulosomes, containing an optional cellulose-

binding module, were shown to exhibit enhanced synergetic activities on crystalline cellulose 

when compared with mixtures of “free” cellulases (Fierobe et al., 2001). Nevertheless, they 

still have lower capacity to degrade cellulose when compared with naturally occurring 

cellulosomes (Fierobe et al., 2002). Therefore, future research should improve the efficiency 

of these artificial nanomachines by incorporating a larger repertoire of cellulolytic and 

hemicellulolytic enzymes. Many reports indicate that, within the same species, cohesins 

present in a primary scaffoldin do not differentiate the dockerin connected to the cellulosomal 
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catalytic components and thus different cellulosomes have a different composition (Yaron et 

al., 1995; Lytle et al., 1996). However, the cohesin-dockerin interaction is apparently highly 

species-specific, i.e. C. thermocellum dockerins do not bind to C. cellulolyticum cohesins 

while C. cellulolyticum dockerins do not interact with C. thermocellum cohesins (Pagès et al., 

1997). Thus, incorporation of dockerin-containing enzymes from different microorganisms 

into a chimeric scaffoldin requires appropriate divergent cohesins. This premise should be 

taken into account when incorporating selected enzymes in precise locations of the mini-

cellulosomes (Fierobe et al., 2002). The presence of suitable CBMs in these chimeras could 

enhance the efficiency of selected enzymes by targeting the entire complex to its 

predominant substrate (Boraston et al., 2004).  

In theory, a mini-cellulosome can be optimized for any particular biotechnological application 

that might benefit from enzyme proximity. For instance, supplementation of barley-based 

diets for simple stomach animals could benefit from the organization of glucanases and 

cellulases in highly effective mini-cellulosomes. In addition, designing cellulosomal chimeras 

by employing novel and improved cellulases and hemicellulases for breaking biomass into 

fermentable sugars could significantly reduce the cost of fuels production from lignocellulosic 

biomass. It is clear that the molecular building blocks of the cellulosome (cohesins and 

dockerins) can be used to integrate different types of enzymes, with different specificities, 

into a macromolecular complex protein in order to orchestrate a particular function(s). 

Besides cellulases or other plant cell wall-degrading enzymes, cellulosomes could also be 

used to assemble enzymes expressing other activities, which might benefit from close 

proximity. It is also possible to introduce the genetic capacity to synthesize cellulosomes into 

non-cellulosomal microorganisms (Fontes & Gilbert, 2010). 

 

 

 

2.3. High-throughput protein expression in the post-genomic era 

2.3.1. Genomic and metagenomic sequence information 

DNA sequencing technology has undergone tremendous progresses since the establishment 

of the Human Genome Project (HGP) initiated in 1990 (http://www.genome.gov/10001772). 

Scientists started applying computing solutions to biology and specifically to genetics and 

DNA sequencing, developing innovative methods that made possible the task of generating 

and handling an enormous amounts of information, such as the Whole-genome shotgun 

(WGS) sequencing (Weber & Myers, 1997; Staden, 1979; Sanger et al., 1982). By the time 

the HGP was being finished, novel sequencing technologies were developed which improved 

the sequencing efficiency tremendously. Next generation sequencing (NGS) technologies 

are becoming routine techniques which allow the inexpensive characterization of genomes 

and metagenomes. Several genomic sequencing projects are presently ongoing, including 
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the sequencing of viruses, bacteria, fungi, plants and animals. Bacteria continue to be the 

most attractive microorganisms to develop several biological functions, as they represent a 

major proportion of life’s genetic diversity. It is estimated that there are 4-6×1030 prokaryotes 

on Earth today occupying all ecological niches and playing critical roles in all ecosystems 

(Whitman, Coleman, & Wiebe, 1998). Advances in sequencing technologies have made 

bacterial genetic information more accessible (Mavromatis et al., 2012), with data being 

applied to both research and clinical studies and allowing to understand how bacteria have 

evolved to play a diversity of physiological functions. In addition, advances in metagenomics 

allows the analysis of bacterial genetic material recovered directly from environmental 

samples, which can be directly accessed overcoming the need of microbial cultivation (Pace 

et al., 1986). Significant efforts are being made to sequence metagenomes (i.e. collective 

genomes from all microorganisms colonizing a given habitat) of different ecological niches, 

usually employing NGS approaches (Li et al., 2009). Thus, recent high-throughput 

sequencing technologies allowed the development of several metagenomic projects that are 

either still ongoing (Genomes OnLine Database) or already completed (Integrated Microbial 

Genomes with Microbiome Samples). 

Both genomes and metagenomes can be targeted for prospecting novel enzymes, such as 

biocatalytic enzymes (e.g. GHs) for industrial use and biofuel production. Target genes can 

be discovered from genomic and metagenomic databases using bioinformatics tools, 

subsequently amplified by the Polymerase Chain Reaction (PCR) with specific primers, or 

synthetically produced, and cloned into appropriate expression systems. Alternatively, two 

complementary approaches can be used to discover novel enzymes from metagenomes: 

function-based screening of expression libraries, in which expression libraries are 

constructed and screened for target enzyme activities, and sequence-based gene searches, 

in which target genes are directly amplified from metagenomic DNA (Li et al., 2009).  

 

2.3.1.1. Sequencing cellulosomal microorganisms: organization of cellulosomal 

genes in the genomes 

The genome sequences of C. thermocellum, C. acetobutylicum, R. flavefaciens and C. 

cellulolyticum are already available, providing a complete and global analysis of all 

cellulosomal molecular components, including the characterization of cellulosome modular 

architecture, organization, regulation and assembly (Fontes & Gilbert, 2010; Munir et al., 

2014). Taking in consideration the biotechnological use of cellulosomes in a variety of 

applications that could benefit from improved stable enzymes and/or multi-enzymatic 

complexes, the availability of genetic information related with cellulosomal organisms is of 

highly importance. The complete sequencing of cellulosomal microorganisms allows the 

discovery of novel CAZymes and also CBMs, which could contribute to our understanding on 

the mechanisms of complex carbohydrate hydrolysis. In addition, understanding how 



 

27 
 

cellulosomal genes are organized and expressed will allow modulating the remarkable 

cellulosomal complexes through different genetic engineering approaches.  

Initial studies on C. thermocellum cipA DNA sequence, which encodes the primary 

scaffolding protein produced by this bacterium, revealed that this gene is part of an operon 

containing other genes. Gene walking allowed the cloning and subsequent sequencing of all 

the genes located in the cipA operon (Fujino, Beguin & Aubert, 1993; Lemaire et al., 1995). 

Notably, all the proteins encoded by these genes have cohesin domains. For bacteria 

expressing a single primary scaffoldin, such as C. thermocellum, the primary scaffolding 

gene (cipA, in the case of C. thermocellum) is clustered together on the genome with one or 

more anchoring scaffoldins. Genes encoding the catalytic cellulosomal units are distributed 

elsewhere on the genome either alone or in small clusters (Lemaire et al., 1995). C. 

thermocellum cipA, olpB, orf2 and olpA are located in tandem, whereas sdbA, a highly 

expressed gene encoding an anchoring scaffoldin, is located in another place in the genome 

(Bayer et al., 2004).  

The scaffoldin gene cluster of R. flavefaciens consists of genes encoding four cohesin-

containing scaffoldins of different sizes (scaC, scaA, scaB and scaE) and one additional 

gene, cttA, encoding a distinct cellulose-binding protein. Although the general design of sca 

gene cluster from strains FD-1 and 17 are identical, there are considerable differences in the 

modular architecture of ScaA and ScaB, implying strain-specific divergence in cellulosome 

organization in R. flavefaciens. This strain heterogeneity may reflect the intricacy and 

diversity of the lignocellulosic substrate found in the rumen (Jindou et al., 2006). More 

extensive analysis of the R. flavefaciens FD-1 genome indicated that it harbours the largest 

number of dockerin-containing components known so far in a single organism - at least 223, 

(Rincon et al., 2010). For example, the genome of C. thermocellum contains only about 73 

dockerin-carrying cellulosome proteins (Bayer et al., 2004), while the mesophilic C. 

cellulolyticum contains 71 putative dockerins (Rincon et al., 2010). As the presence of a 

dockerin module in a protein may serve as a signature sequence for cellulosomal proteins 

(Zverlov, Kellermann, & Schwarz, 2005), the number of dockerin-containing units found in R. 

flavefaciens can predict the complexity, and potential versatility, of its cellulosome. Of the 

over 200 dockerin-containing proteins annotated from R. flavefaciens genome, most of them 

are still of unknown function. Furthermore, Fontes & Gilbert (2010) suggest that there is a 

variety of potential substrate specificities displayed by the enzymes bearing homology with 

glycoside hydrolases, carbohydrate esterases, and polysaccharide lyases of known function 

identified in cellulosomes.  

According to Davies, Gloster & Henrissat (2005), approximately 1-3% of the proteins 

encoded by the genomes of most organisms correspond to CAZymes. GH-coding genes are 

the most abundant, corresponding to almost half of the enzymes classified in the CAZy 

database, followed by glycosyl transferases representing about 41% of the CAZy entries. 
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Polysaccharide lyases and carbohydrate esterases represent a minor portion of the CAZy 

content, roughly 1.5% and 5% of the total numbers, respectively (Cantarel et al., 2009). It is 

evident that the sequence-based classification of CAZymes constitutes an excellent guide for 

the efficient annotation (e.g. prediction of the general function, fold and catalytic mechanism) 

of open reading frames (ORFs) found during genome sequencing.  

 

2.3.1.2. Understanding cellulosomal genes: expression and regulation 

In most cellulolytic organisms, expression of cellulase genes is repressed in the presence of 

easily metabolized soluble carbon sources and induced when cellulose is present. 

Significantly, induction of those genes appears to be due to the occurrence of soluble 

products originated during the initial steps of cellulose hydrolysis by enzymes synthesized at 

low levels through constitutive expression. These products are probably converted into true 

inducers by transglycosylation reactions (Béguin & Aubert, 1994).   

In the simplest cellulosome systems, such as the one found in Clostridium cellulovorans, the 

scaffoldin gene is located in an operon with a series of genes encoding dockerin-containing 

enzymes, being several of these genes co-expressed as polycistronic mRNA (Han et al., 

2003). It was shown that most of the cellulosomal genes of C. cellulovorans are expressed at 

high levels when cells are grown on natural polymers, such as cellulose, xylan and pectin. In 

contrast, expression of these genes is repressed during growth on cellobiose or fructose, and 

repressed even further on mannose and lactose (Han et al., 2004).  

Regarding to complex cellulosome systems, such as the ones found in C. thermocellum and 

R. flavefaciens, the scaffoldin genes are organized into scaffolding gene clusters, as reported 

above. It was shown that mRNA levels of cellulosomal components from C. thermocellum 

are regulated by carbon source and/or growth rate and changes in one or the other factor will 

be reflected in the overall level of cellulase production (Zhang & Lynd, 2005), as well as in 

the cellulosomal subunit profile (Bayer et al., 1985; Freier, Mothershed, & Wiegel, 1988; 

Morag, Bayer & Lamed, 1990). Recently, a proteomic analysis was carried out for two strains 

of C. thermocellum, ATCC 27405 (Gold & Martin, 2007) and F7 (Zverlov et al., 2005). Some 

common proteins were identified as highly abundant in both strains (e.g., CipA, CelS, CelK, 

XynC, XynZ, CelA, CelR, and CbhA), although there are some relevant differences 

concerning the expression of cellulosomal proteins in these two bacteria. CelE, CelJ and 

Cthe_0821 (see Chapter 5 of this thesis) are major components of the cellulosome strain 

ATCC 27405 but not in strain F7. The overall cellulase genes expression is higher when cells 

are grown on cellulose rather than cellobiose. Analysis of R. flavefaciens FD-1, revealed that 

scaA, scaB and scaC are co-expressed either as a polycistronic mRNA or sharing the same 

regulator with similar affinity for these genes. cttA and scaE, do not appear to be co-

expressed with the other components of the sca gene cluster. Comparing the expression 

patterns of several putative enzymes from R. flavefaciens FD-1 with those from C. 
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thermocellum, it is suggested that differences in the expression profiles found are likely due 

to the different environmental conditions to which these two bacteria are exposed, including 

oxygen concentrations and the type of substrate available for hydrolysis (Miller et al., 2009).  

The genome sequence of C. thermocellum allowed the identification of various proteins that 

may be involved in the regulation of the cellulosomal genes on the basis of sequence 

homology. For instance, a gene homologue to that encoding the catabolite control protein 

CcpA was identified in the genome of this bacterium (Bayer et al., 2004). CcpA is a negative 

regulator that mediates catabolite repression in gram-positive microorganisms and thus allow 

the bacterium to utilize carbon sources in a strictly controlled hierarchical manner. Other 

potential negative regulator, GlyR3, was reported by Newcomb et al. (2007). GlyR3 displays 

sequence homology with LacI of Escherichia coli and binds to the non-cellulosomal celC 

gene cluster by preventing its expression. The binding is inhibited by laminaribiose, 

suggesting that the sugar serves as an inducer of celC and/or the gene cluster encoding 

enzymes acting on β-1,3-glucans (Newcomb, Chen, & Wu, 2007). On the other hand, at the 

level of protein protection and stabilization, Kang et al. (2006) showed that members of the 

serpin superfamily of serine proteinase inhibitors, which have pivotal regulatory functions in 

eukaryotes, also reside within the cellulosome of C. thermocellum ATCC 27405. Two of the 

three serpins found in this bacterium contain a dockerin module for location in the 

cellulosome (Kang et al., 2006). The role of serpins was suggested to be to protect C. 

thermocellum from the proteolytic degradation by endogenous or exogenous serine 

proteases (Eggers et al., 2004; Schwarz & Zverlov, 2006). Schwarz & Zverlov (2006) 

speculate that protease inhibitor/protease pairs in cellulosomes play hitherto unknown roles 

in protein stability and regulation. All these studies expand the cellulosome paradigm of 

protein complex assembly beyond CAZymes and CBMs. 

 

2.3.2. Post-genomic strategies: protein research 

As more and more genome and metagenome sequencing projects become complete, 

scientists are faced with the task of functionally analyze a multitude of gene products. 

Computational analysis of genomes using the basic local alignment search tool (BLAST) 

(Altschul et al., 1997) attempts to assign functions for the majority of predicted proteins 

encoded by sequenced genomes. Detection of amino acid sequence similarities to proteins 

of known function allowed the annotation of 40-70% of novel genome sequences by 

homology; the larger percentage being for the well-studied prokaryotes (Eisenberg et al., 

2000). Nevertheless, the proportion of proteins without reliable functional annotation is large. 

Furthermore, extensive analysis of the functional annotated proteins is necessary to 

establish a well-characterized model as similarity studies are not sufficient to establish a 

clear identification of the biological role of genes and proteins. Thus, structural and 

biochemical characterization of proteins (e.g. mode of action, ligand/substrate specificity, 
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ligand/substrate binding, regulation and factors affecting their function, interaction with other 

molecules inside or outside the cell and metabolic or signaling pathways in which they are 

involved) is required even for a large proportion of already annotated enzymes. Notably, 

there is an exponential increase in the identification of CAZymes, which has resulted in a 

significant discrepancy between the number of enzymes in CAZy families and the 

biochemical/structural data of these proteins. Indeed, only around 3% of proteins in the CAZy 

database have a characterized biochemical activity, and only mere 0.3% of these enzymes 

have three-dimensional structural information available (Cantarel et al., 2009). Thus, 

functional, biochemical and structural analysis is urgently required in order to integrate 

information obtained from the genomic technologies and to understand the biology of plant 

cell wall deconstruction in a diversity of ecological niches. 

Structural genomics and proteomics offer the promise of assigning a biological function to all 

the proteins encoded by the genome of an organism. The optimal utilization of genomic 

sequence data by genome-scale protein work requires, however, rapid and efficient methods 

for the generation of expression clones and the evaluation of protein production, thus leading 

to the rapid protein characterization and structure determination. High-throughput (HTP) 

approaches of the post-genomic era require the implementation of novel methods for cloning, 

expression, protein purification and detection that allow working with large numbers of genes 

and proteins, and at the same time to analyze a multitude of data and results. Even for 

laboratories studying a single protein target, these steps are usually expensive and time-

consuming. Solutions to overcome these problems have emerged from structural genomics 

projects, which use a standard experimental workflow and a “funnel” approach (Figure 2.12). 

Each stage of the process needs to be optimized on parameters like throughput, automation, 

speed, cost-effectiveness and scalability (Mancia & Love, 2011). 

 

Figure 2.12| A typical “funnel” scheme for high-throughput structural studies on proteins. 

 

The throughput of the entire process decreases from cloning to crystallization. The last step (not showed) involves 

progression from crystallization to structure determination and, in general, cannot be automated. Throughput also 

diminishes as the complexity of the expression systems increase. Adapted from Mancia & Love (2011) 
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2.3.2.1. High-throughput methods for gene cloning 

Methods for the rapid and inexpensive cloning of large numbers of open reading frames 

(ORFs) into expression vectors are of critical importance for challenging structural and 

functional genomics projects. According to Marsischky and LaBaer (2004), an ideal HTP 

cloning method should be reliable, ease to use, flexible and inexpensive. Thus, several 

properties should be contemplated by these innovative methods: (1) when transferring the 

cloned DNA from master clones to expression plasmids, the transfer must be 100% (or 

almost) efficient, conservative, thereby avoiding mutations, and should result in the correct 

orientation of ORFs, (2) validation of the cloned products should be simple; ideally only a 

single clone for each target gene would be required to be sequenced and the cloning vector 

must be suitable for DNA sequencing reactions, (3) the cloning system should be able to 

support the transfer of genes into virtually any type of expression vector, (4) the addition of 

fusion tags or cloning related sequences to an ORF should be minimal since they often affect 

the subsequent expression and crystallization of the recombinant protein (Marsischky & 

LaBaer, 2004). Furthermore, such a HTP cloning method should be independent of the 

sequence of the target gene, primers should be easy to design, and a single PCR 

amplification should be sufficient for cloning into several vectors (Geertsma & Dutzler, 2011). 

Conventional cloning methods based on DNA cleavage by restriction endonucleases and 

then ligation by DNA ligase (“cut and paste”) are, in this respect, unsatisfactory. The 

traditional cloning strategies based in restriction enzymes and ligases are relatively 

inefficient, time-consuming and labour-intensive. Moreover, if an uniform cloning strategy for 

a large number of different ORFs is required, the use of this method is prevented by the 

frequent occurrence of restriction sites in the sequences of the target genes. To overcome 

the limitations of ligation-based cloning, alternative approaches have been developed based 

on ligation-independent cloning (LIC) procedures (Table 2.1). The majority of LIC methods 

developed so far are based on a recombination reaction occurring between the insert and the 

destination vector. These technologies include, for example, the Gateway (Hartley, Temple & 

Brasch, 2000), the Creator (Colwill et al., 2006), and the MAGIC (Li & Elledge, 2005) 

systems, that make use of site-specific recombination, and the In-Fusion (Berrow, Alderton, 

& Owens, 2009) or sequence- and ligation-independent cloning (SLIC) (Li & Elledge, 2007), 

that rely on homologous recombination. Other LIC technologies use complementary single-

strand overhangs on the vector and insert, which allows cloning by base complementation 

without the need of a ligation step. These methods include, for instance, the LIC method 

based on T4 DNA polymerase (Tachibana et al., 2009).  
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Table 2.1| Cloning methods for protein expression. 

Cloning 

method 
Cloning sites 

Size of cloning 

sites 
Comments Ref. 

Gateway 

(Invitrogen) 
attB sites 21-25 bp 

Large cloning sites 

Initial cloning into non-expression vector 

Trivial to subclone into many available vectors 

1-hour room temperature cloning reaction 

1 

Topo 

(Invitrogen) 

Trapped 

topoisomerase 
9-16 bp 

For cloning of PCR products (5’-OH required) 

Cloning of long DNA inserts 

Vectors must be purchased 

5-min cloning reaction 

2 

Creator 

(Clontech) 
loxP sites 34 bp 

Large cloning sites 

Initial cloning into non-expression vector 

Easy to subclone into available vectors 

C-terminal fusions must undergo splicing 

15-min room temperature cloning reaction 

3 

In-Fusion 

(Clontech) 

Homologies to 

vector ends 
14-15 bp 

For cloning of PCR products 

Compatible with any vector 

Vectors must be linearized 

15-min at 50°C cloning reaction 

4 

LIC (Novagen) 

Single-stranded 

homologies to 

vector ends 

12-15 bp 

Sequence-dependent 

Many available vectors 

Prior insert treatment with T4 DNA polymerase 

10-min cloning reaction 

5 

MAGIC 
Homologies to 

vector 
~50 bp 

Reactions occur inside host cells – in vivo 

Uses bacterial mating 
6 

 

References: 1) Hartley, Temple & Brasch (2000); 2) Shuman (1994); 3) Colwill et al. (2006); 4) Berrow, Alderton, 

& Owens (2009); 5) Tachibana et al., (2009); 6) Li & Elledge (2005).  

 

The Gateway® recombinational cloning system (available from InvitrogenTM Life 

Technologies) exploits the in vitro site-specific recombination method based on 

bacteriophage λ to accomplish the directional cloning of PCR products and the subcloning 

into new vector backbones. Many DNA segments can be transferred in parallel from entry 

clones (or donor plasmids) to various destination vectors (or expression plasmids), providing 

an approach to HTP cloning and subsequent protein expression. In the Gateway® system, 

the orientation and reading frame register of cloned DNA are maintained through vector 

transfers by the use of two nearly identical (but not compatible) versions of the λ att 

recombination site (Hartley, Temple, & Brasch, 2000). However, the long extraneous coding 

regions (around 21 bp) may affect downstream applications (Koehn & Hunt, 2009). 

The In-FusionTM system (available from Clontech) is a simple and reliable method that 

enables the rapid cloning of PCR products using the In-FusionTM enzyme. The mechanism of 

this reaction has not been fully reported but relies on the presence of homology between 
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extensions on the PCR product (around 15 bp) and the ends of a linearized vector. One 

advantage of the In-FusionTM system is that it is not sequence-dependent. Thus, it can be 

used as a general method for inserting DNA fragments into any vector.  

The LIC system based on T4 DNA polymerase (available from Novagen) takes advantage of 

the controlled exonuclease activity of T4 DNA polymerase to produce long single-stranded 

complementary overhangs (roughly 12 to 15 bp) at the ends of a PCR-amplified DNA 

fragment and a linearized vector. These overhangs hybridize after mixing the vector and 

insert together, producing a stable hybridization product that can be readily used to transform 

host organisms without ligation. After transformation, the nicks are sealed by the cellular 

machinery (Aslanidis, de Jong, & Schmitz, 1994). However, LIC based on T4 DNA 

polymerase is strictly sequence-dependent as it requires the presence or absence of specific 

nucleotides at certain positions in the overlapping regions, which restricts its widespread 

application to different vectors (Tachibana et al., 2009). In general, sequence-dependent 

methods are less convenient in a HTP practical setting because they require unique and 

specific sites in both the insert and the vector. Thus, the more flexible sequence-independent 

cloning methods are preferred. Other critical points reported in LIC methods relate to the 

additional steps for engineering or preparation of insert and/or vector DNA fragments that are 

sometimes time-consuming and usually use expensive enzymes (Quan & Tian, 2009). 

One important issue to take into account in HTP cloning relates to the selection of the correct 

clones, which is usually labour-intensive and often limited by parental vector background. 

Many positive selection vectors have been developed to address this problem. In these 

vectors, the successful cloning of a target gene results in a change of the phenotype, which 

can be achieved either by the inactivation or the replacement of a gene marker (e.g. the 

lethal gene ccdB) through insert cloning (Haag & Ostermeier, 2009; Hu et al., 2010). Despite 

the reasonable effectiveness of the currently available LIC systems for HTP cloning, there 

are considerable pressures for protocol simplification and reduction in costs that could make 

them a more appropriate alternative for the rapid and efficient creation of large ORF clones 

resources. Thus, the research community has been improving the current methods or 

developing cheaper and more reliable approaches than those today commercially available 

(Bryksin & Matsumura, 2010; Yang et al., 2010; Geertsma & Dutzler, 2011). This thesis 

reports the development of an innovative HTP platform for gene cloning, expression and 

protein purification that was used to explore genes encoding cellulosomal components of 

unknown function (see Chapter 3). The selection of the method used to clone a gene into an 

expression vector is of great importance since proteins are highly diverse in their properties 

and it is not possible to predict how they will express or whether they will be soluble, easy to 

purify, display biological activity or crystallize in the recombinant form (Hartley, 2006).   
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2.3.2.2. High-throughput methods for protein expression 

There are a large variety of expression systems available for the high-throughput production 

of recombinant proteins. Escherichia coli is the simplest host for recombinant protein 

expression and has been the most readily adapted expression system to the HTP format. 

Expression in E. coli is fast, cost-effective and scalable (Swartz, 2001; Chambers, 2002; 

Mancia & Love, 2011). Furthermore, there are many available engineered strains and 

vectors for heterologous expression, in which high levels of controllable gene expression are 

usually achieved. The most common promoter used to favour gene expression is the T7 

promoter that is usually regulated by lactose or in the majority of the situations by the non-

hydrolysable lactose analogue isopropyl β-D-1-thiogalactopyranoside (IPTG). The use of 

lacIQ, T7 lysozyme (provided by a compatible plasmid, pLysS or pLysE) (Moffatt & Studier, 

1987) and lacO operators, positioned downstream of the T7 promoter sequence, supports 

the establishment of the hybrid T7/lac promoter, (Dubendorf & Studier, 1991) and provide 

extra levels of expression control, to address problems related with the production of toxic 

proteins (i.e. ribosome destruction, cell death and plasmid or expression instability) (Koehn & 

Hunt, 2009). Nevertheless, for many complex and large eukaryotic proteins subjected to 

complex post-translational modifications, expression in E. coli is usually impaired and 

eukaryotic expression systems arise as a good choice for the production of biologically active 

polypeptides. However, in this case, usually the throughput of protein expression decreases, 

accompanied by low yields and high costs (Hartley, 2006). Despite technical constraints, 

several mammalian (Heyman et al., 1999), yeast (Schuster, 2000) and insect cells (Albala et 

al., 2000; Coleman et al., 1997) largely used as expression systems have been successful 

adapted and implemented for HTP protocols. Cell-free expression systems have also 

emerged as an alternative to the cell-based expression systems for recombinant protein 

expression, especially for producing toxic and insoluble proteins. This approach involves in 

vitro protein expression using cellular lysates that contain all the necessary biochemical 

machinery for the transcription and translation of DNA templates. Many features make this 

system useful in a HTP setting as it allows expressing proteins directly from PCR-generated 

transcripts with no need to generate expression vectors or manipulate cells in culture 

(Martemyanov, Spirin, & Gudkov, 1997). There are several commercial cell-free systems 

based on E. coli lysate, among others, that can be used to produce proteins in vitro. The 

main disadvantages of cell-free systems are the low yield of target proteins and the limited 

post-translational modifications if those are based in E. coli (Carlson et al., 2011). 

Alternatively, E. coli can be adapted for recombinant protein production through genetic 

engineering. 

Implementation of an HTP platform for cloning and expression of hundreds to thousands of 

targets at the same time, requires significant modifications to the modus operandi of 

traditional cloning and expression protocols. There are increasing numbers of reports 
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suggesting methodologies for the automated generation of protein expression clones using 

microwell plates, multichannel pipettors and, in some cases, commercially available liquid 

handlers (Figure 2.13), with a series of interlinked protocols based on the 96-or 384-well 

plates formats (Dieckman et al., 2002; Scheich, Sievert, & Büssow, 2003; Abdullah, 

Joachimiak, & Collart, 2009; Bruni & Kloss, 2013). The conventional cell cultivation systems 

using shake-flasks, even small, is not practical and the solution is to use deep-well plates 

available in different formats (24-, 48- and 96-, wells) and volumes (1, 2 and 5 mL per well) 

covered with breath seals which allow efficient gaseous exchanges. Chambers (2002) 

showed that growth profiles of cell cultures from E. coli and insect expression systems are 

the same over time using a shake-flask or a commercial deep-well block (Chambers, 2002). 

With this approach it is possible the simultaneous and parallel cultivation over a wide range 

of conditions (e.g. temperature, time, media, host) to screen for optimum expression 

conditions of soluble recombinant proteins. With optimal growth and induction conditions 

established, these protocols can easily be scaled up to increase the capacity of protein 

production (Bruni & Kloss, 2013). 

 

Figure 2.13| Liquid-handling workstations equipped with vacuum manifolds. 

      

 

An increasing number of molecular biology laboratories cultivate E. coli cells during protein 

expression protocols in auto-induction media, first described by Studier (2005). These media 

allow the simultaneous induction of expression of multiple recombinant proteins under the 

control of a T7/lac promoter. These media contain specific components that after an initial 

period of tightly regulated growth allow fully automated induction of target protein at high 

optical densities without the need for either monitoring growth or induction with IPTG 

(Studier, 2005). Even using 96-well plates, high cell densities can be achieved (Lesley et al., 

2002). Different components of complex media are reported to support or suppress growth to 

high cell density of a wide range of E. coli strains with different nutritional requirements 

(Studier, 2005). Lactose can support growth of E. coli, but several restrictions are reported 

when it is used as a carbon and energy source for high-level production of target protein (e.g. 

lactose's catabolism leads to the production of galactose which is not used as a carbon 
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source by BL21, the most common E. coli protein expression strain) (Studier, 2005). Thus, 

cultures growing in media containing glucose and lactose will utilize all glucose before 

starting to metabolize lactose (following a catabolite repression mechanism). To prevent 

lactose metabolism, a control of gene expression relies on the binding of the CAP-cAMP 

complex to the promoter required for the transcription of the lac operon. The presence of 

glucose is associated with the presence of the complex. Once glucose concentration 

increases inside the cell, the cAMP decreases, as the amount of the complex also 

decreases. In this situation, the complex does not bind to the lac promoter and the lac 

operon is turned off (Epstein, Rothman-Denes, & Hesse, 1975). When lactose is present, it 

binds to the lac repressor protein (encoded by lacI), making it unable to bind to the operator. 

Therefore, lactose acts as the inducer of the transcriptional expression controled by the T7 

promoter (Horton, Lewis, & Lu, 1997). There are some auto-induction media solutions sold 

commercially; being the most used the Overnight ExpressTM Autoinduction system 

(Novagen). This thesis reports the development of two novel auto-induction media systems 

to use in E. coli as expression host: NZY Auto-Induction LB medium (powder) and NZY Auto-

induction kit, both already available from NZYTech (see Chapter 3). Auto-induction media 

provide great convenience as recombinant strains only have to be inoculated and grow to 

saturation, which addresses the difficulty in large-scale screening to obtain all of the cultures 

in a comparable state of growth for simultaneously induction. Furthermore, this system 

allows achieving higher yields of soluble protein production typically several-fold higher than 

those obtained by standard IPTG induction (Studier, 2005). 

For an initial and rapid assessment of levels of protein expression, whole and soluble protein 

extracts can be analysed directly by SDS-PAGE and Coomassie staining without prior 

purification of the recombinant expression products (Dieckman et al., 2002; Abdullah, 

Joachimiak, & Collart, 2009). However, additional information of the expressed protein is 

usually required, which will involve cell lysis, protein purification, and analysis of recombinant 

protein biological activity. 

 

2.3.2.3. High-throughput methods for protein purification  

Affinity chromatography is one of the most robust and efficient methods for protein 

purification. Current recombinant expression systems involve engineering specific affinity 

tags in the recombinant proteins that allow the rapid and efficient implementation of 

purification protocols. Purification based on histidine tags (His-tag) is an universal solution for 

purifying proteins in parallel through Imobilized Metal Affinity Chromatography (IMAC). Thus, 

His-tags (which bind to immobilized divalent metal ions, Ni2+) are widely used for protein 

purification and usually provide, in a single-step affinity purification protocol, high levels of 

purity that are satisfactory for most downstream applications. Furthermore, His-tag 

sequences require the addition of usually only six amino acids to the recombinant protein, 
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thus reducing the negative effects that could derive from the fusion of large polypeptide 

sequences in protein folding/activity (Lesley, 2001). In addition, they also have the advantage 

of being easily recognized by commercially available antibodies. So, it is not surprising that 

many metal chelating resins with high affinity for His-tag have been adapted to 96-well format 

protocols for protein purification using automated systems (Chambers, 2002). 

In general, IMAC automatable protocols involve multiple steps. Thus, after cultivation on 

deep-well plates, cells are collected by centrifugation and are lysed using either mechanical 

disruption or chemical lysis. Mechanical disruption can be achieved in a HTP procedure 

using a deep-well microplate-horn sonicator commercially available. Alternatively, chemical 

lysis has been successfully applied in many HTP protocols since it is fast, robust and less 

labour-intensive than the mechanical lysis (Chambers, 2002). There are many reagents 

specially formulated for bacterial cell walls disruption and most of them include lysozyme and 

treatments with nucleases to degrade DNA and thus decreasing the viscosity of the cell 

extracts. Also, non-ionic and zwitterionic detergents can be used for nondenaturing lysis 

(Lesley, 2001). BugBuster® (available from Novagen), with proprietary formulation (Grabski, 

McCormick, & Mierendorf, 1999) and B-PER® (from Thermo Scientific, Pierce Protein Biology 

Products) are two of the most common detergent-based reagents available commercially. 

This thesis reports the development of a reagent for the gentle disruption of E. coli cell walls: 

NZY Bacterial Cell Lysis Buffer, already available from NZYTech, genes & enzymes (see 

Chapter 3). 

For automatable protein purification, large-pore 96-well filter plates are usually required. 

Thus, after cell lysis, the crude cell lysate is mixed with the nickel charged resin to capture 

the recombinant protein and then transferred to filtration plates. The system requires the use 

of vacuum pressure to allow the passage of cell extracts and wash buffers through the plate 

columns (Scheich, Sievert, & Büssow, 2003). Depending on the expression level and the 

volumes used, roughly 1.5 µg to 6 mg of target protein can be purified from small-scale E. 

coli cultures, which is enough for expression analysis, evaluating the solubility, and for 

implementation of initial functional studies (Chambers, 2002). For many screening protocols, 

on average, 10 mg of protein are typically required, which can be achieved by large-scale 

(~70 mL) protein purification in an automated way provided by custom robots (Lesley, 2001). 

Automation in crystallography, with implementation of liquid dispensing workstations (Stewart 

& Baldock, 1999) and the development of micro-crystallization protocols (Pebay-Peyroula et 

al., 1997), has reduced the amount of concentrated, homogeneous and soluble protein 

required to crystallize, being 10 mg usually sufficient for these procedures (Lesley, 2001). 
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2.4. Enhancing recombinant protein expression, folding and solubility in E. coli 

2.4.1. Recombinant protein expression in Escherichia coli 

There are several features that make Escherichia coli the most widely used host for the 

production of heterologous proteins: (1) rapid growth at high cell density on inexpensive 

substrates; (2) cells have short generation times; (3) cells do not require specialized 

equipment for cultivation; (4) easy manipulation due to its well characterized genetics; (5) 

and the availability of a large number of molecular tools and protocols, such as cloning 

vectors with different N- and C-terminal tags, engineered strains and cultivation approaches. 

In addition, the resulting yields of recombinant proteins can be very high (Baneyx, 1999b; 

Mancia & Love, 2011; Rosano & Ceccarelli, 2014). Despite the strengths of the E. coli-based 

expression system, there are some difficulties to address when expressing heterologous 

proteins, mainly from eukaryotic origin, in this host. The main difficulty lies on the production 

of inclusion bodies that derive from high levels of recombinant protein expression and 

unappropriate conditions for correct protein folding. Further problems include low levels of 

expression, protein degradation, toxicity, and production of non-functional protein (Peleg & 

Unger, 2012). Thus, several different strategies have been developed to produce suitable 

amounts of recombinant proteins in soluble and biologically active form in E. coli on a large 

scale by increasing both yield and solubility. 

In cases where eukaryotic recombinant proteins need post-translational modifications (e.g. 

glycosylation and phosphorylation) in order to become active and/or adopt the proper 

structure, expression in E. coli may not be suitable. However, several E. coli strains have 

been genetically modified to allow for some post-translational modifications, such as 

disulfide-bond formation in the cytoplasm by providing oxidizing conditions due to mutations 

in thierodoxin reductase (trxB) or/and glutathione reductase (gor) genes in AD494 and 

OrigamiTM (Novagen) strains, or by co-production of DsbC proteins in SHuffle® strains 

(Novagen) (Derman, Prinz & Beckwith, 1993; Bessette et al., 1999). Other issue that must be 

taken into account for recombinant protein expression is the codon usage of the recombinant 

gene and its adequacy to the expression host. E. coli, as all other organisms, uses a specific 

pool of the 61 available amino acids codons for the production of most mRNA molecules 

(Wadal et al., 1992). Differences in codon usage can cause problems during translation (e.g. 

interrupted translation, frameshifting and misincorporation of amino acids during translation) 

due to the request for one or more tRNAs that may be rare or lacking (Kane, 1995; Kurland & 

Gallant, 1996). Changing growing conditions, such as temperature, media composition and 

growth rate may vary the tRNA abundance and the codon usage bias. However, most tRNAs 

corresponding to rare codons (i.e. those that occur in genes expressed at a low level) remain 

unchanged at different growth rates (Dong, Nilsson, & Kurland, 1996). In addition, there are 

many strategies available to increase the expression levels of heterologous proteins 

containing rare codons: (1) gene synthesis to replace the rare codons by major codons that 
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encode for the same amino acid, and (2) co-expression of genes encoding rare tRNAs. 

There are several commercial E. coli strains, such as the RosettaTM series (Novagen), that 

contain a plasmid carrying tRNA genes for a number of rarely used codons in E. coli. Finally, 

some recombinant proteins may be toxic for E. coli as they may carry out a detrimental 

function in the host cell, by compromising the normal proliferation and homeostasis of the 

microorganism (Rosano & Ceccarelli, 2014). Thus, in these cases, basal levels of expression 

need to be tigher controlled and different approaches have been developed such as the 

addition of glucose to the growth medium (Studier, 2005), co-expression of T7 lysozyme 

(Moffatt & Studier, 1987), such as in BL21pLysS and BL21pLysE strains, or by using low 

copy number plasmids, such as the pETcoco vectors (Novagen) (Wild, Hradecna, & 

Szybalski, 2002).  

 

2.4.2. Protein precipitation in the form of inclusion bodies  

One of the major bottlenecks for recombinant protein expression in E. coli is the production 

of inclusion bodies (IB). Overproduction of heterologous proteins in the cytoplasm of E. coli 

caused by strong promoters may be accompanied by their misfolding and precipitation into 

insoluble, biologically inactive form of inclusion bodies (Williams et al., 1982). Protein 

precipitation in vivo occurs because the microenvironment of E. coli, respecting to pH, 

osmolarity, redox potential, cofactors, and folding mechanisms differs from that of the 

endogenous host causing protein instability. Nevertheless, even endogenous proteins can 

accumulate as IB if overexpressed, what suggests that IB formation is a consequence of an 

increase in the level of expression of the recombinant protein (Gribskov & Burgess, 1983). 

Limiting amounts of chaperones when genes are expressed at high levels probably 

contributes for IB formation (Rinas & Bailey, 1993; Thomas & Baneyx, 1996a; Lorimer, 

1996). It has been reported that IB formation is not associated to particular protein 

sequences. However several attempts to enhance protein solubility by directed mutation or 

gene fusion have resulted successfully mainly when affecting the extent of hydrophobic 

regions (Hartley & Kane, 1988; Carrió & Villaverde, 2002). Thus, it cannot be predicted if a 

certain protein has propensity to form inclusion bodies. However, if a protein containing 

disulphide bonds is produced in the cytoplasm, the formation of IB can be expected since 

disulphide bonds usually are not formed in this cell compartment that has a highly reduced 

environment (Lilie, Schwarz, & Rudolph, 1998). Much effort has been made to overcome the 

insolubility problem in order to promote properly folded protein, reduce the percentage of 

inclusion bodies and obtain biologically active proteins. Renaturation of inclusion body 

proteins is possible by solubilisation of inclusion body material with strong denaturants, 

followed by the removal of the denaturant through dialysis or dilution. The effectiveness of 

renaturation depends on the balance between protein aggregation and correct folding. 

Following these approaches, several conditions must be optimized (e.g. protein 
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concentration, temperature, pH or ionic strength), which make the process time consuming 

and unreliable, and should be adapted for each specific protein (Lilie et al., 1998). Thus, 

methods that allow the production of soluble recombinant proteins when overproduced in E. 

coli, and thus preventing the formation of inclusion bodies, are preferable. These strategies 

can be applied either at the cell-culture, cellular or molecular level. 

A traditional approach to reduce protein aggregation is to decrease the cultivation 

temperature to attenuate protein production, thus providing more time to allow the newly 

produced recombinant proteins to fold properly. Lower cultivation temperatures also avoid 

protein degradation due to the reduced activity of bacterial heat shock proteases (Chesshyre 

& Hipkiss, 1989; Spiess, Beil, & Ehrmann, 1999; Hunke & Betton, 2003) and may enhance 

the expression of a number of chaperones (Ferrer, Chernikova, and Yakimov, 2003). 

Temperatures of 15-20 ºC during gene expression induction usually improve the solubility of 

many eukaryotic and prokaryotic recombinant proteins (Baneyx, 1999a; Gräslund et al., 

2008; Sahdev, Khattar, & Saini, 2008). Successful expression of eukaryotic proteins in 

soluble form at 4 ºC during 48-72h in E. coli was described by San-Miguel, Pérez-Bermúdez, 

& Gavidia (2013). However, those extremely low temperatures cause some problems related 

to replication, transcription and translation rates, as well as with bacterial growth, which can 

lead to low protein yields (Rosano & Ceccarelli, 2014). The engineered ArcticExpress strains 

(Agilent Technologies) may in turn overcome this problem due to the expression of cold-

adapted chaperonins. Furthermore, some promoters have been engineered for stronger 

expression of recombinant protein at low temperatures (Vasina & Baneyx, 1997). Another 

alternative method to obtain large amounts of active soluble proteins may involve the 

supplementation of the cell culture with various additives. Blackwell & Horgan (1991) showed 

that growing and inducing cells under osmotic stress in the presence of sorbitol and glycyl 

betaine caused a great increase in the yield of active recombinant protein and the 

disappearance of the protein in the form of IB. 

Increasing protein solubility may also be approached by taking advantage of the host cellular 

chaperones, which facilitate proper protein folding by binding and stabilizing unfolded or 

partially folded proteins and are implicated in driving proteins to their sub-cellular 

compartments. The periplasm is a particularly attractive destination for eukaryotic proteins 

since it provides oxidizing conditions for the formation and rearrangement of disulfide bonds 

which usually contribute to the stabilization of a folded protein conformation (Missiakas & 

Raina, 1997; Creighton, 1986). It was postulated that the misfolding and degradation of 

several heterologous proteins which destination is the periplasm can occur because the 

necessary chaperone(s) becomes limiting (Baneyx, 1999b). Therefore, it is necessary to 

develop strategies to increase the availability of these folding modulators in E. coli. Co-

overproduction of the well characterized cytoplasmic ATP-dependent DnaK-DnaJ-GrpE and 

GroEL-GroES chaperone systems can greatly increase the soluble yields of passenger 
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proteins by preventing aggregation, both in the cytoplasm and periplasm (Thomas & Baneyx, 

1996a; Gragerov et al., 1992). The natural set of chaperones can be induced by the addition 

of benzyl alcohol or heat shock (de Marco et al., 2005). Alternatively, there are chaperone 

systems commercially available, being the most usual the chaperone co-expression plasmids 

from Takara (Nishihara, 1998; Nishihara et al., 2000). 

 

2.4.2.1. Fusion protein technology  

At the molecular level it has been shown that the fusion of recombinant proteins with peptide 

or protein partners to form a chimeric protein, promotes both protein yield and solubility 

(Terpe, 2003). Examples of popular fusion partners used to enhance protein solubility 

include: glutathione S-transferase (GST), maltose binding protein (MBP), N-utilization 

substance protein A (NusA), thioredoxin (Trx), small ubiquitin-like modifier (SUMO), and 

ubiquitin (Ub) (Table 2.2). More recently, other fusion partners have been proposed, such as 

the Fh8 (Costa et al., 2013). It is well established that besides allowing for a convenient 

single-step purification approach, several fusion tags can also enhance solubility of the target 

protein. The mechanism of how fusion tags operate as solubility enhancers remains, 

however, unclear. Probably, fusion of a stable or conserved molecule to an insoluble 

recombinant protein may stabilize and promote proper folding of the recombinant protein. On 

the other hand, fusion tags may act as a nucleus of folding (“molten globule hypothesis”) 

(Englander, 2000; Creighton, 1997). For example, it was shown that MBP possesses an 

intrinsic chaperone-like activity (Kapust & Waugh, 1999; Rais-Beghdadi et al., 1998; Raran-

Kurussi & Waugh, 2012). Fusion technology was also shown to be an useful tool for the 

production of many recombinant proteins that are components of multiprotein assemblies 

and that often require an interacting protein for correct folding and stability (Gräslund et al., 

2008). Other advantage of fusion technology lies on the protection of the recombinant protein 

from degradation; fusion can promotes translocation of the “unwanted” recombinant protein 

to different cellular compartments avoiding the exposition to proteases. For instance, MBP 

may be involved in the translocation of proteins to the membrane (Nikaido, 1994). Disulfide 

isomerases (e.g. DsbA and DsbC) have also been proposed as fusion partners. They may 

enhance solubility and proper fold of proteins in the non-reducing periplasmic environment or 

in the cytoplasm, if expressed without their signal peptide (Baneyx, 1999b; Nozach et al., 

2013). Some fusion partners, such as NusA, SUMO, Trx and Ub require an affinity tag, such 

as the poly-histidine for protein purification. Otherwise, MBP and GST can serve to purify the 

recombinant protein by affinity chromatography, as MBP binds to amylose-agarose and GST 

to glutathione-agarose, respectively (Rosano & Ceccarelli, 2014).  
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Table 2.2| Main properties of the most common protein fusion tags used in enhancing protein 

solubility in Escherichia coli. 

 

Tag 
Residues/ Size 

(KDa) 
Matrix/ Elution Comments Ref. 

Fh8 69/ 8.0 
An affinity tag must be added 

(usually His-tag) 

Small tag; Ca
2+

-dependent 

binding to phenyl-Sepharose 
1 

Trx 109/ 11.7 
An affinity tag can be added 

(usually His-tag) 
 2 

SUMO 

(Smt3) 
101/ 11.6 

An affinity tag must be added 

(usually His-tag) 
Cleavage by SUMO Protease 1 3 

Ub 128/ 14.73 
An affinity tag must be added 

(usually His-tag) 
 4 

DsbA 208/ 23.1 
An affinity tag must be added 

(usually His-tag) 

Introduces disulfide bonds; 

enables protein solubilization in 

the periplasm or in the 

cytoplasm 

5 

DsbC 216/ 23.4 
An affinity tag must be added 

(usually His-tag) 

Isomerization of disulfide bonds; 

enables protein solubilization in 

the periplasm or in the 

cytoplasm 

6 

GST 211/ 26.0 Glutathione-agarose/ glutathione 

GST dimerization and 

glutathione elution may affect 

fusion protein properties 

7 

MBP 396/ 42.5 Cross-linked amylase/ maltose 

Large tag; Matrix compatible 

with nonionic detergents and 

high salt, but not reducing 

agents 

8 

NusA 495/ 54.87 
An affinity tag must be added 

(usually His-tag) 

Large tag, may affect properties 

of fusion protein 
9 

 

References: 1) Costa et al. (2013); 2) LaVallie et al. (1993); 3) Butt et al. (2005); 4) (Baker, 1996); 5) Collins-

Racie et al. (1995); 6) Nozach et al. (2013); 7) Smith & Johnson (1988); 8) di Guana et al. (1988); 9) Davis et al. 

(1999).  

 

There are several studies comparing the effects of various fusion tags on protein yields and 

levels of soluble recombinant protein obtained. Hammarström et al. (2002), in a study with 27 

human proteins, ranked the fusion tags in terms of ability to promote protein solubility as 

Trx~MBP~Gb1>ZZ>NusA>GST>His6. In addition, Braun et al. (2002), in a study with 32 

human proteins, ranked the fusion tags in terms of increased expression and soluble yield as 

GST~MBP>CBP>His6. Shih et al. (2002) cloned 40 different proteins with eight fusion tags 

and observed that MBP gave the best overall results in terms of total and soluble expression. 

Moreover, Dyson et al. (2004), in a study with 20 mammalian proteins, ranked the fusion tags 

in terms of increased soluble expression as Trx~MBP>His10>GST>GFP. In contrast, De 

http://en.wikipedia.org/wiki/Disulfide_bonds
http://en.wikipedia.org/wiki/Disulfide_bonds
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Marco et al. (2004) observed that NusA is better than GST at enhancing the solubility and 

stability of recombinant proteins, while Marblestone et al. (2006), in a study with three 

recombinant proteins, ranked the fusion tags in terms of increased total expression as 

Trx>SUMO~NusA>Ub~MBP~GST and increased protein solubility as 

SUMO~NusA>Ub~GST~MBP~Trx. More recently, Bird (2011), in a study with 20 protein 

targets, proposed the following rank order: SUMO > Trx = MBP > TF > NusA > GST = MsyB 

> His6 > HaloTag, while the rank of the fusion tags for protein solubility according to Costa et 

al. (2013) was MBP>NusA>Fh8~Trx>GST~H>His. The inconsistency of the data from these 

comparative studies suggests that each protein or class of proteins has unique optimal 

conditions and that fusion tags vary greatly in efficiency. 

The correct choice of an apropriate fusion partner should take into account its size, since this 

parameter plays a critical role in the total yield of the target protein, as well as its effects on 

the tertiary structure or biological activity of the fused protein (Balbás, 2001). When using 

small tags, these effects depend on the location and on the amino acids composition of the 

tag (Bucher, Evdokimov, & Waugh, 2002). Therefore, the removal of the fusion tag must be 

considered when structural or biochemical studies on the target recombinant protein are 

required (Balbás, 2001). Cleavage may be performed either chemically (Chong et al., 1997) 

or through enzymatic approaches (Jenny, Mann, & Lundblad, 2003). In the former the tag is 

removed by treatment of the fusion protein with a chemical reagent in harsh conditions, so its 

use is mainly limited to purified recombinant proteins obtained from IBs (Hwang, Pan, & 

Sykes, 2014). The last strategy involves the insertion of a unique amino acid sequence that 

is susceptible to cleavage by a highly specific protease, such as tobacco etch virus (Tev) 

protease, factor Xa, thrombin protease, and the SUMO protease (Jenny et al., 2003; 

Blommel & Fox, 2007; Satakarni & Curtis, 2011). In opposition, unfold and precipitation can 

occur in some proteins after tag removal (Koehn & Hunt, 2009). Additionally, complete 

cleavage rarely occurs leading to reduction of the target protein yield (Baneyx, 1999b).  

In summary, ideally a fusion partner should not compromise the tertiary structure and 

biological activity of the fused protein, be easy to remove without affecting protein structure 

after removal, allow simple purification procedures of the recombinant protein, and be 

applicable to a range of proteins (Terpe, 2003). To fulfill these requirements, new tag-protein 

fusion systems are constantly emerging for the improvement of the soluble production of 

recombinant proteins, which is highly relevant to high-throughput protocols. This thesis 

reports the development of novel gene cloning and expression strategies for the efficient 

production of soluble recombinant proteins in E. coli by investigating novel fusion tags to 

improve protein solubility (see Chapter 4). 
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2.5. Objectives 

The work presented here aims to exploit the cellulosomal proteomes of R. flavefaciens and 

C. thermocellum to discover novel CAZymes that may increase our understanding of the 

fundamental mechanisms involved in plant cell wall hydrolysis. In addition, these novel 

CAZymes may constitute innovative tools to explore novel biotechnological applications, in 

particular in the area of animal nutrition, biofuel production or mini-cellulosome construction. 

Moreover, the discovered and characterized CAZymes will expand and diversify the portfolio 

of plant cell wall degrading enzymes that NZYTech offers at a commercial level. To support 

these goals, the development of novel strategies for high-throughput cloning, expression and 

purification of cellulosomal proteins in E. coli in soluble form is an underlying and crucial aim 

of this work. The novel protocols could be used to seek the expression of different 

heterologous proteins with industrial relevance and are in agreement with the development of 

innovative molecular biology products that NZYTech pursues. Specifically, the main goals of 

this project may be summarized as follows:    

 To develop a high-throughput platform for cloning, expression and protein purification 

for the rapid discovery of novel cellulosomal enzymes, bearing in mind that modules 

of unknown function appended to dockerins may comprehend important biocatalysts 

for carbohydrate deconstruction (Chapter 3). 

 To develop novel strategies to enhance protein solubility in E. coli, including an 

approach based on the pivotal protein:protein interactions that sustain cellulosome 

complex and by creating fusion quimeras with heterologous cellulosome proteins 

(Chapter 4). 

 To functionally characterize a major cellulosomal enzyme from Clostridium 

thermocellum when this bacterium is cultured on cellulose, the cthe_0821, here 

named as Man5A. Also to study the binding preferences of the associated CBM32 

(Chapter 5). 

 To functionally characterize three cellulosomal pectinolytic enzymes, PL1A, PL1B and 

PL9 from Clostridium thermocellum, and elucidate the pectinolytic activity displayed 

by this bacterium (Chapter 6). 

 To evaluate the capacity of two β-glucanases from Clostridium thermocellum (β-1,3-

1,4-glucanase 16A and β-1,4-glucanase 8A) to improve the nutritive value of barley-

based diets for broilers, and thus elucidate which of these two distinct enzyme 

activities performs better to improve the nutritive value of those diets for monogastric 

animals (Chapter 7). 

 To construct GH16 β‑glucanase mini-cellulosomes applied to improve the nutritive 

value of barley-based diets for broilers (Chapter 7). 
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3. HIGH-THROUGHPUT CLONING AND EXPRESSION OF CELLULOSOMAL 

ENZYMES 
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Abstract 

Increased concerns over generating green chemicals have triggered interest in the efficient 

conversion of biomass. Production of biofuels from lignocellulosic materials requires the 

extensive hydrolysis of the recalcitrant plant cell wall polysaccharides. This process involves 

the concerted action of a vast repertoire of carbohydrate-active enzymes (CAZymes), which 

act individually or associated in large molecular mass multi-enzyme complexes termed 

cellulosomes. The proportion of these enzymes which are functionally annotated is, however, 

scarce. In addition, extensive analysis of cellulosomal polypeptides revealed a significant 

number of proteins of unknown function that are assembled in multi-enzyme complexes. 

Since cellulosomes play a key role in carbohydrate deconstruction they comprise an 

extremely interesting source for the discovery of novel CAZymes. Here we describe the 

development of a high-throughput method for gene cloning, expression and protein 

purification that was applied to produce recombinant cellulosomal proteins of unknown 

function. The platform was designed to clone multiple inserts into a novel prokaryotic 

expression vector through an innovative ligation-independent cloning method and to express 

the microbial polypeptides at small-scale but at high levels in Escherichia coli. Purified 

recombinant proteins were screened for α-L-arabinofuranosidase activity using a colorimetric 

assay, which allowed the discovery of a novel CAZyme family in the cellulosome of the 

ruminal bacterium Ruminococcus flavefaciens. Distant similarities with members of 

Glycoside Hydrolases families 43 and 62 (GH43 and GH62) suggest that this novel family 

belongs to Clan GH-F and should display the 5-bladed β-propeller fold. 
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3.1.1. Introduction  

The decrease in fossil fuel reserves and the growing environmental consciousness increased 

the economic and social interest in the production of biofuels from lignocellulosic biomass. In 

this context, research towards the efficient conversion of biomass is increasing. However, 

plant cell walls are highly recalcitrant to biological degradation, which difficult the 

development of a biorefinery based on lignocellulosic biomass at an economical scale (Li et 

al., 2009). Therefore, a lot of emphasis is being put on the discovery and development of 

more efficient carbohydrate-active enzymes (CAZymes) and in innovative mechanisms to 

potentiate their activity and stability (Lynd et al., 2002; Lynd et al., 2005; Demain, Newcomb, 

& Wu, 2005).  

The major constituent of plant cell walls is cellulose, mainly in the form of crystalline micro 

fibrils (Somerville, 2006). Other abundant structural components of cell walls are 

hemicelluloses (such as xyloglucans, xylans, mannans or glucomannans), pectins, lignin and 

proteins with diverse roles (Cosgrove, 1997; Scheller & Ulvskov, 2010). The physical 

association between polysaccharides and between polysaccharides and lignin restrict their 

accessibility to the degrading enzymes (Gilbert, 2010). In addition, only a limited number of 

microorganisms have acquired the capacity to deconstruct structural carbohydrates such as 

cellulose and hemicellulose (Fontes & Gilbert, 2010). Reflecting the intricacy of plant cell 

walls, microorganisms that degrade these structures produce an extensive arsenal of 

carbohydrate-active enzymes, such as glycoside hydrolases (GH), polysaccharide lyases, 

carbohydrate esterases and glycosyl transferases. These enzymes are frequently modular, 

containing a catalytic module connected through flexible linker sequence to non-catalytic 

domains, such as Carbohydrate Binding Modules (CBMs) involved in protein-carbohydrate 

interactions (Cantarel et al., 2009). CAZymes synthesized by some anaerobic 

microorganisms, particularly from the genus Clostridia and Ruminococcus, are assembled 

into a large molecular mass multienzyme complex, termed the cellulosome (Gilbert, 2007; 

Fontes & Gilbert, 2010). Cellulosomes promote enzyme synergism, afforded by spatial 

proximity, and stability (Bayer et al., 2004). It is well established that cellulosomes are more 

efficient than the free enzyme systems produced by aerobic microorganisms in the 

degradation of recalcitrant substrates (Fontes & Gilbert, 2010). Integration of cellulosomal 

components occurs via highly ordered protein:protein interactions established between non-

catalytic dockerin domains located on the cellulosomal enzymes with cohesin domains 

located on a molecular scaffold. Cohesin-dockerin interactions also mediate cellulosome 

attachment to the bacterial cell surface (Bayer et al., 2004; Carvalho et al., 2005; Fontes & 

Gilbert, 2010; Brás et al., 2012).  

Several genomes of cellulosome producing bacteria, such as Clostridium thermocellum, 

Clostridium acetobutylicum, Ruminococcus flavefaciens and Clostridium cellulolyticum have 

recently been sequenced, providing the capacity to perform a detailed analysis of all 
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encoded cellulosomal molecular components (Fontes & Gilbert, 2010; Munir et al., 2014). 

Cellulosomes are exciting resources for mining novel CAZymes that could present novel 

biochemical properties adequate for several biotechnological applications. In addition, 

cellulosomal analysis revealed several modules of unknown function that could constitute 

novel enzymes presenting critical substrate specificities. Moreover, although there is an 

exponential increase in the annotation of novel CAZymes in recently sequenced genomes, 

there is a significant discrepancy between the number of enzymes organized in families in 

the constantly updated CAZy database (www.cazy.org) and the availability of 

biochemical/structural data for these proteins (Cantarel et al., 2009).  

Reflecting the complexity of plant cell walls, the number of CAZymes that remain to be 

discovered may be remarkably large. According to Davies, Gloster, & Henrissat (2005), 

approximately 1-3% of the proteins encoded by the genomes of most organisms correspond 

to CAZymes, being the GH-coding genes the most abundant. Among GHs, α-L-

arabinofuranosidases (EC 3.2.1.55) have recently received special attention due to their 

potential for biotechnology. Alone or in combination with other CAZymes, these 

hemicellulases can be used in the pretreatment of lignocellulose materials for biofuel 

production (Das et al., 2012), as well as in the biobleaching of paper pulp (Bothast, 1998; 

Saha, 2003; Fridjonsson et al., 2004). α-L-arabinofuranosidases hydrolyze the terminal α-

1,2-, α-1,3- and/or α-1,5 α-L-arabinofuranosyl residues from mixed linkage polysaccharides 

such as arabinoxylans and arabinans, thus facilitating the access of synergistic enzymes to 

the polysaccharide backbones (Saha, 2000; Numan & Bhosle, 2006). In the CAZy database, 

α-L-arabinofuranosidases are mainly grouped in families GH2, GH3, GH10, GH43, GH51, 

GH54 and GH62.  

Characterization of enzymes revealed by the enormous data generated by sequencing 

projects requires efficient high-throughput methods for gene isolation and cloning, protein 

expression and purification, coupled with efficient enzyme screening assays that may reveal 

novel enzyme specificities that may be subsequently studied at a structural level and 

potentiate the development of novel biotechnological applications. Here we describe the 

development of a novel high-throughput platform to efficiently clone and express a large 

number of recombinant cellulosomal proteins of unknown function that can be rapidly used in 

subsequent enzyme discovery projects. The platform was adapted to operate in a Tecan 

robot (Switzerland). The genes encoding cellulosomal modules of unknown function from R. 

flavefaciens strain FD-1 and C. thermocellum strain ATCC 27405 were cloned and their 

encoded enzymes expressed at high levels in Escherichia coli. The recombinant proteins of 

unknown function were purified in a high-throughput platform and screened for α-L-

arabinofuranosidase activity. This work allowed the discovery of a novel enzyme which 

displays activity against 4-nitrophenyl-α-arabinofuranoside (pNPAf). This enzyme is the 
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founder member of a novel GH family which is distantly related with GH43 and GH62 

families. 

 

3.1.2. Materials and Methods 

3.1.2.1. Construction of a novel prokaryotic ligation-independent cloning vector 

for protein expression  

A novel prokaryotic expression vector, termed pHTP, was developed here. pHTP plasmid 

wasConfidential constructed on the backbone of pET28a prokaryotic expression vector 

(Novagen®) by inserting the ccdB gene cassette and specific elements for ligation-

independent cloning in the pET28a multiple cloning region. The pET28a plasmid was 

linearized by PCR using primers p28F and p28R (see Table S3.1 in Annex), while the ccdB 

cassette was amplified from pDESTTM17 (InvitrogenTM by Life Technologies) also through 

PCR using primers ccdBF and ccdBR (see Table S3.1 in Annex). Both ccdBF and ccdBR 

primers contained engineered specific cloning handles of 18-bp and homologous sequences 

of pET28a. The cassette was inserted into pET28a at position 187-261 bp through 

homologous recombination using the In-Fusion® system (Clontech). E. coli One Shot® ccdB 

Survival™ chemically competent cells (InvitrogenTM by Life Technologies) were used for 

propagating the pHTP plasmid. The sequence of the novel expression vector was confirmed 

by DNA sequencing. Insertion of genes of interest in pHTP may be easily achieved by 

replacing ccdB through the base complementation strategy described below. 

 

3.1.2.2. Automated PCR primer design 

We have developed a dedicated software to the large scale design of primers based in 

multiple DNA sequences. The algorithm used for primer design allows optimizing melting 

temperatures, primer lengths, GC content and introducing engineered 5´sequences. The 

software uses a Microsoft Excel interface containing the variable number of genes that are 

required to be amplified and selects the appropriate pair of forward and reverse primers for 

each gene. Vector complementary single-strand overhangs for the ligation-independent 

cloning reaction are automatically introduced in the primers. Primers pairs were designed 

using this automated method to amplify 239 genes encoding dockerin-bearing modules with 

unknown function from R. flavefaciens FD-1 and C. thermocellum ATCC 27405. The primers 

were designed to have a Tm of ~60-70°C and included additional 16-bp pHTP homologous 

sequences at 5’- terminus of both forward and reverse primers in order to allow the ligation-

independent cloning.  

 

3.1.2.3. PCR amplification 

R. flavefaciens FD-1 and C. thermocellum ATCC 27405 genomic DNA (obtained from DSMZ, 

Germany) were used as templates to amplify 239 genes (223 from R. flavefaciens and 16 



 

49 
 

from C. thermocellum) encoding cellulosomal modules of unknown function. Primer dilutions 

and PCR amplifications were carried out in a 96-well plate format. NZYProof DNA 

polymerase (NZYTech genes & enzymes, Portugal) was used for PCR using optimized 

conditions to minimize primer-dimer formation and nonspecific amplifications. PCR reactions 

were performed in 50 μL total volume and each primer was added to a final concentration of 

0.14 μM. The cycling parameters were as follows: 1 cycle of 95°C for 10 min; 30 cycles of 

95°C for 1 min, 55°C for 1 min, and 72°C for 3 min; followed by 1 cycle of 72°C for 10 min. 

After PCR, reaction products were visualized by agarose gel electrophoresis and purified 

using the NZYDNA Clean-up 96 well plate kit (NZYTech genes & enzymes, Portugal) in a 

Tecan robot (Switzerland). 

 

3.1.2.4. A novel method for ligation-independent cloning 

High-throughput cloning is facilitated by the use of ligation-independent cloning (LIC) 

methods, which are not limited by the number of targets and occurrence of restriction sites in 

selected genes. In the LIC method described here, no previous preparation of the vector 

DNA fragment is required and selection of correct clones is achieved by inactivation of a 

lethal gene present in the vector. Inserts prepared by PCR are cloned directly into the 

expression vector, without the need to go through an intermediate cloning vector. Purified 

PCR fragments were mixed with 240 ng of circular pHTP vector in a 96-well PCR plate 

format. Different vector to insert molar ratios (1:2–1:20) were mixed with 1 μL of the cloning 

enzyme mix and 2 μL of 10x reaction buffer and then the final reaction volume was adjusted 

to 20 μL with water. The cloning reactions proceeded for 1 h at 37°C on a thermo cycler to 

generate DNA nicks in both vector and insert sequences. The mixtures were then incubated 

at 80°C for 10 min followed by 10 min at 30°C to stimulate the denaturing and the single-

strand annealing of both vector and insert sequences. The cloning reaction mixtures were 

used to transform E. coli DH5α competent cells (NZYTech genes & enzymes, Portugal). 

From each transformation reaction, colonies were picked and the presence of the insert was 

confirmed through colony PCR using two vector specific primers (the universal T7 promoter 

and pET24a primers). NZYLong 2 Green Master Mix (NZYTech genes & enzymes, 

Portugal) was used for the PCR amplification. Cultures containing recombinant plasmids 

were grown in 5 mL of LB medium supplemented with 50 μg/mL of kanamycin in 24-deep-

well plates (5 mL) sealed with gas-permeable adhesive seals. After growth at 37°C for 16 h, 

cells were harvested at 1000 g for 10 min. Plasmids were purified from the bacterial pellet 

using NZYMiniprep 96 well plate kit (NZYTech genes & enzymes, Portugal) in a Tecan robot 

(Switzerland). 
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3.1.2.5. Comparison of the efficacy of different cloning methods 

The efficiency of the cloning method described above was compared with other alternative 

commercially available solutions for the cloning of DNA fragments of 0.4, 1.2 and 2.6 kb. 

Four commercial systems were selected for this experiment: In-Fusion® HD Cloning Kit 

(Clontech); ClonEZ® PCR Cloning Kit (GenScript); GeneArt® Seamless Cloning and 

Assembly Kit (InvitrogenTM by Life Technologies); and Choo-Choo CloningTM Kit (MCLab). 

For all these four methods, pET28a was PCR linearized and used for the cloning reactions. 

Vector to insert molar ratios of 1:4 (for fragments of 0.4 and 1.2 kb) and 1:2 (for 2.6 kb 

fragment) were mixed with the appropriate enzyme mixtures, following the manufacturers’ 

protocols. Percentage of recombinant colonies was calculated for each condition in test, by 

analyzing 32 colonies from each transformation. The competency of E. coli DH5α cells was 

1.54 × 108 cfu/μg for circular pET28a. DH5α cells are killed due to the presence of the lethal 

genesalthough reduced background can result from its disruption by nucleases or 

spontaneous mutagenesis (Bernard, 1996). 

 

3.1.2.6. Testing the efficacy of different auto-induction media 

We have developed two new E. coli auto-induction media systems: an LB-based auto-

induction medium (NZY Auto-Induction LB medium) and the NZY Auto-Induction Kit, both 

now available from NZYTech, genes & enzymes, Portugal. The NZY Auto-Induction LB 

medium is a rich culture medium formulated with tryptone, yeast extract, nitrogen, 

phosphate, magnesium, and trace metals in adequate proportions. The method is based on 

the presence of different carbon sources that are metabolized differentially to promote culture 

growth to high cell densities and subsequently induce protein expression from lac-based 

promoters. This medium is prepared by simply adding 50 g/L of powder and 10 mL/L of 

glycerol to sterile distilled water. The NZY Auto-Induction Kit contains two concentrated 

sterile solutions (induction and buffering) that can be added to traditional complex media, 

such as Luria-Bertani (LB) broth or Terrific Broth (TB). Like the NZY Auto-Induction LB 

medium, this method is also based on medium components that promote culture growth to 

high cell densities and subsequent induction of protein expression from lac-based promoters. 

The kit is used by adding 25 mL/L of induction solution and 50 mL/L of the buffering solution 

to sterile glucose-free complex media.  

 

The capacity of these and other auto-induction media for expressing bacterial recombinant 

proteins at high levels in E. coli was compared. Initially, a recombinant protein from R. 

flavefaciens was tested for expression in either NZY Auto-Induction LB medium or LB 

medium supplemented with solutions aiming at increasing cell densities provided by the NZY 

Auto-Induction Kit, against the standard auto-induction medium ZYM-5052 (Studier, 2005). A 

pre-inoculum of E. coli BL21(DE3) cells containing the recombinant plasmid grown from a 
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fresh isolated colony was prepared and used to inoculate 50 mL of each auto-induction 

media in 500 mL erlenmeyer flasks The recombinant cultures were grown at 37°C with 

vigorous aeration and collected at different times during ~ 24 h of incubation. The OD600nm of 

the cultures at different time points was monitored, and protein expression was accessed by 

analyzing total protein through denaturing gel electrophoretic analysis (SDS-PAGE). 

Subsequently, different auto-induction media were tested for the expression of 24 different R. 

flavefaciens recombinant proteins in both E. coli BL21(DE3) and BL21(DE3)pLysS 

(Novagen®). The media under investigation were: NZY Auto-Induction LB medium (NZYTech 

genes & enzymes, Portugal) against the equivalent Overnight ExpressTM Instant TB Medium 

(Novagen®), and NZY Auto-Induction Kit (NZYTech genes & enzymes, Portugal) which was 

probed against the Overnight ExpressTM Autoinduction System 1 (Novagen®). Pre-inoculums 

from fresh colonies were prepared and used to inoculate 5 mL of each auto-induction 

medium supplemented with kanamycin (50 μg/mL). Recombinant strains were grown in 24-

deep-well plates at 37°C at 400 rpm in an orbital incubator shaker to stationary phase 

(OD600nm > 10). The bacteria were collected by centrifugation of the deep-well plates at 2.500 

g for 10 min. The His6-tagged recombinant proteins were purified from cell-free extracts by 

immobilized metal-ion affinity chromatography (IMAC), as described below, and analyzed by 

SDS-PAGE. Protein concentration was determined using a NanoVue spectrophotometer (GE 

Healthcare).  

 

3.1.2.7. Small-scale protein expression  

Based on the previous comparison studies of the growing conditions, recombinant plasmids 

encoding R. flavefaciens or C. thermocellum cellulosomal modules of unknown function were 

used to transform E. coli BL21(DE3)pLysS competent cells. The 239 recombinant strains 

generated were subsequently grown in 5 mL of NZY Auto-Induction LB medium (NZYTech 

genes & enzymes, Portugal) supplemented with kanamycin (50 μg/mL). Growth was carried 

out in 24-deep-well plates at 37°C for four hours in a microplate shaker. The temperature 

was then dropped to 30°C and cells were left to grow for 16-20 hours (OD600nm > 10). Cells 

were harvested by centrifugation of the deep-well plates at 2.500 g for 10 min.   

 

3.1.2.8. Using different bacterial lysis methods for extracting recombinant 

proteins 

Initial studies were performed to compare the capacity of different chemical lysis methods 

that can easily be integrated in HTP protocols to disrupt E. coli cells. Thus, E. coli BL21(DE3) 

or BL21(DE3)pLysS cells expressing the C. thermocellum cellulase 8A (CtCel8A) were used 

to test three different lysis buffers: NZY Bacterial Cell Lysis Buffer (a previously developed 

detergent-based buffer available from NZYTech genes & enzymes, Portugal), supplemented 

with 0.1 mg/mL lysosyme and 0.004 mg/mL DNase I, B-PER® Bacterial Protein Extraction 

https://www.nzytech.com/site/GH8/Cellulase-8A-GH8-Clostridium-thermocellum
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Reagent (Thermo Scientific) and BugBuster® Protein Extraction Reagent (Novagen®). E. coli 

cells expressing CtCel8A were cultured in 100 mL of LB-Broth media supplemented with 

kanamycin (50 μg/mL) at 37°C to mid-exponential phase (OD600nm = 0.6) and recombinant 

protein overproduction was induced by the addition of isopropyl β-D-1-thiogalactopyranoside 

(IPTG) at 1 mM final concentration. Cells were further incubated for 16 h at 19°C. The 

following day, 5 mL of each culture (BL21(DE3) and BL21(DE3)pLysS) were distributed into 

9 wells of a 24-deep-well plate and bacteria collected by centrifugation at 2.500 g for 10 

min. Cells were ressuspended in 1 mL of buffer in test (in triplicates) and lysis proceeded in a 

microplate shaker at room temperature for ~15 min, when an homogeneous cell-lysed extract 

appeared. The His6-tagged recombinant CtCel8A was purified from cell-free extracts by 

immobilized metal-ion affinity chromatography (IMAC) as described below and separated by 

SDS-PAGE. Protein concentration was determined by the Bradford Assay.  

 

The efficiency of the NZY Bacterial Cell Lysis Buffer was compared to the classical 

mechanical ultra-sonication method in the disruption of 22 recombinant E. coli BL21(DE3) 

strains expressing different R. flavefaciens proteins. Cells were cultured in 40 mL of NZY 

Auto-Induction LB medium (NZYTech genes & enzymes, Portugal) supplemented with 

kanamycin (50 μg/mL) in 500 mL-flasks. After growth at 37°C during 16 h, 2 x 5 mL of each 

cell culture were distributed into two 24-deep-well plates, respectively. Bacteria were 

collected by centrifugation and pellets were either ressuspended in 1 mL of 50 mM 

NaHEPES, 1 M NaCl, 10 mM Imidazole, 5 mM CaCl2, pH 7.5 followed by sonication (1 min at 

70% for each well) (1 plate) or lysed in 1 mL of NZY Bacterial Cell Lysis Buffer, 

supplemented with 0.1 mg/mL lysosyme and 0.004 mg/mL DNase I (~15 min at room 

temperature) (1 plate). Recombinant proteins extracted using these two strategies were 

purified through IMAC as described below and separated by SDS-PAGE. Protein 

concentration was determined using a NanoVue spectrophotometer (GE Healthcare). 

 

3.1.2.9. Automated small-scale protein purification 

Based on the previous comparison studies of the cell lysis conditions, the cell-pellets from 

the 239 recombinant cultures encoding unknown cellulosomal proteins were disrupted in 1 

mL of NZY Bacterial Cell Lysis Buffer (NZYTech genes & enzymes, Portugal), supplemented 

with 0.1 mg/mL lysosyme and 0.004 mg/mL DNase I. All recombinant proteins contained an 

engineered N-terminal His6-tagged. Recombinant proteins were purified by immobilized 

metal-ion affinity chromatography (IMAC) using a Tecan robot (Switzerland). After cell lysis, 

the crude cell lysates were incubated at room temperature with 200 μL of Ni2+ Sepharose 

beads to capture the recombinantly expressed proteins. The deep-well plates were shaken 

for 10 min in the robot plate shaker. Sepharose beads were prepared by combining 4x 

Chelating Sepharose Fast Flow (GE Healthcare) and 0.04 M of nickel in 50 mM NaHEPES, 1 
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M NaCl, 10 mM Imidazole, 5 mM CaCl2, pH 7.5. To separate the beads from the cell extract, 

the whole samples were transferred into a 96-well receiver filter plate (Macherey-Nagel). 

Filtration was achieved by applying vacuum. The beads were washed twice with 1 mL of 50 

mM NaHEPES, 1 M NaCl, 10 mM Imidazole, 5 mM CaCl2, pH 7.5, followed by 2 x 1 mL 

washes with 50 mM NaHepes, 1 M NaCl, 35 mM Imidazole, 5 mM CaCl2, pH 7.5. The target 

proteins were eluted from the beads with 0.15 mL of 50 mM NaHEPES, 1 M NaCl, 300 mM 

Imidazole, 5 mM CaCl2, pH 7.5 in 96-deep-well plates.  

 

3.1.2.10. Analysis of levels of gene expression and enzyme discovery screen 

Levels of protein expression were estimated by SDS-PAGE analysis with 14% gels 

according to Laemmli (1970). Purified protein samples were screened for α-L-

arabinofuranosidase activity in a colorimetric assay. Reactions were carried out in 96-well 

plates by mixing 25 μL of sodium phosphate buffer, pH 7.0 containing 1 mM 4-nitrophenyl-α-

arabinofuranoside (pNPAf) (Sigma) with 5 μL of each protein sample. A negative reaction 

control was performed using 5 μL of 50 mM NaHEPES, 1 M NaCl, 300 mM Imidazole, 5 mM 

CaCl2, pH 7.5 buffer. The positive control consisted in the addition of a GH51 

arabinofuranosidase (CR0024, NZYTech genes & enzymes, Portugal). Plates were 

incubated at 37°C in a microplate shaker incubator. Enzyme activity was qualitatively 

accessed by the formation of an intense yellow soluble product.  

 

3.1.2.11. Thin layer chromatography (TLC)  

Reaction products of the enzyme identified in this study were analysed by TLC. Briefly, the 

enzyme reaction was performed in 200 mM HEPES buffer, pH 7.0, containing 150 mM NaCl, 

0.2% wheat arabinogalactan, 0.1 mg/mL BSA, 2 mM CaCl2, and 1 µM of enzyme in a final 

volume of 200 µL. Reactions were incubated for 16 h at 37°C. Each reaction was spotted 2 

times (3 µL) in a thin layer chromatography plate and run two times in 1-butanol/acetic 

acid/water (2:1:1, v/v). Visualization of the sugars was done by incubation with orcinol 

sulphuric acid reagent (sulphuric acid/ethanol/water 3:70:20 v/v, orcinol 1%) followed by 

incubation at 120°C until sugars appeared. Galactose and arabinose were used as 

monosaccharide standards. 

 

3.1.3. Results and Discussion 

3.1.3.1. Modules of unknown function in R. flavefaciens and C. thermocellum 

cellulosomes 

Genome sequencing revealed more than 70 genes encoding dockerin-containing proteins, 

which constitute cellulosomal proteins, in the genome of C. thermocellum ATCC 27405, while 

over 200 of these genes are present in R. flavefaciens FD-1. The majority of the cellulosomal 

proteins identified in these two bacteria are glycoside hydrolases, carbohydrate esterases or 
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polysaccharide lyases. In addition, putative proteases and protease inhibitors have also been 

identified in the cellulosome of C. thermocellum (Demain et al., 2005; Raman et al., 2009; 

Bayer et al., 2008). These large arrays of multi-modular enzymes work in a concerted and 

synergistic manner to deconstruct structural polysaccharides. However, a large number of 

cellulosomal modules, mainly from the recent genome-sequenced R. flavefaciens, are still of 

unknown function, i.e. do not bear homology with any of the families catalogued in the CAZy 

database. Furthermore, even for CAZymes classified into sequence-based families, 

substrate specificity cannot be directly predicted based on in silico analysis as within the 

same CAZyme family there is usually no conservation in substrate preference (Mizutani et 

al., 2012). Here, a high-throughput platform was designed to recombinantly produce 

unknown modules identified in bacterial cellulosomes to be used in subsequent functional 

screenings. Thus, 239 genes, 223 from R. flavefaciens and 16 from C. thermocellum, 

encoding cellulosomal modules of unknown function, were isolated, cloned, expressed and 

purified in a high-throughput platform. The proteins of unknown function were then screened 

for α-L-arabinofuranosidase activity.  

 

3.1.3.2. An automatable high-throughput ligation-independent cloning method 

To clone 239 cellulosomal genes in a high-throughput manner we developed a ligation-

independent-based method that allows cloning the nucleic acid inserts (PCR products) 

directly into a novel prokaryotic expression vector by a base complementation strategy. The 

efficacy of the novel system (here reported as Easy cloning method) was tested by cloning 

DNA fragments of different sizes (164-bp, 335-bp and 2.6-kb) and using different vector to 

insert molar ratios (1:2, 1:4, 1:6, 1:8, 1:10, and 1:20). The data, presented in Table 3.1, 

revealed that the largest number of colonies was obtained using 1:4-1:6 ratios for the 

smallest insert and 1:2-1:4 ratios for the 335-bp fragment. The number of colonies generated 

when cloning the largest DNA fragment was similar for all molar vector:insert ratios tested 

(Table 3.1). Regarding the recombinant clones, the percentage obtained for the smallest-

sized insert was high (100%) and similar to all the ratios tested, except for 1:20 (which 

resulted in the lowest number of colonies). The percentage of recombinant clones varied 

slightly for the 335-bp fragment, with the lowest number obtained for ratio 1:4 (90%). A lower 

percentage of recombinant clones was observed for the largest-sized DNA fragment, which 

also decreased when high molar insert ratios were used. Nonetheless, in general, the data 

correspond to high cloning efficiencies (considering vector:insert ratios from 1:2-1:10). Molar 

ratios of vector to insert could, however, be adjusted according to the insert length. 
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Table 3.1| Recombinant colony counts using different molar ratios of vector to insert. A total of 

20 colonies from each transformation was analyzed. 

Insert 
Molar ratio of vector 

to insert 
Nº. colonies 

Recombinant 

colonies (%) 

164 bp 

1:2 64 100 

1:4 120 100 

1:6 94 100 

1:8 56 100 

1:10 46 100 

1:20 2 50 

335 bp 

1:2 120 95 

1:4 95 90 

1:6 76 100 

1:8 68 95 

1:10 44 100 

1:20 10 100 

2.6 kb 

1:2 115 85 

1:4 130 85 

1:6 140 85 

1:8 140 70 

1:10 115 75 

1:20 100 75 

 

The efficacy of different ligation-independent methods to clone DNA fragments of 0.4, 1.2 

and 2.6 kb was also investigated. Cloning reactions were assayed following the 

manufacturers protocols using the vector pET28a (Novagen®) for In-Fusion® HD Cloning Kit, 

ClonEZ® PCR Cloning Kit, GeneArt® Seamless Cloning and Assembly Kit, and Choo-Choo 

CloningTM Kit. The efficiency of the different protocols was tested by randomly analyzing 32 

colonies generated by each protocol through colony PCR. The data, summarized in Table 

3.2, revealed that the Easy cloning method displays a considerable high cloning efficiency, 

with percentages of recombinant colonies of 100% for the 0.4-kb insert, 97% for the 1.2-kb 

insert, and 81% for the 2.6-kb insert, which are in the same order of magnitude to the other 

methods tested. The challenge occurred when trying to clone the largest DNA fragment; 

relatively low percentage of recombinant clones was obtained for all the methods in study 

when comparing with small inserts. As stated above, it is possible that the vector to insert 

molar ratio requires an adjustment for larger inserts to maximize cloning efficiencies. 

The Easy cloning method described above was used to clone 239 cellulosomal genes in the 

pHTP plasmid. DNA amplifications and cloning reactions were performed in three batches of 

47, 96 and 96 genes, respectively, performed in three 96-well plates. In general, PCR 

amplifications were very efficient (Figure 3.1) although for 42 genes optimization of PCR 
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conditions were needed to improve yield (data not shown). After cloning, all 239 genes were 

sequenced to confirm that no mutations accumulated during PCR amplification. 

 

Table 3.2| Cloning efficiency for inserts of different lengths using different ligation-independent 

cloning methods. 

Insert Cloning method 
Nº. 

colonies 

Recombinant 

colonies (%) 

0.4 kb 

Easy cloning method 820 100 

In-Fusion
®
 HD Cloning kit 280 100 

CloneEZ
®
 PCR Cloning Kit 9 100 

GeneArt
®
 Seamless PLUS Cloning and Assembly Kit 1200 100 

Choo-Choo Cloning
TM

 Kit 1150 100 

1.2 kb 

Easy cloning method 850 97 

In-Fusion
® 

HD Cloning kit 240 100 

CloneEZ
®
 PCR Cloning Kit 8 75 

GeneArt
®
 Seamless PLUS Cloning and Assembly Kit 1300 81 

Choo-Choo Cloning
TM

 Kit 480 88 

2.6 kb 

Easy cloning method 375 81 

In-Fusion
®
 HD Cloning kit 440 97 

CloneEZ
®
 PCR Cloning Kit 11 55 

GeneArt
®
 Seamless PLUS Cloning and Assembly Kit 2000 94 

Choo-Choo Cloning
TM

 Kit 410 78 

 

Figure 3.1| Representative PCR amplification for 96 of the targets in study. 

 
 

PCR was repeated when absence of the intended band was observed, as well as in the presence of nonspecific 

bands and/or primer-dimers formation. 

 

3.1.3.3. Levels of expression of cellulosomal modules in E. coli   

Two auto-induction systems were developed to support growth of E. coli to high cell densities 

and to obtain high-levels of recombinant protein expression from lac-based promoters: NZY 

Auto-Induction LB Medium and NZY Auto-Induction Kit (both now available from NZYTech, 

genes & enzymes, Portugal). The capacity of these auto-induction media to promote the 

expression of a R. flavefaciens protein was compared against the standard ZYM-5052 auto-

induction medium (Studier, 2005). The data, presented in Figure 3.2, revealed that for the 
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NZY Auto-Induction LB medium, induction started at OD600nm ~ 8 (after around 6 h of 

incubation in 50 mL cultured flasks at 37 ºC) and maximal levels of recombinant proteins 

were obtained at OD600nm values of 13-14, which corresponded to 16-20 h of incubation. 

Levels of protein expression obtained using NZY Auto-Induction LB medium were equivalent 

or slightly higher when compared with the ZYM-5052 medium. For cells grown in LB medium 

supplemented with the NZY Auto-Induction Kit, the time and OD600nm from which induction 

started was similar to that observed for the NZY Auto-Induction LB medium. Levels of protein 

expression obtained using the kit were similar when compared with ZYM-5052. Both NZY 

Auto-Induction LB medium and NZY Auto-Induction Kit allowed cells to reach higher OD600nm 

values when compared with the standard auto-induction medium. After 22 h of incubation, a 

slightly decrease of protein expression was observed. Indeed, low or even no protein 

production has been reported at high cell densities mainly as a result of plasmid loss 

(Baneyx, 1999b), pH drop or restricted oxygen availability (Jana & Deb, 2005).   

 

Figure 3.2| Levels of expression of a recombinant protein from Ruminococcus flavefaciens 

obtained using the NZY Auto-Induction LB medium and the LB medium supplemented with the 

solutions provided by the NZY Auto-Induction Kit. 
 

 
 

Both auto-induction systems available from NZYTech, genes & enzymes were compared with a standard auto-

induction medium – ZYM-5052. Samples were taken at different time points (1-7) during growth to construct 

growth curves (A) and the corresponding total cell extracts were separated through SDS-PAGE to analyze protein 

expression profiles (B). E. coli BL21(DE3) strain was used as host. 
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The efficacy of NZY Auto-Induction LB medium and Overnight ExpressTM Instant TB Medium 

for the production of 24 different recombinant proteins from R. flavefaciens in two expression 

E. coli strains, BL21(DE3) and BL21(DE3)pLysS, was also compared. Recombinant proteins 

were purified through IMAC and separated by SDS-PAGE. Data, presented in Figures 3.3 

and 3.4, revealed that NZY Auto-Induction LB medium led from similar to higher levels of 

pure protein when compared with Overnight ExpressTM Instant TB Medium. For BL21(DE3) 

cells (see Figure 3.3), a detailed data analysis revealed that for 12 proteins tested, NZY 

Auto-Induction LB medium performed better than the Overnight ExpressTM Instant TB 

Medium. Only one protein, protein number 20, was expressed at higher levels by the 

Overnight ExpressTM Instant TB Medium. For the remaining 10 proteins, the differences 

observed between media were not significant. Using BL21(DE3)pLysS cells (see Figure 3.4), 

the levels of expressed proteins were, in general, slightly lower than those obtained in 

BL21(DE3), with some exceptions. Since pHTP uses a T7/lac promoter, the combination of 

the T7 lysozyme expressed by the pLysS plasmid (Moffatt & Studier, 1987) and the lac 

repressor (encoded by lacI) provides a tighter control of gene expression (Dubendorf & 

Studier, 1991), which may lead to significant reduced protein expression upon induction 

(Studier, 1991; Pan & Malcolm, 2000). Nevertheless, NZY Auto-Induction LB medium 

performed better for 15 proteins when compared with the Overnight ExpressTM Instant TB 

Medium. A similar experiment was performed comparing the NZY Auto-Induction Kit with the 

Overnight ExpressTM Autoinduction System 1 (Novagen®). The results are presented in 

Figures 3.5 and 3.6. Although the level of protein purity may have affected the A280nm 

measurements of the purified samples through the NanoVue, looking for the SDS-PAGE gels 

(Figures 3.5B and 3.6B), the data suggested that levels of protein expression were similar, in 

both BL21(DE3) and BL21(DE3)pLysS strains. 
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Figure 3.3| Levels of purified protein obtained from 24 different recombinant E. coli BL21(DE3) 

strains grown in the NZY Auto-Induction LB medium or in the Overnight Express
TM

 Instant TB 

Medium.  

 

 

 

The 24 recombinant R. flavefaciens proteins obtained from E. coli BL21(DE3) grown in the NZY Auto-Induction 

LB medium (NZYTech, genes & enzymes) and in the Overnight Express
TM

 Instant TB Medium (Novagen
®
) were 

purified through IMAC and levels of protein obtained evaluated (A) while the degree of purification was confirmed 

through SDS-PAGE (B). 
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Figure 3.4| Levels of purified protein obtained from 24 different recombinant E. coli 

BL21(DE3)pLysS strains grown in the NZY Auto-Induction LB medium or in the Overnight 

Express
TM

 Instant TB Medium.  

 

 

 

The 24 recombinant R. flavefaciens proteins obtained from E. coli BL21(DE3)pLysS grown in the NZY Auto-

Induction LB medium (NZYTech, genes & enzymes) and in the Overnight Express
TM

 Instant TB Medium 

(Novagen
®
) were purified through IMAC and levels of protein obtained evaluated (A) while the degree of 

purification was confirmed through SDS-PAGE (B). 
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Figure 3.5| Levels of purified protein obtained from 24 different recombinant E. coli BL21(DE3) 

strains grown in LB medium supplemented with the NZY Auto-Induction Kit or the Overnight 

Express
TM

 Autoinduction System 1. 

 

 

 

The 24 recombinant R. flavefaciens proteins obtained from E. coli BL21(DE3) grown in LB medium supplemented 

with the NZY Auto-Induction Kit (NZYTech, genes & Enzymes) and the Overnight Express
TM

 Autoinduction 

System 1 (Novagen
®
). The 24 recombinant R. flavefaciens proteins were purified through IMAC and levels of 

protein obtained evaluated (A) while the degree of purification was confirmed through SDS-PAGE (B). 
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Figure 3.6| Levels of purified protein obtained from 24 different recombinant E. 

coli BL21(DE3)pLysS strains grown in LB medium supplemented with the NZY Auto-Induction 

Kit or the Overnight Express
TM

 Autoinduction System 1. 

 

 

 

The 24 recombinant R. flavefaciens proteins obtained from E. coli BL21(DE3)pLysS grown in LB medium 

supplemented with the NZY Auto-Induction Kit (NZYTech, genes & Enzymes) and the Overnight Express
TM

 

Autoinduction System 1 (Novagen
®
). The 24 recombinant R. flavefaciens proteins were purified through IMAC 

and levels of protein obtained evaluated (A) while the degree of purification was confirmed through SDS-PAGE 

(B). 
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Data presented above suggest that NZY Auto-Induction LB medium is the most reliable 

medium to produce high levels of cellulosomal protein in E. coli and can be easily adaptable 

to a HTP approach. Thus, following the protocols described in the Materials and Methods 

section, 239 recombinant BL21(DE3)pLysS strains transformed with the plasmids encoding 

the cellulosomal modules of unknown function were grown in a small-scale (5 mL) in this 

medium. The cells were recovered by centrifugation and stored at -20 ºC before proceeding 

with lysis and purification (see below). 

 

3.1.3.4. Efficient E. coli cell lysis and high-throughput protein purification 

Three different cell lysis reagents were tested for the disruption of a recombinant E. coli 

strain expressing the C. thermocellum cellulase 8A (CtCel8A). The data, presented in Figure 

3.7, revealed that yields of extracted protein using the NZY Bacterial Cell Lysis Buffer were 

higher than those obtained by the other two products for the BL21(DE3)pLysS cells, and 

slightly higher for BL21(DE3) cells. The use of pLysS or pLysE hosts can enhance the cell 

wall lysis procedure due the action of T7 lysozyme with amidase activity endogenously 

produced (Zhang & Studier, 2004). Thus, addition of lysozyme during extraction provides 

extra disruption level in BL21pLysS cells. However, excess amidase activity can cause 

spontaneous E. coli lysis during growth resulting in reduced expression levels (Studier, 

1991). Nevertheless, yields of extracted protein after treatment with NZY Bacterial Cell Lysis 

Buffer were very similar for both BL21pLysS and BL21 expressing strains, even adding extra 

lysozyme. When comparing all three cell lysis detergents, complete cell lysis occurred after 

10-15 minutes incubation at room temperature with gentle shaking in an orbital incubator 

(data not shown). To verify if the detergent extraction had not affected the biologic activity of 

the recombinant cellulase, the enzyme was purified and tested in the hydrolysis of 

hydroxyethylcellulose. The data (not shown) revealed that CtCel8A obtained after treatment 

with the three different chemical lysis buffers have similar activity to the recombinant enzyme 

obtained after cell disruption by sonication.  

 

 

 

 

 

 

 

 

 

 

 

https://www.nzytech.com/site/GH8/Cellulase-8A-GH8-Clostridium-thermocellum


 

64 
 

Figure 3.7| Comparing the efficiency of cell lysis using NZY Bacterial Cell Lysis Buffer, B-PER
®
 

Bacterial Protein Extraction Reagent and BugBuster
®
 Protein Extraction Reagent. 

 

 
 

E. coli BL21(DE3) and BL21(DE3)pLysS cells harvested from 5 mL of cultured media were lysed (in triplicates) 

using three different protein extraction chemicals: NZY Bacterial Cell Lysis Buffer (NZYTech, genes & enzymes), 

B-PER
®
 Bacterial Protein Extraction Reagent (Thermo Scientific) and BugBuster

®
 Protein Extraction Reagent 

(Novagen
®
). (A) Levels of extracted protein obtained were evaluated. (B) The recombinant protein was purified 

through IMAC and separated through SDS-PAGE.  

 

In addition, the efficacy of detergent lysis (NZY Bacterial Cell Lysis Buffer) was compared 

with the standard mechanical procedure (sonication) in the extraction of 22 different 

recombinant R. flavefaciens proteins produced in E. coli BL21(DE3). Overall, the data, 

presented in Figure 3.8, revealed that cell-free extracts from the chemical lysis showed 

higher to similar levels of target protein extracted when compared with sonication. A detailed 

analysis of data collected revealed that only for four proteins in test, sonication performed 

slightly better than the cell lysis extraction reagent.  
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Figure 3.8| Comparing the efficiency of cell lysis using the NZY Bacterial Cell Lysis Buffer or a 

mechanical procedure (sonication).  

 

 
 

Levels of extracted protein obtained from 22 different recombinant E. coli BL21(DE3) cultures using the NZY 

Bacterial Cell Lysis Buffer (NZYTech, genes & enzymes, Portugal) or sonication.  

 

Data presented above confirm that detergent lysis is as efficient as mechanical lysis to 

disrupt E. coli cells while retaining the biological activity of the recombinant proteins. 

Detergent lysis is also more amenable in HTP approaches. Thus, the 239 recombinant 

BL21(DE3)pLysS cell pellets from cultures grown previously were lysed in 1 mL of NZY 

Bacterial Cell Lysis Buffer, as described in Materials and Methods section. Recombinant 

proteins were purified by IMAC and eluted in 0.15 mL of elution buffer. In total, 184 (77%) out 

of 239 proteins were obtained in significant levels in a purified form (> 90% pure as 

determined by SDS-PAGE analysis). The primary sequences and the molecular architecture 

of these 184 expressed cellulosomal proteins from which the modules of unknown function 

were isolated are available in Table S3.2 (see in Annex). The remaining proteins presented 

none or low production levels as a consequence of their accumulation in inclusion bodies, 

lower RNA stability or improper protein folding within the E. coli cytoplasm (data not shown).  

 

3.1.3.5. Discovery of novel α-L-arabinofuranosidases in cellulosomes 

The 184 purified cellulosomal modules of unknown function were screened for α-L-

arabinofuranosidase activity (EC 3.2.1.55) using 4-nitrophenyl-α-arabinofuranoside (pNPAf) 

as the substrate in a 96-well plate format. Small-scale affinity purification resulted in 60 μg to 

2 mg of recombinant proteins in 0.15 mL final volume, which was sufficient for the activity 

screening protocol. The activity screen revealed that protein Rf137, an unknown domain 

located in the cellulosome of R. flavefaciens (see Table S3.2, in Annex), displays α-L-

arabinofuranosidase activity. Primary sequence analysis on the enzyme containing the Rf137 
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module revealed the presence of an N-terminal signal peptide followed by a family 13 CBM, 

an internal type I dockerin, the Rf137 domain and a C-terminal GH43_G catalytic domain 

(Figure 3.9A). The recombinant protein displays molecular size of 37.78 kDa which is in 

close agreement with the observed molecular mass on SDS-PAGE analysis (Figure 3.9B).  

 

Figure 3.9| Properties of the protein Rf137 from R. flavefaciens cellulosome. 
 

 

 

(A) Molecular architecture of modular Rf137. SP, signal peptide; Dock, dockerin module. (B) Expression and 

purification of Rf137. The recombinant protein was expressed in E. coli BL21(DE3)pLysS strain and purified 

through IMAC. Lane 1: insoluble protein cellular extract (pellet); Lane 2: soluble protein cellular extract 

(supernatant); Lane 3: sample collected after supernatant filtration and passed through the affinity column; Lane 

4: sample collected after a first wash step with 50 mM NaHEPES, pH 7.5, 1 M NaCl, 10 mM Imidazole, 5 mM 

CaCl2; Lane 5: sample collected after a second wash step with 50 mM NaHEPES, pH 7.5, 1 M NaCl, 35 mM 

Imidazole, 5 mM CaCl2; Lane 6: sample of purified Rf137. 

 

Sequence alignment using the BLAST tool (www.ncbi.nlm.nih.gov/BLAST), revealed that 

there are more than 30 proteins of unknown function and not previously classified in any GH 

family, which share >30% identity with the Rf137, suggesting that this enzyme is the founding 

member of a novel GH family (Figure 3.10A). Nevertheless, the novel family is distantly 

related with GH43 (Figure 3.10B) and GH62 (data not shown) suggesting that the novel 

family is part of Clan GH-F and should display the characteristic 5-bladed β-propeller fold.  
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Figure 3.10| Multiple Sequence Alignment of Rf137 performed by CLUSTALW program. 

 
 

Identical amino acid residues common in all sequences are represented by grey shade. (A) Rf137 alignment was 

with the following proteins sharing >30% identity: protein from Parabacteroides gordonii (sequence ID 

WP_028729310.1); protein from Bacteroides finegoldii CL09T03C10 (sequence ID gb|EKJ90516.1); protein from 

Flavobacterium sp. F52 (sequence ID WP_008467609.1). (B) Rf137 alignment was with the appended C-terminal 

GH43 module. 

 

Analysis of Rf137 degradation products when the enzyme is attacking arabinogalactan (from 

wheat) revealed the presence of arabinose as the sole reaction product, suggesting that 

Rf137 acts in the removal of arabinose side chains from this complex polysaccharide (Figure 

3.11).  
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Figure 3.11| Thin layer chromatography (TLC) showing the enzymatic degradation products of 

wheat arabinogalactan. 

 

TLC analysis of hydrolysis products from wheat arabinogalactan by Rf137. Lane 1: Galactose standard; Lane 2: 

Arabinose standard; Lane 3: Rf137 reaction products; Lane 4: Rf138 reaction products (negative control). 

 

3.1.4. Conclusions  

As a result of the dramatic increase in the number of genome and metagenome sequences 

available, there is a significant growing pressure to develop appropriate high-throughput 

methods to uncover the functional and structural novelty of the proteomic information 

revealed by genomics. Particularly, CAZymes are being discovered at a breakneck speed, 

especially due to the availability of complete genome sequences of many cellulosomal 

organisms, coupled to current interest on the efficient conversion of biomass for biofuels 

production. As a result, the number of proteins without functional characterization in the 

CAZy database has been increasing. Here we report the development of a high-throughput 

(HTP) platform for the efficient cloning, expression and purification of a large number of 

cellulosomal modules of unknown function in Escherichia coli at a scale that can be applied 

in an enzyme functional screen. The cloning approach developed uses simple methodologies 

and is easily adaptable to an automatic system to test many different genes simultaneously. 

Furthermore, it allows directional cloning and high efficiencies for the generation of 

expression clones, even using large DNA fragments. Thus, the labor required for the 

selection and validation of recombinant clones is much reduced. The designed protocol for 

growth and expression has been found to be optimal to produce recombinant cellulosomal 

proteins. Using auto-induction media, cultures can reach OD600nm of 13–14, with 

corresponding high yields of recombinant protein production. In addition, chemical lysis offers 

an efficient, rapid and an automatable procedure when purifying multiple proteins in parallel. 

Routinely, we can obtain yields up to 2 mg of purified proteins in 0.15 mL final volume, from 5 

mL cultures. It should be beared in mind that once the proteins have been expressed in 

soluble form they can be produced at large-scale using the same miniaturized growth 

conditions. Thus, it is evident that automation is essential in proteomic studies involving 

dozen to thousands of proteins by providing the required throughput. The platform developed 
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here uses a robot to perform cloning, expression and purification on the order of hundreds of 

targets. However, even without the convenience of automated liquid handling equipment, it is 

possible to carry out this method by using multichannel pipettes, multi-well plates and a 

manifold vaccum apparatus. The colorimetric screening protocol established here allowed 

the rapid discovery of a novel α-L-arabinofuranosidase from a pool of 184 expressed proteins 

of unknown function. The novel CAZyme is the founder member of a novel GH family 

belonging to the clan GH-F. Although centered in the discovery of novel α-L-

arabinofuranosidases, other CAZyme activities can be screened by using the methodologies 

reported in this study. In addition, this platform could be applied for the production of proteins 

with different origins and functions, providing enough protein quantities to establish functional 

screens that could support the discovery of novel enzymes.  
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Abstract  

Production of recombinant proteins at high yields and in the soluble and correctly folded form 

in Escherichia coli is essential in biochemistry studies. Fusion protein biotechnology, in which 

recombinant proteins are expressed with a fusion tag, opens the possibility to produce stable 

targets at significant levels and in the biologically active form. Fusion tags can enhance 

protein expression, stability and solubility. Here we describe the development of a battery of 

novel expression vectors containing a range of different solubility tags, including three novel 

ones: RF1, RF47 and CEL. The 12 expression vectors were used to express 8 different 

proteins displaying different degrees of insolubility when expressed in E. coli. The 96 (12 x 8) 

recombinant plasmids were used to transform E. coli BL21(DE3) strain, which was grown 

under five different culture conditions. The data suggest that tags RF1 and RF47, in contrast 

to CEL, are highly efficient to generate the production of high levels of soluble proteins. 

However, from the 12 tags analyzed there is no single tag that performs universally well in 

raising the percentage of protein solubility. Thus, considering that the efficacy of the solubility 

tags depends on protein type, data presented here suggest that the best tag for a specific 

protein needs to be selected from a battery of tags and expressing conditions. To achieve 

this aim we report the generation of a general cloning strategy, where the target gene is 

initially cloned into an entry cloning vector (pHTP28) from which it can be easily transferred 

to a range of different expression vectors for tag selection. 
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4.1.1. Introduction  

In recent years, the availability of genomic and metagenomic sequence data increased 

dramatically. One of the major findings that results from the annotation of sequencing 

information is the presence of a large number of gene-encoded products of unknown 

function. Thus, it is clear that in the post-genomic era substantial efforts are required to 

investigate the function of increasing numbers of uncharacterized proteins revealed by 

genome sequencing projects. Recently, a series of novel methodological developments have 

come forward to allow the analysis of large numbers of genes/proteins. Ligation-independent 

cloning techniques enable the rapid cloning of multiple genes simultaneously (Hartley, 

Temple & Brasch, 2000; Berrow, Alderton, & Owens, 2009; Tachibana et al., 2009). In 

addition, miniaturization of cell growth conditions and automation of protein purification 

protocols allow the rapid production of many hundreds to thousands of target proteins 

(Chambers, 2002; Dieckman et al., 2002; Scheich, Sievert & Büssow, 2003). To improve the 

yields of protein production, expression conditions (e.g. temperature, time, culture media, 

host, expression plasmid) need to be optimized to generate soluble proteins in sufficient 

amounts for the required downstream applications. By using high-throughput tools, a large 

number of target proteins can be screened simultaneously and a large number of expression 

and purification conditions can be tested (Bruni & Kloss, 2013). 

Selection of the adequate host strain is a key step when designing a bioprocess for 

recombinant protein production. In the majority of situations, Escherichia coli remains the 

favorite choice for protein production due to its well-characterized genetics, the commercial 

availability of a range of strains and vectors, low production costs, ease of use, and medium 

to high yields of protein production (Baneyx, 1999b; Mancia & Love, 2011; Rosano & 

Ceccarelli, 2014). There are several examples where E. coli has been successfully used to 

produce heterologous proteins at an industrial scale, including the biopharmaceutical and 

biofuel industries (Huang, Lin & Yang, 2012; Chen et al., 2013). However, lack of post-

translational machinery and protein accumulation into insoluble and biologically inactive 

inclusion bodies (IB) constitute a major challenge when overexpressing heterologous 

proteins, mainly from eukaryotic origin, in E. coli (Demain & Vaishnav, 2009; Williams et al., 

1982). Other problems include poor expression, protein degradation as a result of the 

bacterial stress response, toxicity and loss of function (Peleg & Unger, 2012). Several 

strategies have been designed to overcome some of these bottlenecks. To prevent protein 

aggregation and formation of IB, the strategies available rely on covering their external 

hydrophobic moieties and include the use of genetic manipulated strains, introduction of 

chaperone molecules, modification of growth conditions, and fusion protein production 

(Schein, 1989; Baneyx, 1999b; Sørensen & Mortensen, 2005; Chou, 2007).  



 

73 
 

The fusion technology by which a recombinant protein is expressed fused to a highly soluble 

and stable protein partner has recently received considerable attention for solubility 

enhancement. Fusion tags are commonly proteins or peptides that are expressed at high 

levels in E. coli and are attached to the N- or C-terminus of poorly expressed recombinant 

proteins conferring mRNA stability while providing improved folding (Arechaga et al., 2003; 

Englander, 2000; Creighton, 1997). Furthermore, although it is still ambiguous how fusion 

tags act to enhance solubility, it is known that some fusion tags have an intrinsic chaperone-

like activity (Kapust & Waugh, 2000; Raran-Kurussi & Waugh, 2012), while others can drive 

the appended protein into folding pathways mediated by chaperones (Costa et al., 2014). 

The partners used for fusion protein expression to enhance solubility in E. coli vary among 

large molecules, such as maltose-binding protein (MBP) (di Guana et al., 1988), glutathione 

S-transferase (GST) (Smith & Johnson 1988) or N-utilization substance protein A (NusA) 

(Davis et al. 1999), to small peptides, such as thioredoxin (Trx) (LaVallie et al. 1993), small 

ubiquitin-like modifier (SUMO) (Baker, 1996) or Fh8 (Costa et al. 2013), and also include 

disulfide isomerases (e.g. DsbA and DsbC) (Collins-Racie et al.,1995; Nozach et al. 2013). In 

general, selection of the most appropriate fusion partner for a poorly expressed or insoluble 

protein requires the consideration of several factors, such as: the characteristics of the target 

protein (e.g. stability, hydrophobicity, size), the expression system used and the end use of 

the recombinant protein (Terpe, 2003). Strategies for the efficient removal of the fusion tag 

should also be considered for therapeutic proteins, or when structural or biochemical studies 

are required (Balbás, 2001). It should be taken in consideration that the solubility, as well as 

the functional activity of the target protein can change after cleavage of the soluble fusion 

partner (Koehn & Hunt, 2009). The portfolio of fusion tags currently available has been 

growing, as new fusion systems are constantly emerging. 

Here, we have constructed a novel series of prokaryotic expression vectors adapted to a 

ligation-independent cloning procedure previously described (Fernandes et. al., Chapter 3), 

which allows a large flexibility in the selection of the best fusion tag to increase protein 

expression and solubility in E. coli. The novel vectors were constructed based on the pHTP 

backbone (Fernandes et. al., Chapter 3), by inserting widely tested solubility tags, as well as 

novel system tags developed in this work. Two recombinant proteins highly expressed in E. 

coli (Rf1 and Rf747) were tested as fusion partners to improve solubility. In addition, a 

system consisting of a mini-cellulosome and based on the high affinity interactions 

established between Clostridium thermocellum cohesins and dockerins was developed to 

attempt reduce problems related with protein aggregation and potentiate correct folding. The 

mini-cellulosome (here named CEL) was also inserted into the pHTP plasmid to serve as 

fusion partner of recombinant proteins. This study provides a comparison of the novel fusion 

tags with other established solubility partners to verify their future applicability in the fusion 

protein technology. Eight target proteins, seven previously described as difficult to express 
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and one highly expressed in E. coli to serve as a control (green fluorescent protein, here 

named protein G) were cloned into the novel pHTP-derivatives and expressed as fusions 

with Trx, GST, MBP, NusA, SUMO, DsbA, DsbC, Fh8, CEL, Rf1, and Rf47. The expression 

vectors were transformed in E. coli BL21(DE3) strains and expression and solubility of the 

fusion proteins produced were evaluated. 

 

4.1.2. Materials and Methods 

4.1.2.1. Construction of pHTP-derivative vectors for protein expression in E. coli 

A collection of 11 novel prokaryotic expression vectors was constructed based on the pHTP 

bacConfidentialkbone described elsewhere (Fernandes et. al., Chapter 3). All new vectors 

were constructed by inserting a fusion protein into pHTP plasmid downstream of the T7 

promoter, such that it would become fused to the N-terminus of the recombinant protein. The 

DNA sequences encoding the protein tags were obtained by PCR using forward and reverse 

primers including engineered NcoI restriction sites (Table 4.1). Appropriate templates were 

used for the amplification of the genes encoding thioredoxin (Trx), glutathione-S-transferase 

(GST), maltose-binding protein (MBP), N-utilization substance A (NusA), small ubiquitin-like 

modifier (SUMO), disulfide oxidoreductase DsbA, disulfide-bond isomerase DsbC, and Fh8 

(Fasciola hepatica calcium-binding protein) tags, respectively. For amplification of the genes 

encoding the Rf1 and Rf47 tags, R. flavefaciens genomic DNA was used as template. For 

the pHTP-CEL, a mini-cellulosome was designed to co-express in the same cell the gene 

encoding an engineered version of the C. thermocellum scaffoldin CipA and the gene 

encoding the recombinant fusion protein containing an N-terminal dockerin. The mini-

cellulosome included the third and fourth cohesin modules from CipA (Coh3 and Coh4) 

separated by the family 3 cellulose-binding module (CBM3) upstream of a T7 terminator. 

Unique SacI and ApaI restriction sites were inserted at the 5’- and 3’-terminus of the gene 

encoding the cohesins, respectively. In addition, two His6 tags were introduced; one 

immediately downstream of the initiation codon and another just upstream of the stop codon 

for the CipA construct. The type I dockerin of Cthe_0246 from C. thermocellum, including a 

T7 promoter-RBS-ATG sequence, was inserted after the cohesins cassette. The fusion 

peptide consisting of this mini-cellulosome (here named CEL) was obtained by gene 

synthesis (see Figure S4.1, in Annex).  
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Table 4.1| Primers used for the construction of N-terminal fusion proteins. The NcoI restriction 

site included is underlined. 

 

Vector Primer sequence (5’→3’) Direction 

pHTP-Trx TRX_F     CACACCATGGGTAGCGATAAAATTATTCACCTG Forward 

 Trx_R       CACACCATGGCAGAACCGGCCAGGTTAGCGTCG Reverse 

pHTP-GST GST_F     CACACCATGGGTTCCCCTATACTAGGTTATTGG Forward 

 GST_R     CACACCATGGCAGAACCATCCGATTTTGGAGGATGG Reverse 

pHTP-MBP MBP_F     CACACCATGGGAAAGAAAGGTTTTATGTTGTTTAC Forward 

 MBP_R     CACACCATGGAAGTCTGCGCGTCTTTCAGG Reverse 

pHTP-NusA NusA_F     CACACCATGGGTAAAGAAATTTTGGCTGTAGTTG Forward 

 NusA_R     CACACCATGGCACTAGTCGCTTCGTCACCGAAC Reverse 

pHTP-SUMO SUMO_F    CACACCATGGGTGGGTCCCTGCAGGACTCAGAAG Forward 

 SUMO_R   CACACCATGGCACCTCCAATCTGTTCGCGGTG Reverse 

pHTP-DsbA DsbA_F     CACACCATGGGTAAAAAGATTTGGCTGGCGCTGG Forward 

 DsbA_R    CACACCATGGCTGATCCTTTTTTCTCGCTTAAG Reverse 

pHTP-DsbC DsbC_F    CACACCATGGGAAAGAAAGGTTTTATGTTG Forward 

 DsbC_R    CACACCATGGATGATCCTTTACCGCTGG Reverse 

pHTP-Fh8 Fh8_F      CACACCATGGGTTCCCCTAGTGTTCAAGAGGTTG Forward 

 Fh8_R      CACACCATGGCTGACAAAATCGAAACGAGTTC Reverse 

pHTP-CEL CEL_F     CACACCATGGGTGGCAGCAGCCATCACCATCACC Forward 

 CEL_R     CACACCATGGCGCTCGGGATGTCCGTGCCCAC Reverse 

pHTP-Rf1 Rf1_F      CACACCATGGGTGGCGAGTGTCACGGCTATATCG Forward 

 Rf1_R      CACACCATGGCAACGATTGAGTAATCCTTG Reverse 

pHTP-Rf47 Rf47_F     CACACCATGGGTGTCAAAAAGGAAACTCCTAACC Forward 

 Rf47_R     CACACCATGGCAGTTGCTGTATTGAATATCTTTG Reverse 

 

After gene isolation or synthesis, the nucleic acids encoding the different fusion tags were 

digested with NcoI restriction enzyme and ligated with similarly digested pHTP plasmid with 

Speedy Ligase (NZYTech, genes & enzymes, Portugal) to generate plasmids pHTP-CEL, 

pHTP-Trx, pHTP-GST, pHTP-MBP, pHTP-NusA, pHTP-SUMO, pHTP-DsbA, pHTP-DsbC, 

pHTP-Fh8, pHTP-Rf1 and pHTP-Rf47, respectively. The sequence of the all novel 

expression vectors was confirmed by DNA sequencing and their properties are summarized 

in Table 4.2. 
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Table 4.2| Properties of the novel prokaryotic expression vectors. 

 

Vector Fusion Protein 
Tag 

size (nt) 

MW tag 

(kDa) 
pI GRAVY 

Tag 

position 
Resistance 

pHTP His6-SSGPQQGLR 45 1.75 9.58 -2.060 N-terminal kan 

pHTP-

Trx 

Thioredoxin-

MGSS-His6-

SSGPQQGLR 

396 14.18  5.92 -0.213 N-terminal kan 

pHTP-

GST 

Glutathione S-

transferase-MGSS-

His6-SSGPQQGLR 

729 28.69 6.45 -0.466 N-terminal kan 

pHTP-

MBP 

Maltose binding 

protein-MGSS-His6-

SSGPQQGLR 

1221 44.61 5.79 -0.328 N-terminal kan 

pHTP-

NusA 

N-utilization 

substance A-

MGSS-His6-

SSGPQQGLR 

1551 57.17 4.67 -0.320 N-terminal kan 

pHTP-

SUMO 

Small ubiquitin-like 

modifier-MGSS-

His6-SSGPQQGLR 

366 13.75 5.87  -0.924 N-terminal kan 

pHTP-

DsbA 

Disulfide 

oxidoreductase 

DsbA-MGSS-His6-

SSGPQQGLR 

693 25.47 6.75 -0.251 N-terminal kan 

pHTP-

DsbC 

Disulfide-bond 

isomerase DsbC-

MGSS-His6-

SSGPQQGLR  

777 28.01 6.86 -0.222 N-terminal kan 

pHTP-

Fh8 

Fasciola hepatica 

calcium-binding 

protein (Fh8)-

MGSS-His6-

SSGPQQGLR 

270 9.89 6.70 -0.783 N-terminal kan 

pHTP-

CEL 

Dockerin-MGSS-

His6-SSGPQQGLR  
288 10.42 7.02 -0.498 N-terminal kan 

pHTP-

Rf1 

R. flavefaciens 

celullosomal 

protein -MGSS-

His6-SSGPQQGLR  

870 31.94 4.79 -0.588 N-terminal kan 

pHTP-

Rf47 

R. flavefaciens 

celullosomal 

protein-MGSS-His6-

SSGPQQGLR  

815 30.24 5.68 -0.612 N-terminal kan 

nt, nucleotides; MW, molecular weight; kDa, kiloDalton; pI, isoelectric point; GRAVY, grand average of 

hydropathicity; kan, kanamycin 
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4.1.2.2. Construction of the pHTP28 cloning vector 

The pHTP28 plasmid was constructed on the backbone of pNZY28 vector (NZYTech, genes 

& eConfidentialnzymes, Portugal) by inserting the ccdB gene cassette and specific elements 

for ligation-independent cloning. The pNZY28 plasmid was linearized by EcoRV digestion, 

while the ccdB cassette was amplified from pDESTTM17 (InvitrogenTM by Life Technologies) 

through PCR using the primers HTP28_F: 5’-CACAGCAGCGGCCCTCAGCAAGG-3’ and 

HTP28_R: 5’-GTGCGGCCGCAAGCTTGTCGACG-3’. The resulting PCR fragment was 

cloned into linearized pNZY28 using the NZY-blunt PCR cloning kit (NZYTech, genes & 

enzymes, Portugal). E. coli One Shot® ccdB Survival™ chemically competent cells 

(InvitrogenTM by Life Technologies) were used for propagating the pHTP28 plasmid. The 

sequence of the novel cloning vector was confirmed by DNA sequencing. 

 

4.1.2.3. Cloning of the target genes into pHTP vectors 

The genes encoding seven proteins that were previously shown to form IB when expressed 

in E. coli (here named A, B, C, D, E, F, and H) were cloned into each one of the 11 novel 

pHTP-derivative vectors and also pHTP by a LIC-based method as described elsewhere 

(Fernandes et. al., Chapter 3). The selected proteins have different origins, including 

carbohydrate-active enzymes, carbohydrate-binding modules and antigens (Table 4.3). In 

order to serve as a control of the cloning, expression and purification steps, we included a 

protein that is produced in the soluble form in E. coli under known conditions; the selected 

protein was the green fluorescent protein, here named G, which encoding gene was 

synthetically modified for optimized expression in this host. Thus in total, 8 different genes 

were cloned into 12 different vectors providing a total of 96 cloning reactions. Briefly, the 

selected coding sequences for the 8 target proteins were amplified by PCR from appropriate 

templates using primers containing an extension sequence comprising 16 bp homologous to 

the ends of the pHTP cloning region that allow the cloning by base complementation (Table 

4.4). DNA amplification was carried out by NZYProof DNA polymerase (NZYTech, genes & 

enzymes, Portugal) in 50 μL final volume. After removal of nucleotides and eventual primer 

dimers using the NZYGelpure kit (NZYTech, genes & enzymes, Portugal) the PCR products 

were cloned into the different vectors using 240 ng of each circular plasmid, 1 μL of enzyme 

mix and 2 μL of reaction buffer 10. Cloning reactions were carried out in 20 μL final volume 

on a thermal cycler programmed as follows: 37 ºC for 1 hour; 80 ºC for 10 minutes and 30 ºC 

for 10 minutes. The reaction mixtures were used to transform DH5α E. coli competent cells 

(NZYTech, genes & enzymes, Portugal). Two colonies were picked for each construct and 

the presence of insert confirmed by PCR using two vector specific primers, T7 and pET24a 

forward and reverse primers, respectively. NZYLong 2x Green Master Mix (NZYTech, genes 

& enzymes, Portugal) was used for the verification PCR reaction. 
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Table 4.3 | Properties of the protein targets used for the expression assay. 

 

Target 

protein 
Organism Gene 

Access 

Number 

Gene 

Size (nt) 

Protein 

size (aa) 

MW 

(kDa) 
pI GRAVY 

A 
Clostridium 

thermocellum  

Putative 

carbohydrate-active 

enzyme 

CP00241

6.1 
747 249 28.50 4.72 -0.300 

B 
Clostridium 

thermocellum  

Rhamnogalacturonan 

lyase 11A  

CP00056

8.1 
1702 567 61.98 5.18 -0.443 

C 
Ruminococcus 

flavefaciens  

Putative 

carbohydrate-active 

enzyme 

WP_037

281654.1 
627 209 23.60 6.17 -0.715 

D 
Cellvibrio 

japonicus 

CBM2A from 

Xylanase 10A 
X15429.1 303 101 10.62 8.05 -0.525 

E 
Clostridium 

cellulolyticum  
CBM3  

ACL7584

4.1 
447 149 16.57 4.95 -0.627 

F 
Trichomonas 

vaginalis  

Immuno-dominant 

variable surface 

antigen 

XP_0013

30197.1 
1782 594 68.35 7.96 -0.476 

G 
Aequorea 

coerulescens 

Green fluorescent 

protein 

AAN4163

7.1 
714 238 26.76 5.72 -0.501 

H 
Cellvibrio 

japonicus 
Chitin-binding protein 

WP_012

488716.1 
1011 337 36.27 6.29 -0.511 

CBM, carbohydrate-binding module; nt, nucleotides; aa amino acids; MW, molecular weight; kDa, kiloDalton; pI, 

isoelectric point; GRAVY, grand average of hydropathicity 

 

In this study, a stop codon was included at the end of all genes such that the His6 tag was 

engineered at the N-terminus of the proteins derived from pHTP vector or was located 

internally between the two protein modules in fusion proteins derived from all other vectors. 

These experiments culminated in the generation of 96 recombinant plasmids resulted from 

the cloning of the 8 different genes in the 12 vectors. 

 

 

 

 

 

 

 

 

 

 

 



 

79 
 

Table 4.4 | Primers used for cloning of the protein targets. 

 

Target protein Primer sequence (5’→3’) Direction 

A TCAGCAAGGGCTGAGGGCCTATCTGGATAATGAGCTG Forward 

 TCAGCGGAAGCTGAGGTTATTTTTGAATAACTTCAAACATTGG Reverse 

B TCAGCAAGGGCTGAGGGCTGGTGCGCGTCAGATGG Forward 

 TCAGCGGAAGCTGAGGTTACGGCACAAGGTAAATATTTGG Reverse 

C TCAGCAAGGGCTGAGGGATTTCAGCTACTCATCCAATG Forward 

 TCAGCGGAAGCTGAGGTCAGGCCTTGCTGTACTCGAAG Reverse 

D TCAGCAAGGGCTGAGGGCAACTTGCAGTTATAACATTACC Forward 

 TCAGCGGAAGCTGAGGTTACACAGATCCCGAGCAGATAC Reverse 

E TCAGCAAGGGCTGAGGTTTAACGCCACCACCAGCGCGACGAC Forward 

 TCAGCGGAAGCTGAGGTTATGGCTCAATACCGCCGATTAAGTTGCC Reverse 

F TCAGCAAGGGCTGAGGGGCATCAATACAGTTCAAGTAC Forward 

 TCAGCGGAAGCTGAGGTTATTTCTCTCCATTTACTTTATCTTTAAG Reverse 

G TCAGCAAGGGCTGAGGGTTAGCAAAGGTGAAGAACTG Forward 

 TCAGCGGAAGCTGAGGTTATTTGTACAGTTCATCCATGCC Reverse 

H TCAGCAAGGGCTGAGGATGAAATACCTGCTGCCGACC Forward 

 TCAGCGGAAGCTGAGGTTAGTGGTGGTGGTGGTGGTG Reverse 

 

4.1.2.4. Recombinant protein expression 

The 96 recombinant plasmids were used to transform BL21(DE3) E. coli cells (NZYTech 

genes & enzymes, Portugal). Recombinant strains were grown in 5 mL of NZY Auto-

Induction LB medium (NZYTech, genes & enzymes, Portugal) or Luria-Bertani (LB) broth 

medium, both supplemented with kanamycin (50 μg/mL). Growth was carried out in 24-deep-

well plates sealed with a gas-permeable adhesive in a microplate shaker. Cells were grown 

at 37 ºC till mid-exponential phase (OD600nm of 0.4-0.6) and gene expression was induced by 

the addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM. 

After induction, cells were further grown at either 16 or 37 ºC for 16 hours. In addition, cells 

grown in auto-induction media were also cultivated for 20 hours at 37 ºC without IPTG 

induction. Cells were harvested by centrifugation at 2.500 g for 10 min (4 ºC). Thus, the 96 

recombinant BL21(DE3) E. coli strains were grown in five different culture conditions. 

 

4.1.2.5. Expression and solubility analysis 

Cells from 5-mL culture pellets were resuspended in 1 mL of NZY Bacterial Cell Lysis Buffer 

supplemented with 0.1 mg/mL lysozyme and 0.004 mg/mL DNase I (NZYTech, genes & 

enzymes, Portugal). Cell disruption was conducted at room temperature in a microplate 

shaker until a clear lysate was observed.  

Crude lysates (40 μL) were transferred to 1.5 mL microcentrifuge tubes and the insoluble cell 

debris were collected by centrifugation at 12,000 xg (4 ºC) for 20 min. Approximately 40 μL of 

the supernatants containing the cell-free extract (Soluble protein fraction, S) were collected in 
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a new microcentrifuge tube. The cell pellet, containing the IB, was resuspended in 40 μL of 

water (Insoluble protein fraction, I). Polypeptides contained in both the S and I fractions were 

separated on 14% (w/v) polyacrylamide gels (SDS-PAGE) and detected with Coomassie 

brilliant blue. The level of solubility was scored (0, +, ++, and +++) by comparison of levels of 

soluble protein (S) with insoluble proteins (I) after SDS-PAGE analysis. The score 0 

corresponds to no soluble expression; a score of + corresponds to < 50% of protein in the 

soluble fraction; a score of ++ corresponds to 50% soluble expression; and a score of +++ 

corresponds to > 50% of protein in the soluble fraction.  

 

4.1.2.6. Small-scale protein purification  

The His6-tagged recombinant proteins were automatically purified from cell-free extracts by 

immobilized metal-ion affinity chromatography (IMAC) as described elsewhere (Fernandes 

et. al., Chapter 3). Briefly, the crude cell lysates were incubated with sepharose chelating 

beads (200 μL with bound Ni2+) and then transferred into 96-well filter plates (Macherey-

Nagel). The wells were washed with a buffer A (50 mM NaHEPES, 1 M NaCl, 10 mM 

Imidazole, 5 mM CaCl2 pH 7.5) followed by a second wash with buffer B (50 mM NaHEPES, 

1 M NaCl, 35 mM Imidazole, 5 mM CaCl2 pH 7.5) to elute contaminant proteins. The fusion 

recombinant proteins were eluted from the resin beads with 150 µL of elution buffer (50 mM 

NaHEPES, 1 M NaCl, 300 mM Imidazole, 5 mM CaCl2, pH 7.5) into 96-deep-well plates. All 

protein purification steps were automated in a Tecan robot (Switzerland) containing a 

vacuum manifold. Protein homogeneity was evaluated through SDS-PAGE. Levels of purified 

protein were also scored (0, +, ++, and +++) by visual inspection of SDS-PAGE gels of 

purified proteins complemented with A280nm measurements through a NanoVue (GE 

Healthcare). The score 0 corresponds to no purified protein; a score of + corresponds to > 

0.15 and ≤ 0.5 mg of recombinant purified protein (e.g. Figure 4.5 – protein E, lane 1); a 

score of ++ corresponds to > 0.5 and < 1 mg of recombinant purified protein (e.g. Figure 4.5 

– protein E, lane 2); and a score of +++ corresponds to ≥ 1 mg of recombinant purified 

protein (e.g. Figure 4.5 – protein E, lane 5).  

 

4.1.3. Results and Discussion 

4.1.3.1. Proteins selected for these studies 

This study aims to develop a novel series of prokaryotic expression vectors that will allow 

testing the capacity of different fusion tags to promote expression of soluble recombinant 

proteins at high levels. The proteins were selected on the basis of previous studies that 

indicated them to be highly prone to form IBs when expressed in E. coli. Two of these 

proteins (A and B) are from the thermophilic bacterium C. thermocellum and showed very 

low soluble expression in E. coli in previous attempts to produce them in the soluble form. In 

the case of protein A, the formerly strategy was based on the fusion of the respective gene 
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with a dockerin module into pET21 vector (Novagen), and co-expression of the construct in 

the same cell with a cohesin. This resulted in some soluble production (unpublished data); 

however the low expression of the cohesin and dockerin peptides into E. coli could explain 

the poor results. Regarding protein B, previous Trx fusion conducted to very low soluble 

expression (data not shown). Protein C was selected due to the 50:50 expression of 

insoluble and soluble protein observed in E. coli when cloned into pHTP vector (His6 tag) and 

expressed at 37 ºC. To serve as control of expression and purification approaches, a protein 

with high soluble expression in this host when expressed in pHTP at 37 ºC was included in 

the study (green fluorescent protein, here named protein G). The selected target proteins 

(see Table 4.3) differ in function, molecular weight (that varies from 10.62 to 68.35 kDa) and 

biochemical properties. All of them show a hydrophilic nature, with protein A presenting the 

highest value of GRAVY (-0.300) and protein C the lowest one (-0.715). The pI of the protein 

ranges from around 4 to 8. 

 

4.1.3.2. Generation of novel prokaryotic expression vectors derivatives of pHTP  

Novel vectors for recombinant protein expression in E. coli were constructed by inserting 

different fusion tags into the pHTP backbone (Fernandes et. al., Chapter 3) such that the 

fusion tag would be at the N-terminus of the recombinant protein (see Table 4.2). Eight well-

studied fusion partners commonly used to enhance solubility of recombinant proteins in E. 

coli were selected (Trx, GST, MBP, NusA, SUMO, DsbA, DsbC, and Fh8) besides the affinity 

tag His6. In addition, three novel system tags were designed (Rf1, Rf47 and CEL) and their 

capacity to promote recombinant proteins to acquire proper fold and thus circumvent the 

formation of IB was compared with the traditional tags. The fusion tags Rf1 and Rf47 are two 

recombinant proteins from the ruminal bacterium Ruminococcus flavefaciens previously 

known to be produced at high yields and in the soluble form in E. coli at a range of 

temperatures and culture media. The CEL fusion tag was designed based on the high-affinity 

cohesin-dockerin interactions that define the cellulosome machine involved in cellulose 

degradation. It is well established that in the cellulosome of the anaerobic bacterium 

Clostridium thermocellum, the cohesin domains of the scaffoldin CipA are unable to 

discriminate between the individual dockerins present in the catalytic subunits (Yaron et al., 

1995; Lytle et al., 1996). The integration of enzymes in the cellulosomal complex through 

these interactions allows them to display a distended fold which benefits the catalytic 

mechanism. Based on this premise, we developed a strategy to allow recombinant proteins 

expressed in E. coli to be integrated into a mini-cellulosome in order to acquire the correct 

spacing and thus preclude protein aggregation. The mini-cellulosome consisting of a cohesin 

cassette followed by a dockerin module, described in the Materials and Methods section, 

was cloned into pHTP plasmid so that recombinant proteins will be fused with the dockerin at 

their N-terminus. The CEL fusion tag has the second lowest molecular weight (10.42 kDa) of 
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the tags used in this study, excluding the His6 tag (Fh8 is the smallest one – 9.89 kDa, after 

His6). Rf1 (31.94 kDa) and Rf47 (30.24 kDa) have similar molecular weights, which can be 

comparable to GST (28.07 kDa) and DsbC (28.01 kDa). Regarding to isoelectric points (pI), 

the CEL fusion tag shows the second highest value after His6. In opposite, the Rf1 tag has a 

low pI, which is similar to NusA. All tags have a hydrophilic tendency predicted from their 

amino acid sequence, showing negative values for the Grand average of hydropathicity 

(GRAVY) (Kyte et al., 1982). Rf1 and Rf47 have a similar hydrophilic nature, proximal to the 

CEL, which can be comparable with GST. His6, SUMO and Fh8 have higher GRAVY values. 

All vectors have a cloning region containing specific handles that allow cloning and sub-

cloning through a base complementation strategy, as reported elsewhere (Fernandes et. al., 

Chapter 3). In Figure 4.1 a schematic representation of all pHTP-derivative vectors is 

displayed.  

 

Figure 4.1| The pHTP expression vector series. 

 

 

Parts of this figure are confidential 
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4.1.3.3. Cloning into the pHTP-derivative vectors 

The 8 genes were cloned directly into the 12 expression plasmids by a ligation-independent 

cloning method based on the complementation of single-stranded DNA fragments both 

generated on the vector and insert. In general, the cloning reactions were highly efficient and 

only for a low percentage of cases more than two colonies were screened to identify a 

positive recombinant clone. In general, the sequences of all positive clones accumulated no 

mutations although for two cases a second gene needed to be sequenced. The experiment 

generated 96 recombinant plasmids that were used for the expression assays described 

below.  

 

4.1.3.4. Protein solubility analysis from the small-scale screening  

The efficacy of 12 fusion tags (including the His6 tag) to improve the levels of expression and 

solubility of 8 different proteins in E. coli BL21(DE3) was tested. The 96 strains encoding the 

different protein versus tag combinations were grown on five different culture conditions: (1) 

cells grown in auto-induction medium, gene expression induced with IPTG and cells grown at 

37 ºC for 16 hours after induction; (2) cells grown in auto-induction medium, gene expression 

not induced with IPTG and cells grown at 37 ºC for 20 hours; (3) cells grown in auto-induction 

medium, gene expression induced with IPTG and cells grown at 16 ºC for 16 hours after 

induction; (4) cells grown in LB medium, gene expression induced with IPTG and cells grown 

at 37 ºC for 16 hours after induction; and (5) cells grown in LB medium, gene expression 

induced with IPTG and cells grown at 16 ºC for 16 hours after induction. Cells were 

harvested and lysed and the presence of soluble and insoluble recombinant proteins was 

evaluated by SDS-PAGE. Levels of soluble protein were scored (0, +, ++ and +++) according 

to the scale defined in Materials and Methods section and with example representative gels 

displayed in Figure 4.2.  
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Figure 4.2| SDS-PAGE of His6-proteins A, B, C, D, E, F, G, and H only fused with the affinity tag 

(lanes 1 and 2) and fused with Trx, GST, MBP, NusA, SUMO, DsbA, DsbC, Fh8, CEL, Rf1 and 

Rf47 tags obtained from BL21(DE3) E. coli recombinant cultures grown in culture condition 5. 

 

 
 

E. coli BL21(DE3) recombinant cultures grown in LB medium at 37 ºC to an OD600nm of 0.4-0.6 and gene 

expression induced with 1 mM IPTG at 16 ºC overnight (culture condition 5). Both pellet and supernatant fractions 

from the total cell lysates were separated through SDS-PAGE according to the following order: (1-2) His6; (3-4) 

Trx; (5-6) GST; (7-8) MBP; (9-10) NusA; (11-12) SUMO; (13-14) DsbA; (15-16) DsbC; (17-18) Fh8; (19-20) CEL; 

(21-22) Rf1; (23-24) Rf47. Arrows indicate expected/observed molecular weights for respective fusion proteins 

according to Table S4.1 (see in Annex). Lane M: low molecular weight protein marker (NZYTech, genes & 

enzymes, Portugal). In supplementary material (Table S4.2, in Annex), the molecular weight ratios between the 

target proteins alone and respective fusion proteins are presented. 

 

Initially, we compared the capacity of each tag to drive the production of the 8 recombinant 

proteins in a soluble form in E. coli grown in auto-induction media. The data, presented in 

Figure 4.3A, suggest that IPTG induction had no effect in the percentage of soluble proteins 

when all tags were considered: the percentages of soluble proteins obtained when cells were 

induced with or without IPTG were 32% and 31%, respectively. For Trx and DsbC tags, the 

addition of IPTG improved the percentage of soluble fusion proteins while for MBP it rather 

decreased it (by comparing growth conditions 1 and 2). In addition, no DsbC fusion soluble 

proteins were observed when protein expression was spontaneously induced, suggesting 

that IPTG induction is required when this tag is used. For all the remaining fusion proteins, 

addition of IPTG had no effect in protein solubility (Figure 4.3A).  
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Figure 4.3| Percentage of proteins that were expressed in the soluble form for all the 12 tags 

tested in E. coli cells grown in auto-induction medium (A) and LB-medium (B). 

 
 

A) The 96 strains encoding the different proteins versus tag combinations were grown in auto-induction media 

under the different following conditions: (1) gene expression induced with IPTG and cells grown at 37 ºC for 16 

hours after induction; (2) gene expression not induced with IPTG and cells grown at 37 ºC for 20 hours; (3) gene 

expression induced with IPTG and cells grown at 16 ºC for 16 hours after induction. (B) The 96 strains encoding 

the different proteins versus tag combinations were grown in LB media under the different following conditions: (4) 

gene expression induced with IPTG and cells grown at 37 ºC for 16 hours after induction; and (5) gene expression 

induced with IPTG and cells grown at 16 ºC for 16 hours after induction. 

 

The decrease of the induction temperature from 37 ºC to 16 ºC significantly improved the 

percentage of soluble proteins produced from E. coli grown in auto-induction medium for all 

tags in test (Figure 4.3A). However, this effect was more pronounced for the NusA tag. The 

96 E. coli strains were also grown in standard LB media at two different induction 

temperatures. Again, the data, presented in Figure 4.3B, confirms that a reduction in 

induction temperature has a dramatic effect in the percentage of soluble proteins, with higher 

levels of soluble proteins observed at lower temperatures and for all tags analyzed. Taken 
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together the results considering the growth of 96 E. coli strains upon 5 different cultivation 

conditions suggest that, in both culture media, lower induction temperatures promote higher 

protein solubility. Indeed, a decrease in the temperature during recombinant gene expression 

in E. coli reduces the rate of protein synthesis, providing additional time for proteins to 

acquire the correct fold, as well as increasing protein stability while attenuating protein 

degradation due the lower activity of heat shock proteases (Chesshyre & Hipkiss, 1989; 

Spiess, Beil, & Ehrmann, 1999; Hunke & Betton, 2003; Sørensen & Mortensen, 2005). In 

addition, NusA tag was clearly more effective when cells were grown at 16 ºC (growth 

conditions 3 and 5), suggesting that this tag requires low temperatures to promote protein 

solubility. When the two culture media are compared, LB versus auto-induction media 

(Figure 4.3A and 4.3B), the overall percentage of soluble proteins when all tags and proteins 

are considered was identical both with induction at 37 ºC (32% of soluble proteins, for grown 

conditions 1 and 4) or at 16 ºC (56% of soluble proteins, for grown conditions 3 and 5). Thus, 

these data suggest that the type of media has no effect in the capacity of E. coli to produce 

soluble recombinant proteins.  

When all five culture conditions were considered (Figure 4.4), the percentage of soluble 

proteins expressed (scores +, ++ and +++) with Rf1 and Rf47 tags was identical and higher 

than the percentage obtained with any other tags. However, this derives from the good 

performance that Rf1 and Rf47 tags presented at 37 ºC (growth conditions 1, 2 and 4) since 

at 16 ºC (growth conditions 3 and 5) these tags led to similar percentages of soluble protein 

when compared with the NusA (in auto-induction media) and Trx, MBP and SUMO (in LB 

media) tags (Figure 4.3). Data presented in Figure 4.4 suggest that levels of soluble proteins 

generated by CEL, DsbC, DsbA and MBP tags are mostly below 50% of total protein, which 

contrasts with the other tags, which showed a high percentage of proteins scored with ++ 

and +++. Thus, these tags have the capacity to generate soluble protein but with lower 

efficiencies as a significant percentage of IB are still formed. Overall, the less efficient tag 

was DsbC. The non-eukaryotic origin of the heterologous target proteins used in this study 

(except protein F) which may not require disulfide isomerization for correct folding could 

explain the poor solubility observed for DsbC fusion proteins. In addition, a decrease of 

solubility was observed resulting from the incorporation of some fusion tags. Thus, 

percentages of soluble proteins were lower for some affinity tags when compared with the 

His6-tag, which is solely an affinity purification tag. For example, the levels of soluble 

expression of His6 tag protein G (used as control in this study) decreased from score +++ to 

++, + or even 0 when using MBP, DsbA, DsbC or CEL as tags (see Figure 4.2 – Protein G). 

These observations were also previously reported by Bird (2011). Since all target genes are 

under the control of the same T7 promoter, differences in the soluble expression may be 

probably due to the properties of the fusion tag (Costa et al., 2013). However, it remains 
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elusive why the fusion technology may lead to lower levels of soluble protein obtained under 

some conditions. 

 

Figure 4.4| Percentage of proteins that were expressed in the soluble form (scores +, ++ and 

+++) or where the level of soluble protein is higher than the level of protein in the form of IB 

(scores ++ and +++) considering all 5 growing conditions and for all the tags. 

 

The percentage of soluble fusion proteins for each tag was estimated by the number of proteins present in 

supernatant fractions (scores +, ++ and +++) per total number of proteins tested in the five culture assays. A 

score of + corresponds to < 50% of protein in the soluble fraction; a score of ++ corresponds to 50% soluble 

expression; and a score of +++ corresponds to > 50% of protein in the soluble fraction. 

 

Taken together the data presented above suggest that the fusion tags may be ranked in the 

following order considering their capacity to generate soluble proteins (the sum of +, ++ and 

+++ scores): Rf1 > Rf47 > Trx > MBP > NusA > His6 > Fh8 > DsbA > SUMO = GST > CEL > 

Dsbc. However, as discussed above, some tags, more evident with the MBP tag, although 

well positioned in the solubility rank generated a lower percentage of soluble protein in 

relation to the total proteins (Figure 4.4). Indeed, from the 19 soluble MBP fusion protein 

derivatives, only 3 had the score ++, which corresponds to a 50:50 protein content in the 

soluble and insoluble fractions (proteins C, D, and E, under the culture condition 4) and no 

+++ score was attributed. The N-terminal position of this fusion tag could explain this 

observation since C-terminal MBP fusions were suggested to be more effective (Dyson et al., 

2004). Interestingly, the affinity His6 tag showed a good rank position in particular at the 

lower temperatures of gene induction. The low capacity of GST to enhance protein 

solubilization described here was also reported in several other comparison studies 

(Hammarström et al., 2002; Dyson et al., 2004; Marblestone et al., 2006; Bird, 2011; Costa et 
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al., 2013). The solubility of SUMO fusions was occasionally difficult to assess, as observed 

by the small content of proteins, and thus lower levels of expression, in lanes 11 and 12 of 

Figure 4.2. As previously reported, proteins fused with SUMO exhibited a molecular weight of 

about 3 kDa higher than expected after gel migration (Marblestone et al., 2006 ; Costa et al., 

2013). Since high scores for soluble expression in small-scale screenings are consistent 

predictors of the soluble protein yields in scale-up production (Bird, 2011), Rf1, as well as 

Rf47 showed good indications for soluble expression enhancement. Nevertheless, no 

fusion/culture condition combination resulted in the soluble expression of protein F, the 

largest target protein in study – 68.35 kDa (e.g. for growth condition 5 data is shown in 

Figures 4.2 and 4.5). For protein B (the second largest protein in study – 61.98 kDa), only 

NusA (at 16 ºC; e.g. for growth condition 5, data is shown in Figure 4.2, lanes 9 and 10 and 

Figure 4.5, lane 5) or Rf1 (under culture condition 3) fusions have resulted in soluble 

proteins. The third protein of higher molecular weight (protein H, 36.27 kDa) was only soluble 

when produced by fusion with Rf47 or His6 under the culture condition 3, although its 

expression was difficult to access in some conditions (data not shown). The correlation 

between successful soluble expression and a decrease in protein molecular weight had been 

extensively reported (Dyson et al., 2004).  

 

4.1.3.5. Yield and purification efficiency  

Although some fusion partners used in this study constitute itself affinity tags (e.g. MBP and 

GST), the purification approach selected for all recombinant proteins was based on the N-

terminal (pHTP) or internal (other vectors) His6 tag present just before the pHTP cloning site. 

Thus, all proteins were purified in an automated protocol through IMAC. Levels of purified 

protein obtained were scored (0, +, ++, and +++) as described in Materials and Methods 

section and data obtained for all of the five culture conditions are summarized in Figure 4.6 

with representative SDS-PAGE gels displayed in Figure 4.5.  

In general, the data obtained for the purified recombinant fusion proteins translated the 

results reported above for solubility, with Rf1 and Rf47 showing the highest protein yields. 

Only SUMO recombinant fusion proteins were purified in lower levels than those expected by 

comparing the percentage of soluble proteins scored with +, ++, and +++ (Figure 4.4) with 

the levels of purified proteins scored with > 0.5 mg (Figure 4.6). The difficulty found to assess 

the solubility of SUMO fusion proteins, as reported above, could explain this observation. Rf1 

presented the highest percentage of recombinant proteins purified in high yields from 0.5 mg 

to over 1 mg, just followed by NusA and Rf47 tags. Regarding the CEL tag, the percentage 

of recombinant proteins purified in high yields > 0.5 mg was similar to that for SUMO, DsbA, 

CEL, or even MBP, suggesting that this tag has a low capacity to enhance protein 

expression. DsbC fusions showed the lowest yields after purification, as a result of the 

pronounced tendency for IB formation, as observed above. Attending to the number of fusion 
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proteins that were purified with the highest yields (> 0.5 mg), the fusion tags were ranked as: 

Rf1 > NusA > Rf47 > Trx > Fh8 = GST > His6 > MBP > SUMO = CEL > DsbA > DsbC. 

Despite GST fusions have shown relatively high yields after purification (30% of proteins 

purified with > 0.5 mg), the GST tag performed poorly to enhance the number of soluble 

proteins, as described above. In opposite, MBP highly improved protein solubility, but MBP 

fusion proteins were poorly produced in high yields (22.5% of proteins purified with > 0.5 

mg). 

 

Figure 4.5| SDS-PAGE of His6-tagged proteins A, B, C, D, E, F, G, and H only fused with the 

affinity tag (lane 1) and fused with Trx, GST, MBP, NusA, SUMO, DsbA, DsbC, Fh8, CEL, Rf1 

and Rf47 system tags following purification through IMAC. Proteins were obtained from E. coli 

BL21(DE3) recombinant cultures grown in the culture condition 5. 

 
 

E. coli BL21(DE3) recombinant cultures grown in LB medium at 37 ºC to an OD600nm of 0.4-0.6 and protein 

overexpression induced with 1 mM IPTG at 16 ºC overnight (culture condition 5). Lanes in SDS-PAGE correspond 

to the following tag order: (1) His6; (2) Trx; (3) GST; (4) MBP; (5) NusA; (6) SUMO; (7) DsbA; (8) DsbC; (9) Fh8; 

(10) CEL; (11) Rf1; (12) Rf47. Arrows indicate observed molecular weights for respective fusion proteins 

according to Table S4.1 (see in Annex). Lane M: low molecular weight protein marker (NZYTech, genes & 

enzymes, Portugal). In supplementary material (Table S4.2, in Annex), the molecular weight ratios between the 

target proteins alone and respective fusion proteins are presented. 



 

90 
 

Figure 4.6| Percentage of purified proteins with a final yield > 0.15 mg and > 0.5 mg. Purified 

proteins A, B, C, D, E, F, G, and H fused with Trx, GST, MBP, NusA, SUMO, DsbA, DsbC, Fh8, 

CEL, Rf1 and Rf47 system tags produced in E. coli BL21(DE3) under the all five culture 

conditions. 

 

 

The recombinant fusion proteins were purified through IMAC. The percentage of purified fusion proteins for each 

tag with a final yield > 0.15 mg (scores +, ++, and +++) or > 0.5 mg (scores ++ and +++) was tested for all five 

culture conditions. 

 

Interestingly, spontaneous fusion cleavage was observed for some of the largest fusion 

partners after protein purification, mainly for MBP (44.61 kDa), NusA (57.17 kDa), DsbA 

(25.47 kDa), Rf1 (31.94 kDa), and Rf47 (30.24 kDa) tags (e.g. Figure 4.5 – proteins C, E, 

and G, lane 4; protein H, lane 5; proteins C and G, lane 7, or proteins A, B C, and F, lane 

12). The cleavage may have occurred in the linker region between the fusion tag and the 

His6 sequence (SSGPQQGLR). We observed more fusion cleavages in proteins that were 

expressed at 37 ºC, at which temperature bacterial proteases are highly produced. In 

addition, protein conformational rearrangements upon His6 binding to the Ni2+-column during 

purification, probably promotes the exposure of the linker regions to protease attack. Besides 

fusion cleavage, the target proteins were correctly purified when solubly expressed. 

Regarding the CEL system, it is well known that dockerin-cohesin non-covalent interactions 

are disrupted by SDS denaturation, so observation of cohesins on the SDS gels was 

expected. However, cohesin expression was not always verified. For instance, no cohesin 

expression was observed upon induction at 16 ºC, suggesting poor expression at low 

temperatures. These observations question the real integration of the insoluble recombinant 

protein into the mini-cellulosome and suggest that dockerin fusion alone was able to enhance 

protein solubility. As observed for other fusion partners, dockerin cleavage seems to occur. 

Research to investigate the most appropriate methods for tag removal is presently ongoing. 

 



 

91 
 

4.1.3.6. Construction of simple sub-cloning system applied to the pHTP vector 

series  

Taken together, the results presented here and those reported by other comparative studies 

(Hammarström et al., 2002; Braun et al., 2002; Shih et al., 2002; Dyson et al., 2004; De 

Marco et al., 2004; Marblestone et al., 2006; Bird, 2011; Costa et al., 2013), suggest that 

there is no universal tag that appears to work for all different types of proteins but rather the 

efficiency of the tag depends on the recombinant protein. Thus, small-scale screening 

assays using a broad repertoire of different tags may constitute the best alternative for 

selecting the most appropriate solubility tag for each protein type. The LIC-based method in 

which the pHTP vectors rely allows a simple and rapid sub-cloning system that could be 

applied for these small-scale screenings. Thus, here we designed a novel method that allows 

easily to exchange genes from an entry vector to various destination/expression plasmids. 

Thus, as described in Materials and Methods, we constructed the pHTP28 prokaryotic 

cloning vector based on the pNZY28 plasmid (NZYTech, genes & enzymes, Portugal). This 

vector is ampicillin resistant, in contrast with the pHTP series of protein expression vectors 

that are kanamycin resistant. Thus, the system would work by initially cloning the gene of 

interest from a PCR product directly into pHTP28 and sequencing the nucleic acid to confirm 

that no mutations accumulated during the amplification. Subsequently, the gene of interest 

could be transferred to all the pHTP expression vectors in a single step, generating the 

expression plasmids. The gene would not need to be sequenced as the transfer will not 

involve any polymerase chain reaction. Thus, sub-cloning of a target gene can be easily 

achieved from the pHTP28 entry clone to any of the pHTP derivatives that include different 

solubility tags. The expression clones generated by this system could be directly used in the 

solubility screening assays to detect the most efficient tag for the different proteins (Figure 

4.7).  
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Figure 4.7| Sub-cloning system based on the pHTP vector series. 

 

 

 

The system allows cloning of a target gene into the pHTP28 vector through a ligation-independent cloning method 

based on DNA base complementation. Once gene is cloned into the entry cloning vector, the DNA fragment can 

be transferred into one or more expression vectors simultaneously (pHTP and/or its derivatives that include 

different solubility tags) using the same cloning approach. 

 

4.1.4. Conclusions 

Here we have compared the efficacy of several fusion tags to improve the expression and 

solubility of 8 different recombinant proteins in E. coli. In addition, high-throughput 

approaches were developed for the rapid generation of expression clones and screening of 

the optimal conditions for successful protein expression. Overall the data suggest that Rf1 
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and Rf47 proteins are very promising candidates to increase the number of available 

solubility tags and thus should contribute to promote an expansion of the protein fusion 

technology. In contrast, the solubilization strategy based on the cellulosome concept (CEL 

system tag) failed to enhance protein solubility by providing correct spacing of the 

recombinant proteins produced in E. coli. However, the data suggested that the dockerin 

module alone effectively contributed for protein solubility. Data presented here confirm that 

the combination of a fusion partner with the reduction of temperature during protein 

overexpression potentiate the solubilization of recombinant proteins. Nevertheless, the data 

suggested that although some tags may be more efficient to enhance protein solubility, there 

is no universal tag that could work in all situations. Thus, we have developed here a novel 

technology that will allow the initial cloning of the desired gene into an entry vector (pHTP28) 

and its subsequent transfer to a series of destination vectors that could be tested for efficacy 

in generating soluble protein. This approach will very effectively contribute to identify the 

most favorable solubility tag to use for different protein types. 
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Abstract 

In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain 

is appended to one or more non-catalytic Carbohydrate-Binding Modules (CBMs). CBMs, by 

concentrating the parental enzyme at their target polysaccharide, increase the capacity of the 

catalytic module to bind substrate leading to a potentiation in catalysis. Clostridium 

thermocellum hypothetical protein Cthe_0821, defined here as CtMan5A, is a modular 

protein comprising an N-terminal signal peptide, a family-5 Glycoside Hydrolase (GH5) 

catalytic module, a family 32 CBM (CBM32) and a C-terminal type I dockerin module. Recent 

proteomic studies revealed that Cthe_0821 is one of the major cellulosomal enzymes when 

C. thermocellum is cultured on cellulose. Here we show that the GH5 catalytic module of 

Cthe_0821 displays endo-mannanase activity. CtMan5A hydrolyses soluble konjac 

glucomannan, soluble carob galactomannan and insoluble ivory nut mannan, but does not 

attack the highly galactosylated mannan from guar gum, suggesting that the enzyme prefers 

unsubstituted -1,4-mannoside linkages. The CBM32 of CtMan5A displays a preference for 

the non-reducing end of mannooligosaccharides, although the protein module exhibits 

measurable affinity for the termini of β-1,4-linked glucooligosaccharides such as cellobiose. 

CBM32 potentiates the activity of CtMan5A against insoluble mannans but has no significant 

effect on the capacity of the enzyme to hydrolyze soluble galactomannans and 

glucomannans. The product profile of CtMan5A is affected by the presence of CBM32. 
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5.1.1. Introduction 

Plant cell wall polysaccharides are the most abundant source of energy and carbon on Earth. 

Although biofuel production from lignocellulolsic biomass could contribute to a reduction in 

global warming, the enzymatic degradation of these recalcitrant structures is limited by their 

chemical and physical complexity (Liu, Saha, & Slininger, 2008). The complexity of microbial 

plant cell wall degrading systems has become apparent with the sequencing of a variety of 

genomes of cellulolytic microorganisms. Glycoside hydrolases (GHs) that deconstruct 

structural polysaccharides are modular enzymes consisting of catalytic module(s) linked, 

through a diversity of linker regions, to functionally independent non-catalytic Carbohydrate-

Binding Modules (CBMs) and/or other ancillary module(s). GHs and CBMs are classified into 

more than 130 and 70 sequence-based families, respectively (CAZy database, 

http://www.cazy.org/) (Cantarel et al., 2009). Within a GH family there is conservation in the 

structural fold, catalytic apparatus and mechanism, however, substrate specificity may be 

highly divergent. For example, GH family 5 (GH5) contains a range of different enzymes 

exemplified by cellulases, xylanases, chitosanases and mannanases. Therefore, the function 

of a hypothetical protein within a CAZy family cannot always be predicted from its primary or 

tertiary structure.  

Clostridium thermocellum is one of the most powerful degraders of cellulose. It produces a 

high molecular mass cellulolytic complex, termed the cellulosome (Bayer et al., 2008; Fontes 

& Gilbert, 2010), and is recognized as an important bacterium in the consolidated 

bioprocessing of cellulosic biomass to ethanol (Lynd et al., 2008). The genome sequence of 

C. thermocellum ATCC27405 was reported (accession number CP000568) recently and 

proteome analysis was carried out for two different strains, ATCC27405 (Gold & Martin, 

2007) and F7 (Zverlov et al., 2005). Some common proteins were identified as highly 

abundant in both strains; e.g., CipA, CelS, CelK, XynC, XynZ, CelA, CelR, and CbhA, 

although some differences in the expression of cellulosomal proteins were evident in the two 

bacteria. Thus, CelE and CelJ and the uncharacterized enzyme Cthe_0821 were major 

components of the cellulosome in strain ATCC27405 but not in strain F7. Cthe_0821 is a 

modular enzyme comprising a signal peptide, a family 5 GH catalytic module, a family 32 

CBM (CBM32) and a C-terminal type I dockerin module (Figure 5.1A). Enzymes containing a 

similar molecular architecture are found in Acetivibrio cellulolyticus (DDBJ/EMBL/GenBank 

accession No. EFL62306) and in some clostridia (Figure 5.1A), but the biochemical function 

of these glycoside hydrolases is unknown.  

In this study, we showed that Cthe_0821 is an endo-β-1,4- mannanase and was thus defined 

as CtMan5A. CBM32 binds to the non-reducing end of β-mannans and β-1,4-linked 

mannooligosaccharides, and plays a critical role in the hydrolysis of insoluble mannans. This 

paper provides evidence that specificity within CBM32, a family of proteins that generally 
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binds galactose- or GalNAc-based ligands, can be extended to include β-mannose 

containing polymers.  

 

5.1.2. Materials and Methods 

5.1.2.1. Bacterial strains, plasmids, and bacterial growth conditions 

C. thermocellum ATCC27405 was used as a source of genomic DNA. Plasmid vector 

pET28a(+) (Novagen) was used for gene expression. E. coli BL21(DE3)-RIPL (Novagen) 

carrying a recombinant plasmid was cultivated in Super Broth (3.5% Bacto™ tryptone [BD 

Diagnostic, Sparks, MD], 2% Bacto™ yeast extract [BD Diagnostic], 0.5% NaCl pH 7.5) 

supplemented with chloramphenicol (34 g/mL) and kanamycin (50 g/mL) at 37°C for 

protein expression. 

 

5.1.2.2. Expression and purification of rGH5-CBM32, rGH5, and rCBM32 

The gene encoding rGH5-CBM32 was amplified by PCR from C. thermocellum ATCC27405 

genomic DNA with KOD-Plus DNA polymerase (Toyobo, Osaka, Japan) and the PCR primer 

set, 5’-GGGGCCATGGATGACATTTATCCGGGACTTAGAG-3’ and 5’-

GGGGGTCGACTTCCGCAATTCCACCCTTTGG-3’; NcoI and SalI sites are underlined. The 

resulting PCR fragment was digested with NcoI or SalI, ligated into similarly restricted pET-

28a(+), yielding plasmid pET28a(+)-GH5-CBM32, encoding rGH5-CBM32, residues 27-475 

of CtMan5A (Figure 5.1B). Plasmids pET28a(+)-GH5 and pET28a(+)-CBM32 were 

constructed as described above, except that the following primer sets were used: 5’-

GGGGCCATGGATGACATTTATCCGGGACTTAGAG-3’ and 5’-

GGGGGTCGACCTTGTTCTGCGCAATACTTC-3’ for pET28a(+)-GH5, and 5’-

GGGGCCATGGATATGACCACCGACGGAAC-3’ and 5’-

GGGGGTCGACTTCCGCAATTCCACCCTTTGG-3’ for pET28a(+)-CBM32. GH5 and CBM32 

contained CtMan5A residues 27-349 and 249-475 (Figure 5.1B), respectively. All the 

recombinant proteins contained a 6His-tag at C- terminus. 

Cultures of recombinant E. coli clones (200 mL) were cultivated to mid-log growth phase 

(absorbance at 600 nm = 0.6) and isopropyl--D-thiogalactopyranoside was added to a final 

concentration of 1 mM. After an additional incubation of 4 h at 37°C, the cells were 

harvested, washed, and disrupted by sonication. Cell debris was removed by centrifugation. 

Purification of the recombinant proteins from the cell-free extracts was carried out with the 

aid of a HisTrap HP column (GE Healthcare Japan, Tokyo) according to the manufacturer’s 

protocol. The purity of each fraction was analyzed by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) (Laemmli, 1970). Protein concentration was determined with 

bovine serum albumin (BSA) as the standard, using a Bio-Rad protein assay kit (Bio-Rad 

Laboratories, K.K., Tokyo, Japan). 
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Figure 5.1| Molecular architectures of Clostridium thermocellum Man5A, related proteins and 

CtMan5A truncated derivatives. 

 

Schematic of C. thermocellum Man5A and some related proteins (A) and the truncated derivatives (B). Ct, C. 

thermocellum; Ac, Acetivibrio cellulolyticus hypothetical mannanase; Ccv, C. cellulovorans hypothetical 

mannanase; Ccl, C. cellulolyticum hypothetical mannanase; Cpa, C. papyrosolvens hypothetical mannanase; Cl, 

C. lentocellum hypothetical mannanase; Ss, Sorangium cellulosum hypothetical mannanase; Mv, 

Micromonospora viridifaciens; Cpe, C. perfringens; Ye, Yersinia enterolitica. SP, signal peptide; dock, dockerin 

module; MUF, module of unknown function; Ig, immunoglobulin-like module. 

 

5.1.2.3. Enzyme assays 

Mannanase activity was measured using konjac glucomannan (Megazyme, Wicklow, 

Ireland), ivory nut mannan (Megazyme), 1,4--D-mannan (prepared by controlled hydrolysis 

of carob galactomannan with -mannanase and -galactosidase, Megazyme), carob 

galactomannan (Megazyme), or guar gum (Sigma-Aldrich Japan, Tokyo) as substrates and 

incubating at 60°C in 50 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH 6.0). 

Incubation time was 5 min for konjac glucomannan or 5 to 20 min for the other substrates. 

Britton and Robinson’s universal buffer (Britton & Robinson, 1931) was used to determine 

the optimum pH for enzyme activity. Reducing sugars released from the substrates were 

determined with the 3,5-dinitrosalicylic acid reagent, as described previously (Miller, 1959).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.2.4. Analysis of hydrolysis products 

Mannooligosaccharides (mannose through mannohexaose, 100 μg each; Megazyme) were 

incubated with 0.18 units (determined with konjac glucomannan) of the purified enzymes, 

rGH5-CBM32 or rGH5 in 10 μL of 50 mM MES buffer (pH 6.0) at 60C. Ivory nut mannan (50 
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μg each; Megazyme) was incubated with 0.54 units (based on activity against konjac 

glucomannan) of rGH5-CBM32 or rGH5 in 10 μL of 50 mM MES buffer (pH 6.0) at 60C. Thin 

layer chromatography (TLC) of the hydrolysis products was performed on a silicagel 60 plate 

(Merck, Darmstadt, Germany), using a solvent of water:acetic acid:acetone (1:1:2). 

Hydrolysis products were visualized by spraying the plate with an aniline-diphenylamine 

reagent (Gasparic & Churacek, 1978). 

 

5.1.2.5. Qualitative polysaccharide binding assays 

The binding of rCBM to ivory nut mannan and microcrystalline cellulose (Funacel; Funakoshi, 

Tokyo, Japan) was determined by mixing 0.1 ml of each protein (30 μg) and insoluble 

polysaccharides (10 mg of ivory nut mannan or Funacel) in 10 mM 2-[4-(2-hydroxyethyl)-1-

piperazinyl] ethanesulfonic acid (HEPES) buffer (pH 7.4) and incubating the mixtures on ice 

for 3 h with occasional stirring. Following centrifugation, the supernatant fraction was 

recovered and the precipitate was resuspended in HEPES buffer. The suspension was again 

centrifuged to separate the wash and precipitate factions. All fractions were analyzed by 

SDS-PAGE. The affinity of rGH5 and rGH5-CBM32 for soluble mannans, konjac 

glucomannan, carob galactomannan, and guar gum was examined by native affinity PAGE 

as described previously (Arai et al., 2003). For native affinity PAGE, 1.5 μg of the protein was 

loaded onto gels. In all experiments BSA was used as the control protein. 

 

5.1.2.6. Isothermal titration calorimetry (ITC) 

The thermodynamic parameters of the binding of rCBM32 to mannooligosaccharides were 

determined by ITC using a VP-ITC calorimeter (MicroCal, Northampton, MA, USA). Briefly, 

titrations were performed at 25°C by injecting 2 - 10 µL aliquots of 5-20 mM ligand in 50 mM 

Na-HEPES buffer, pH 7.5, containing 5 mM CaCl2, into the cell containing 100 µM CBM 

dialyzed into the Na-HEPES buffer, and the release of heat was recorded. The stoichiometry 

of binding (n), the association constant Ka, and the binding enthalpy ∆H were evaluated by 

using MicroCal Origin 7.0 software. The standard Gibbs energy change ∆G0 and the 

standard entropy change ∆S0 were calculated from ∆G0 = -RT lnKa and ∆G0 = ∆H0- T∆S0, 

where R is the gas constant and T the absolute temperature.  

 

5.1.3. Results 

5.1.3.1. Modular structure of C. thermocellum Man5A 

Mature CtMan5A consists of a GH5 catalytic module, a CBM32, and a type I dockerin 

module (Figure 5.1A). Homology search using BLAST (www.ncbi.nlm.nih.gov/BLAST) 

revealed that CtMan5A displayed an identical modular organization with Acetivibrio 

cellulolyticus hypothetical protein EFL62306, which was annotated as a mannanase; 

sequence identity between the two proteins was 64% and 73% for the catalytic modules and 
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the CBM32s, respectively. Furthermore, other genes encoding enzymes highly similar to 

CtMan5A were found in some clostridial genomes such as C. cellulovorans (ADL52309), C. 

cellulolyticum (ACL74764), C. papyrosolvens (EGD47465) and C. lentocellum (ADZ83685). 

Sequence identities between the catalytic module and CBM32 of CtMan5A and the 

corresponding regions of the other proteins were 60-66% and 46-50%, respectively. Indeed, 

the molecular architecture of the proteins encoded by ADL52309, ACL74764, EGD47465 

and ADZ83685 were more complex than CtMan5A (Figure 5.1). Although Sorangium 

cellulosum is distantly related to C. thermocellum, a catalytic module of its hypothetical 

enzyme (CAN98252) showed relatively high sequence identity (52%) to that of CtMan5A 

(Figure 5.1). The CBM-encoding sequence of CtMan5A displays little sequence similarity to 

the three CBM32 members (out of the 1000 members of CBM32), characterized to date, 

which target Gal, GalNAc or GalA, Figure 5.2.  

 

Figure 5.2| Alignment of CBM32 of CtMan5A to CBM32 sequences characterized to date.  

 

Residues proposed to interact with LacNAc, galactose or polygalacturonic acid are boxed. Cp, CBM32 of C. 

perfringens GH84C; Mv, CBM32 of Micromonospora viridifaciens NedA; Ye, CBM32 of Yersinia enterolitica 

polygalacturonic acid-binding protein; Ct, CBM32 of C. thermocellum Man5A. Asterisks (*), colons (:) and periods 

(.) show fully, highly and moderately conserved amino acid residues respectively. 

 

5.1.3.2. Enzymatic properties of rGH5-CBM32 and rGH5 

rGH5-CBM32 and rGH5 (Figure 5.1B) were expressed as fusion proteins containing a 6×His 

tag and purified by IMAC. The purified proteins were present as single bands on SDS-PAGE 

gels and the observed sizes were in agreement with the expected Mw values (data not 

shown). When insoluble ivory nut mannan was used as the substrate for rGH5-CBM32 and 

rGH5, biphasic hydrolysis patterns were observed (Figure 5.3), that is, rapid hydrolysis of the 

substrate by 5 min (first phase) and slower hydrolysis after 5 min (second phase), under the 

reaction conditions used. The enzymes may attack easily hydrolysable region (probably 

amorphous region) of the substrate in the first phase and tougher region (crystalline region) 

in the second phase. Similar phenomenon was observed for 1,4-β-mannan. Therefore, 

activity values estimated from both the first and second phases are shown for ivory nut 

mannan and 1,4-β-mannan in Table 5.1. Both rGH5-CBM32 and rGH5 were highly active 

toward konjac glucomannan and displayed moderate activity against 1,4--D-mannan, ivory 
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nut mannan and carob galactomannan (Table 5.1). The enzymes exhibited no activity 

against guar gum, microcrystalline cellulose, carboxymethylcellulose, xylan, barley β-glucan, 

or 4-nitrophenyl β-D-cellobioside. When mannanase activity was determined with konjac 

glucomannan as the substrate, the enzyme´s optimum temperature was of 60C and the 

optimum pH was 6.0, consistent with the observation that the two enzymes retained full 

activity after incubation for one hour without substrate. The substrate specificity of CtMan5A 

indicates that the enzyme hydrolyzes THE -1,4-mannoside linkage and displays a 

preference for unsubstituted mannans, as guar gum, a highly galactosylated mannan, was 

not hydrolyzed. The substrate specificity of rGH5 was similar to that of rGH5-CBM32 against 

soluble substrates (Table 5.1). However, rGH5-CBM32 showed significantly higher activity 

than rGH5 towards ivory nut mannan and 1,4--D-mannan, which are both insoluble 

polysaccharides. 

 

Figure 5.3| Hydrolysis pattern of ivory nut mannan by rGH5-CBM32 and rGH5. 

 

 
 

Biphasic hydrolysis of insoluble ivory nut mannan by rGH5-CBM32 (A) and rGH5 (B). Ivory nut mannan was 

incubated with rGH5-CBM32 (A) and rGH5 (B) and the amounts of reducing sugars were determined with the 3,5-

dinitrosalicylic acid reagent at the indicated times. Experiments were carried out in triplicate. 

 

Table 5.1| Activities of rGH5-CBM32 and rGH5 toward mannans from different origins. 

 Activity (μmol/min/μmol)
a
 protein toward: 

Enzyme 

Konjac 

glucomannan 

Ivory nut 

mannan 

1,4-β-D-

Mannan 

Carob 

galactomannan 
Guar gum 

rGH5-CBM32 23,700 ± 743 
10,406 ± 397

b
 

(1,293 ± 503)
c
 

12,679 ± 144 

(10,797 ± 145) 
11,479 ± 191 ND

d
 

rGH5 24,100 ± 1,250 
1,119 ± 32.8 

(194 ± 16) 

4,563 ± 143 

(785 ± 26) 
6,464 ± 590 ND 

a
 Values are means ± standard errors of the means; 

b
 Activity estimated from the first phase; 

c
 Activity estimated 

from the second phase; 
d
 ND, not detectable 
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5.1.3.3. Analysis of hydrolysis products by TLC 

The action of rGH5-CBM32 and rGH5 against mannooligosaccharides and ivory nut mannan 

was qualitatively analyzed by TLC (Figure 5.4). When rGH5-CBM32 was incubated with 

mannooligosaccharides for 16 h, the enzyme displayed negligibly activity against 

mannobiose and mannotriose, and weak activity against mannotetraose (Fig. 5.4A); the 

tetrasaccharide was not completely hydrolyzed over 16 h. In contrast, rGH5-CBM32 was 

highly active on mannopentaose and mannohexaose, with complete conversion of 

mannopentaose to primarily mannotetraose and mannose, and mannohexaose to 

mannotetraose and mannobiose within 20 min. rGH5 generated significantly different 

products to rGH5-CBM32 against mannopentaose and mannohexaose. Thus, rGH5 

produced large amounts of mannotriose and mannobiose and a small amount of 

mannotetraose from both mannopentaose and mannohexaose (Figure 5.4B), while there 

was a complete absence of mannose (Figure 5.4B). The large amount of mannotetraose and 

mannotriose generated by rGH5 from mannopentaose and mannotetraose, respectively, 

which was not mirrored by the appearance of mannose, is strongly indicative of 

transglycosylation activity. When insoluble ivory nut mannan was treated with rGH5-CBM32 

(Figure 5.4C), mannotetraose was detected as the major product in the initial stage of 

hydrolysis, while mannobiose was the dominant oligosaccharide after 24-h incubation. When 

rGH5 was incubated with ivory nut mannan mannobiose was the major product; while some 

mannotetraose was evident no mannose was produced (Figure 5.4D). Similar intensities of 

hydrolysis products were observed in TLC between rGH5-CBM (Figure 5.4C) and rGH5 

(Figure 5.4D), since excessive amounts of the enzymes (0.54 units in 10 L) were used for 

digestion of ivory nut mannan. 
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Figure 5.4| Thin layer chromatography (TLC) showing the enzymatic degradation products of 

mannooligosaccharides and ivory nut mannan by rGH5-CBM and rGH5. 

 
 

TLC analysis of hydrolysis products from mannooligosaccharides by rGH5-CBM (A) and rGH5 (B) and from ivory 

nut mannan by rGH5-CBM (C) and rGH5 (D). (A) and (B) Each mannooligosaccharides (100 g, M2–M6) was 

incubated with the purified rGH5-CBM or rGH5 (0.18 units each) for 16 h or 20 min and the hydrolysates were 

analyzed by TLC. (C) and (D) Ivory nut mannan (50 g each) was treated with of rGH5-CBM or rGH5 (0.54 units 

each) up to 24 h . Samples were taken at intervals and the hydrolysates were analyzed by TLC. 

 

5.1.3.4. Qualitative polysaccharide binding assays  

To investigate the function of CBM32, rCBM32 was mixed with insoluble ivory nut mannan 

and the amount of bound and unbound protein was evaluated by SDS-PAGE. As shown in 

Figure 5.5A, more rCBM32 was in the precipitated ivory nut mannan than the unbound 

fraction, while the control protein, BSA, displayed slightly less binding to the insoluble 

polysaccharide (Figure 5.5C). Both rCBM32 and BSA adsorbed weakly to Funacel, a form of 

microcrystalline cellulose (Figures 5.5B and 5.5D). These results suggest that rCBM32 may 

bind to ivory nut mannan, although the number of protein binding sites on the polysaccharide 

was very low, likely reflecting binding to the non-reducing end of the polysaccharide (see 

below). 

The affinity of rCBM32 for soluble carbohydrates of different origins was qualitatively 

evaluated by native affinity PAGE (Figure 5.6). The electrophoretic mobility of rCBM32 was 

slightly retarded by the inclusion of konjac glucomannan and carob galactomannan. In 

contrast, electrophoresis was not affected by inclusion of guar gum. These results strongly 

suggest that rCBM32 preferably recognizes less decorated mannans, since guar gum is a 

highly galactosylated mannan in contrast to carob galactomannan that is less galactosylated 
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(Daas et al., 2002). The specificity of rCBM32 for the termini of mannans is consistent with 

the limited retardation observed in the mannan-containing gels. In the native affinity PAGE 

experiments, rCBM32 was detected as two bands, suggesting that rCBM molecules interact 

weakly to form dimers (Figure 5.6). 

 

Figure 5.5| Adsorption of rCBM to insoluble ivory nut mannan and Funacel. 

 

rCBM was incubated with an insoluble ivory nut mannan (A) and Funacel (B). After centrifugation, proteins in the 

supernatant (lane 1), wash (lane 2), and precipitate (lane 3) fractions were analyzed by SDS-PAGE. BSA as a 

control protein was incubated with ivory nut mannan (C) and Funacel (D), and each fraction was subjected to 

SDS-PAGE. Lane M, protein molecular mass standard (molecular masses shown left). 

 

Figure 5.6| Adsorption of rCBM to soluble polysaccharides of different origins. 

 

Affinities of rCBM (lane 2) for konjac glucomannan (B), carob galactomannan (C), guar gum (D), and 

polygalacturonic acid (E) were analyzed by native affinity gel electrophoresis. Lane 1 contains BSA as a control 

protein. A gel without a polysaccharide served as a reference (A). 

 

5.1.3.5. Isothermal titration calorimetry (ITC) analysis 

Table 5.2 reports the binding parameters of rCBM32 for manno- and gluco-configured 

ligands obtained by ITC analysis. The data revealed broadly similar affinities (~104 M-1) for 

mannobiose, mannotriose and mannotetraose at 25°C. The protein also displayed 

measurable, but weaker, binding to cellobiose and 4-nitrophenyl β-D-cellobioside. Binding to 

mannose, N-acetyl glucosamine, and glucose was also observed, but the affinity was too low 
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to determine accurately (<103 M-1). rCBM32 displayed no binding to galactose, β-1,4-

mannobiose and 0.1 % high viscosity carob galactomannan. Although binding to 1 % low 

viscosity carob galactomannan was observed it was too weak to quantify. However, when 

the polysaccharide was partially digested with CtMan5A binding was evident (Ka ~4 x 103) 

with a low estimated coverage at saturation of one rCBM32 molecule for every 24 mannose 

residues. These data suggest that rCBM32 contains two sugar binding sites that display a 

preference for mannose, although they will also recognize glucose-configured ligands. The 

substantial increase in binding to galactomannans digested with CtMan5A (compared to 

undigested high or medium viscosity galactomannan) indicates that rCBM32 recognizes the 

termini of polysaccharides. The observation that the CBM binds to 4-nitrophenyl β-D-

cellobioside suggests that the protein recognizes the non-reducing termini of gluco- and by 

inference manno-configured β-glycans. The stoichiometry of binding was ~1 indicating that 

rCBM32 contains one ligand binding site. Typical of CBMs that bind soluble ligands, the 

interaction of rCBM32 with its carbohydrate targets was driven by a negative enthalpy with 

the change in entropy having a detrimental effect on affinity. 

 

Table 5.2| Affinity and thermodynamics of the binding of CBM32 to gluco- and manno 

configured molecules
a
. 

 

a 
The binding of CBM32 to the various ligands was determined by ITC. Standard errors of the means for the 

mannooligosaccharides were determined from triplicate titrations while errors for the fitted line are displayed for 

cellobiose and 4-nitrophenyl β-D-cellobioside. 

b
 N, stoichiometry of binding. 

 

5.1.4. Discussion 

Clostridium thermocellum Man5A preferred unsubstituted substrates such as konjac 

glucomannan to highly galactosylated galactomannan such as guar gum (Table 5.1). Thus, 

galactose residues in galactomannans likely interfere with the binding of CtMan5A to its 

target substrates. The low activity of CtMan5A against ivory nut mannan can be ascribed to 

Ligand N
b
 Ka (M

-1
) ∆H (cal mol

-1
) T∆S (cal mol

-1
) ∆G (cal mol

-1
) 

β-1-4-

Mannobiose 
1.0 ± 0.02 9.3 x 10

3
 ± 338 -10.4 x 10

3
 ± 510 -5.0 x 10

3
 ± 546 -5.4 x 10

3
 ± 36 

β-1-4-

Mannotriose 
1.0 ± 0.05 12.4 x 10

3
 ± 2066 -10.2 x 10

3
 ± 1267 -4.6 x 10

3 
± 1369 -5.6 x 10

3
 ± 106 

β-1-4-

Mannotetraose 
1.2 ± 0.05 11.1 x 10

3
 ± 721 -10.7 x 10

3
 ± 1698 -5.2 x 10

3
 ± 1744 -5.5 x 10

3
 ± 50.0 

Cellobiose 1.1 ± 0.9 1.6 x 10
3
 ± 170 -7.2 x 10

3
 ± 6860 -2.9 x 10

3
 -4.4 x 10

3
 

4-Nitrophenyl 

β-D-

cellobioside 

1.2 ± 0.3 2.8 x 10
3
 ± 200 -5.5 x 10

3
 ± 1780 -0.75 x 10

3
 -4.7 x 10

3 
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the crystalline structure of the substrate, which greatly reduces its access to enzyme attack. 

Indeed, GH5 mannanases generally display low or undetectable activity against crystalline 

mannan. The activity of GH5 mannanases for soluble substrates varies. For example, B. 

circulans K-1 ManG displayed highest activity toward konjac glucomannan and moderate 

activity toward locust bean galactomannan (Yoshida, Sako, & Uchida, 1998). In contrast, C. 

japonicus Man5A and C. josui Man5A showed the highest activity toward carob or locust 

bean galactomannan (Gold & Martin, 2007; Sakka et al., 2010). These differences in 

substrate specificities are partially explained by the preference of the subsites for glucose or 

mannose. By definition mannanases bind mannose at the -1 subsite (active site), as they 

cleave mannosidic linkages. However, specificity at the distal subsites for glucose or 

mannose can be highly variable explaining why different mannanases display a preference 

for galactomannanas and/or glucomannans (Tailford et al., 2009).   

The ligand preference of CBM32 for β-1,4-manno-configured polymers reflects the substrate 

specificity of the GH5 catalytic module of CtMan5A. CBM32 is a large family with, potentially, 

a diversity of ligand specificities. Out of the more than one thousand family 32 CBMs, the 

ligand specificities of only three proteins have been characterized. CBM32 from Clostridium 

perfringens N-Acetyl--hexosaminidase GH84C was shown to bind preferentially to -D-

galactosyl-1,4--D-N-acetylglucosamine (LacNAc) and lactose (Ficko-Blean & Boraston, 

2006). In contrast, CBM32 from Micromonospora viridifaciens sialidase NedA recognized 

galactose and lactose (Newstead et al., 2005) while a periplasmic single module polypeptide 

consisting of CBM32 from Yersinia enterolitica selectively bound to highly polymerized 

galacturonic acid (Abbott, Hrynuik, & Boraston, 2007). The crystal structures of these 

CBM32s reveal a -sandwich fold. While the ligand binding site is conserved in these 

proteins, there are significant differences in the residues that bind to Gal/GalNAc in the 

CBM32s from C. perfringens GH84C and M. viridifaciens NedA, compared to the CBM32 Y. 

enterolitica that targets GalA (Abbott et al., 2007). Since the CBM32 of CtMan5A has a 

binding specificity that is different from those well-characterized CBM32s, it is not surprising 

that the Gal/GalNAc/GalA binding residues are not conserved in the mannan binding CBM32 

(Figure 5.2). 

Comparison of the hydrolytic activities of rGH5-CBM32 and rGH5 toward different mannans 

indicated that the CBM32 in CtMan5A plays an important role in the degradation of insoluble 

mannans, ivory nut mannan and 1,4--D-mannan (Table 5.1). Distinguished biphasic actions 

of both rGH5-CBM32 and rGH5 were observed toward insoluble ivory nut mannan (Figure 

5.3), suggesting that these enzymes attack amorphous region of the substrate first and then 

crystalline region. Since only a weak biphasic action of rGH5-CBM32 was observed toward 

insoluble 1,4--D-mannan and the first phase activity of rGH5-CBM32 toward ivory nut 

mannan was comparable to the second phase activity toward 1,4--D-mannan (Table 5.1), 
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1,4--D-mannan seems to consist of solely amorphous structure. Nevertheless, rGH5 

showed a biphasic action toward 1,4--D-mannan, suggesting that this substrate consists of 

two distinct regions, more sensitive or more resistant to rGH5 attack. It is plausible that the 

presence of CBM32 enhanced catalytic activity of the appended catalytic module by 

increasing enzyme concentration in the vicinity of the substrate. In addition, the presence of 

CBM32 in rGH5-CBM32 may decrease resistance of the substrate to rGH5 attack. Activity-

stimulating effects of CBMs toward insoluble substrates have been observed in cellulases 

and other glycoside hydrolases (Maglione et al., 1992; Mangalaa et al., 2003; Sakka et al., 

2011). For example, the family-3 CBM of Paenibacillus curdlanolyticus B-6 Xyn10D has been 

recently shown to be important for hydrolysis of insoluble arabinoxylan and natural biomass 

by comparison of the parental and truncated enzymes (Sakka et al., 2011), while the addition 

of family-6 CBMs of Clostridium stercorarium XynA to Bacillus holodurans xylanase XylA 

increased hydrolytic activity of the chimeric enzyme toward insoluble oat spelt xylan but not 

soluble birchwood xylan (Mangalaa et al., 2003). Uniquely the CBM32 in rGH5-CBM32 

appeared to also influence the mode of action of the catalytic module. Thus, rGH5-CBM32 

produced equal amounts of mannose and mannotetraose from mannopentaose, and 

mannose and mannotriose from mannotetraose. In contrast rGH5 generated mannobiose 

and mannotriose from mannotetraose, while the production of the tetrasaccharide from 

mannopentaose was not associated with the appearance of mannose (Figure 5.4). This 

unbalance between complementary oligosaccharide release (e.g. if mannotetraose is 

hydrolyzed to generate mannotriose, then an equal amount of mannose should be 

generated) is typical of transglycosylation reactions. GH5 enzymes, including CtMan5A, have 

a retaining reaction mechanism that proceeds by a double displacement reaction in which a 

covalent glycosyl-enzyme intermediate is firstly formed (glycosylation step) and then 

hydrolyzed (deglycosylation step) through general acid/base-catalysis. Transglycosylation 

occurs when the glycone of the glycosyl-enzyme intermediate is transferred to an 

oligosaccharide acceptor rather than water. In the case of rGH5-CBM32, it is possible that 

the presence of CBM32 sterically hinders the access of large acceptor molecules, such as 

mannooligosaccharides, to the +1 subsite of the covalent glycosyl- enzyme intermediate, 

reducing transglycosylation.  

5.1.5. Conclusions 

In conclusion, CBM32 from CtMan5A displays a preference for the non-reducing end of β-

manno-configured oligosaccharides, a specificity not previously observed in family 32 CBMs. 

The module appears to play an important role in the hydrolysis of insoluble mannans. 

Furthermore, the presence of CBM32 affects the mode of action of the catalytic module of C. 

thermocellum Man5A. 
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Abstract 

The cloning, expression and characterization of three cellulosomal pectinolytic enzymes viz., 

two variants of PL1 (PL1A and PL1B) and PL9 from Clostridium thermocellum was carried 

out. The comparison of the primary sequences of PL1A, PL1B and PL9 revealed that these 

proteins displayed considerable sequence similarities with family 1 and 9 polysaccharide 

lyases, respectively. PL1A is a putative catalytic domain of protein sequence ABN54148.1, 

while PL1B and PL9 are two putative catalytic domains of ABN53381.1. These two protein 

sequences also contain putative carbohydrate binding module (CBM) and type-I dockerin. 

The associated putative CBM of PL1A showed strong homology with family 6 CBMs while 

those of PL1B and PL9 showed homology with family 35 CBMs. Recombinant derivatives of 

these three enzymes showed molecular masses of approximately 34 kDa, 40 kDa and 32 

kDa for PL1A, PL1B and PL9, respectively. PL1A, PL1B and PL9 displayed high activity 

toward polygalacturonic acid and pectin (up to 55% methyl-esterified) from citrus fruits. 

However, PL1B showed relatively higher activity towards 55% and 85% methyl-esterified 

pectin (citrus). PL1A and PL9 showed higher activity on rhamnogalacturonan than PL1B. 

Both PL1A and PL9 displayed maximum activity at pH 8.5 with optimum temperature of 50 

ºC and 60 ºC, respectively. PL1B achieved highest activity at pH 9.8, under an optimum 

temperature of 50°C. PL1A, PL1B and PL9 produced two or more unsaturated 

galacturonates from pectic substrates as displayed by TLC analysis confirming that they are 

endo-pectate lyase belonging to family 1 and 9, respectively. This report reveals that 

pectinolytic activity displayed by Clostridium thermocellum cellulosome is coordinated by a 

sub-set of at least three multi-modular enzymes. 
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6.1.1. Introduction 

Plant cell wall degradation carried out by saprophytic and phytopathogenic microbes is 

essential for the recycling of carbon stored in plant biomass and of intrinsic biotechnological 

importance. Plant cell walls are composed of a complex network of polysaccharides, 

primarily cellulose, hemicelluloses and pectic substances (Carpita & Gibeaut, 1993). Pectins 

are a highly heterogeneous group of polymers, containing a high quantity of galacturonic 

acid, which contribute to the firmness and structure of plant tissues, and is predominantly 

found in the primary cell wall and middle lamella. This recalcitrant carbohydrate is more 

soluble in water than cellulose and hemicelluloses, suggesting that it constitutes the initial 

target for plant associated microbes attack (Ochiai et al., 2007). Pectins are divided into 

three polysaccharides i.e., homogalacturonan (HG), rhamnogalacturonan type-I (RG-I), and 

rhamnogalacturonan type-II (RG-II). HG is present as a linear backbone, while RG-I and RG-

II are branched carbohydrates (Darvill, McNeil, & Albersheim, 1978). The backbone of RG-I 

pectin is composed of alternating rhamnose and galacturonic acid residues with a 

disaccharide repeated unit consisting of [(1,2)-α-L-rhamnose-(1,4)-α-D-galacturonic acid] 

where galacturonic acid residues may be acetylated at the O2 or O3 positions (McNeil, 

Darvill, & Albersheim, 1980; McDonough et al., 2004). It is often referred as “hairy” because 

of the presence of multiple side chains of neutral polymers like arabinans, galactans and 

arabinogalactans which are attached to C4 of the rhamnose residues (Ridley, O Neil, & 

Mohnen, 2001; De Vries & Visser, 2001). RG-II consists of a polygalacturonan backbone 

with side chains complexes of about 30 monosaccharides including rare molecules such as 

apiose and aceric acid (O Neill et al., 1996).  

Due to its structural complexity, pectin degradation requires the concerted action of several 

enzymes. The enzymatic degradation of polygalacturonan involves two well-known 

enzymatic mechanisms: i) hydrolysis by glycoside hydrolases (GH) that cleave glycoside 

bonds in the polysaccharide and ii) β-elimination reactions carried out by polysaccharide 

lyases resulting in oligomers with Δ4,5 unsaturated residues at the non-reducing end 

(Linhardt, Galliher, & Cooney, 1986; Davies & Henrissat, 1995). Polysaccharide lyases (EC 

4.2.2.-) belong to a large group of enzymes defined as carbohydrate-active-enzymes and 

have been classified into 23 families (February 2015), according to CAZy database (Cantarel 

et al., 2009). Pectate lyases of families 1, 2, 3, 9, and 10 catalyse the β-eliminative cleavage 

of α-1,4-glycosidic bond between D-galactopyranosyluronic acid (GalpA) residue in pectate 

(a low methylesterified form of pectin), and generate Δ4,5 unsaturated GalpA as the product 

(Pagès et al., 2003), which exhibits a maximum absorbance at around 235 nm (Jurnak et al., 

1996).  

Pectate lyases are widely distributed among microbial plant pathogens like Erwinia 

(Hugouvieux-Cotte-Pattat et al., 1996; Pissavin, Robert-Baudouy, & Hugouvieux-Cotte-

Pattat, 1996; Shevchik, Robert-Baudouy, & Hugouvieux-Cotte-Pattat, 1997) although they 
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have also been found in saprophytic bacteria including the genus Bacillus (Soriano, Diaz, & 

Pastor, 2006; Ochiai et al., 2007; Sukhumsiirchart et al., 2009) and Clostridium (Pagès et al., 

2003). Clostridium thermocellum is an anaerobic, saccharolytic and thermophilic bacterium 

that organizes a consortium of plant cell wall degrading enzymes in a large multienzymatic 

complex termed the cellulosome (Bayer, Kening, & Lamed, 1983; (Lamed, Setter, & Bayer, 

1983). The cellulosome is assembled via the interaction of individual type-I dockerins located 

at the C-terminus of enzymes into one of the nine cohesins of the scaffoldin subunit, CipA. 

CipA also bears a family 3 carbohydrate-binding module (CBM) which accounts for its 

cellulose-targeting function and a dockerin type-II that mediates the attachment of the entire  

complex into the bacterial cell surface (Bayer, Kening, & Lamed, 1983; Bayer et al., 2008). 

Despite its specialization in the hydrolysis of crystalline cellulose, the cellulosome contains in 

addition to several cellulases, an extensive group of hemicellulases, which have been 

extensively characterized (Zverlov et al., 1994; Halstead et al., 1999; Fernandes et al., 1999; 

Blum et al., 2000; Fontes & Gilbert, 2010), and are believed to increase the accessibility of 

the bacterium into its primary substrate.  

The majority of glycoside hydrolases that attack cellulose and hemicelluloses are modular 

enzymes consisting of catalytic modules appended to non-catalytic carbohydrate-binding 

modules (CBMs) (Davies & Henrissat, 1995). Pectinases on the contrary generally have a 

relatively simple structure lacking CBMs, which is possibly explained by the accessibility of 

pectins to soluble biocatalysts (McKie et al., 2001). CBMs are described to date into 71 

families (February 2015), according to CAZy database (http://www.cazy.org) and continue to 

expand. The present study provides data indicating that C. thermocellum cellulosome 

secretes modular polysaccharides lyases belonging to PL families 1 and 9. The role of this 

subset of enzymes in the anaerobic conversion of biomass by cellulosomes was 

investigated.  

 

6.1.2. Materials and Methods 

6.1.2.1. Bacterial strains, plasmids and culture conditions 

The Escherichia coli strains used in this study were NZYStar (NZYTech, genes & enzymes, 

Portugal.), BL21 (DE3) and BL21(DE3) pLysS (Novagen). The plasmid vectors used were 

pNZY28 (NZYTech, genes & enzymes), pGEM-T Easy vector (Promega), pET21a and 

pET28a (Novagen). E. coli strains containing recombinant plasmids were cultured in LB broth 

medium supplemented with 100 μg/mL ampicillin or 50 µg/mL kanamycin. To generate the 

recombinant proteins encoded by pET21a or pET28a expression vectors, E. coli BL21(DE3) 

were cultured at 37 ºC to mid-exponential phase (OD550nm = 0.6) and at this point isopropyl-β-

D-thiogalactoside (IPTG) was added to a final concentration of 1 mM. Incubation conditions 

after induction with IPTG were 16h at 19°C for PL1A and PL9, 12h at 24°C for PL1B.  
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6.1.2.2. Substrates used in enzyme assays 

Polygalacturonic acid (PGA) from citrus fruits, rhamnogalacturonan from soybean (RGAS) 

and potato (RGAP), pectic galactans from potato (PGP) and lupin (PGL), were purchased 

from Megazyme. Pectins from citrus fruits (with varying degrees of methyl-esterification, PC) 

and apple (PA) were purchased from Sigma Chemical Co., USA. 

 

6.1.2.3. General recombinant DNA procedures 

Bacterial transformation, agarose gel electrophoresis, plasmid DNA preparation, restriction 

endonuclease digestion and ligation of DNA sequences were followed as described 

elsewhere (Sambrook, Fritsch, & Maniatis, 1989).  

 

6.1.2.4. Construction of recombinant plasmids 

Genes encoding PL1A, PL1B and PL9 were amplified from C. thermocellum genomic DNA, 

using one IU of thermostable DNA polymerase NZYSpeedy Proof (NZYTech, genes & 

enzymes, Portugal) and primer pairs, described in Table 6.1. NheI/XhoI restriction sites were 

used for directional cloning of the respective amplified DNA sequences into the expression 

vectors pET21a and pET28a. The reactions, in a final volume of 50 μL, were subjected to 30 

cycles at the following temperatures: 95 ºC for 1 min, 55 ºC for 1 min and 72 ºC for 2.5 min. 

The amplified genes after running on agarose gel were purified by gel extraction kit (Qiagen), 

and were cloned into pNZY28 (NZYTech, genes & enzymes, Portugal) or pGEMT-Easy 

(Promega) and sequenced to ensure that no mutation occurred during PCR. Recombinant 

pNZY28 and pGEMT-Easy derivatives were digested with NheI/XhoI restriction enzymes 

(NZYTech, genes & enzymes or Promega). pL1a and pL9 genes were cloned into similarly 

digested expression vector pET21a(+) whereas pL1b gene was cloned into pET28a(+) 

vector. Recombinant PL1A and PL9 proteins contained a C-terminal His6-tag, whereas PL1B 

contained an N-terminal His6-tag.  

 

Table 6.1| Primers used in PCR of pl1A, pl1B and pl9 genes. The nucleotides shown in bold are 

the restriction enzyme sites, which were used to clone amplified genes into the expression vectors 

pET21a(+) and pET28a(+). 

 

Protein Vector Primers 

PL1A pET21a(+) 5´- ctcgctagcaccacttatgcccagacc -3´ 

5´- cacctcgagggagaatgttcccgggac -3´ 

PL1B pET28a(+) 5´- ctctgctagcgcgccaagctttgaactg -3´ 

5´- cgcgctcgagctgctgagtatttttcgg -3’ 

PL9 pET21a(+) 5´- ctcgctagcgcaatccctgtggaaggagac -3´ 

5´- cacctcgagtttaaatattgcattgtcaag -3´ 
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6.1.2.5. Expression and purification of PL1A, PL1B and PL9  

PL encoding genes were expressed using E. coli BL21(DE3) where the cells were induced 

with 1mM IPTG, only when the culture OD A600 reaches 0.4 – 0.6. Induced cells were grown 

overnight at 24 °C and 180 xg for protein production. Cells were harvested by centrifugation 

at 12000 xg, 4 ºC for 20 min and the bacterial pellets were resuspended in 50 mM sodium 

HEPES buffer (pH 7.5) containing 1 M NaCl, 5 mM CaCl2 and 10 mM imidazole for PL1A and 

PL9. PL1B containing cells were resuspended in 50 mM Tris-HCl buffer (pH 8.6) containing 

only 100 mM NaCl. These three recombinant proteins containing His-tags were purified by 

immobilized nickel ion affinity chromatography as described previously (Carvalho et al., 

2004). For PL1A and PL9 the buffer was exchanged to 50 mM Tris-HCl, pH 8.5, containing 5 

mM CaCl2 and 100 mM NaCl and for PL1B the buffer was exchanged to 50 mM Tris-HCl (pH 

8.6) containing 100 mM NaCl. The purity and size of recombinant enzymes were evaluated 

by SDS-PAGE (Laemmli, 1970). 

 

6.1.2.6. Enzyme assays 

The enzyme activity of PL1A, PL1B and PL9 was determined against different pectic 

substrates. 30 μg of PL1A or PL9 was incubated with 0.5% (w/v) of substrate dissolved in 50 

mM Tris-HCl buffer pH 8.5 containing 5 mM CaCl2 and 100 mM NaCl at 60 ºC for 20 min. 

The assay of PL1B was carried out by incubating 7 µg of enzyme with 0.1% (w/v) of 

substrate in 50 mM Glycine-NaOH buffer (pH 9.8) containing 0.6 mM CaCl2 for 15 min at 50 

ºC. The reactions were stopped by incubation on ice for 10 min and centrifuged at 13,000 xg 

for 5 min. The supernatant containing the released unsaturated products was measured by 

spectrophotometer (Ultrospec III Pharmacia and Cary 100 Bio Varian). The molar extinction 

coefficient used for the unsaturated product released at A232 nm, was 5,200 M-1cm-1 (Collmer, 

Riad, & Mount, 1988) and at A235 nm, was 4,600 M-1cm-1 (Hasegawa & Nagel, 1966). 1 Unit 

of enzyme was defined as the amount of enzyme that forms 1 μmol of 4,5-unsaturated 

product per minute, under the described assay conditions.  

To determine the maximum activity of PL1A and PL9 at different pH values, all enzymes 

were incubated with appropriate substrates at 50°C in the following buffers: 50 mM MES (pH 

6.5); 50 mM Tris-HCl (pH 7.0 to 8.5) and 50 mM NaHCO3 (pH 9.0 to 12.0), and the activity 

was determined at A232 nm as described above. Activity of PL1B at different pH values was 

determined by incubating with PGA at 50°C using following buffers: 50 mM Tris-HCl (pH 7.6-

8.8), 50 mM Glycine-NaOH (pH 9.0-10.6) and 50 mM Na2HPO4-NaOH (10.8-12), and the 

activity was determined at A235 nm as mentioned earlier. The optimal activities of PL1A and 

PL9 at a range of temperature from 10 to 100 ºC, were determined spectrophotometrically at 

A232 nm, by incubating the enzymes in 50 mM Tris-buffer pH 8.5, for 20 min. The optimal 

activity of PL1B in the temperatures range from 10 to 100 ºC was spectrophotometrically 

determined at A235 nm in 50 mM Glycine-NaOH buffer pH 9.8, after 15 min of incubation. The 
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thermostability of PL1A and PL9 was evaluated, by incubating the enzyme at different 

temperatures (30 to 100 °C) in 50 mM Tris-HCl pH 8.5, and for PL1B the enzyme was 

incubated at same temperature range in 50 mM Tris-HCl (pH 8.6) for 30 min (Fontes et al., 

1995b), and then the residual activity was measured by assay methods described earlier. 

Kinetic parameters of these three Clostridial enzymes were measured against PGA (citrus) 

having an average molecular weight approximately, 25000 g/mol (White, Katona, & Zodda, 

1999). 20 µL (1.5 mg/mL) of enzyme (PL1A or PL9) was used in 1 mL reaction mixture 

containing 50 mM Tris-HCl (pH 8.5), 5 mM CaCl2 with varying concentrations (0.01 to 0.5% 

w/v) of PGA were incubated at 50 ºC. The unsaturated product formation was monitored 

spectrophotometrically at A232 nm. Similarly, 20 µL (1.4 mg/mL) of PL1B was used in 1 mL of 

reaction volume containing 50 mM Glycine-NaOH (pH 9.8), 0.6 mM CaCl2 and varying 

concentration of PGA (0.01 to 0.5% w/v). The reaction mixture was incubated at 50 ºC and 

released unsaturated product was monitored spectophotometrically at A235 nm. Kcat and Km 

were determined using the Michaelis-Menten equation. All the reactions were carried out in 

triplicate and results were reported as mean±SD. 

 

6.1.2.7. Analysis of enzyme degradation products  

PL1A (6 µg), PL1B (7 µg) and PL9 (6 µg) were separately incubated in 1 mL reaction volume 

containing 0.1% (w/v) PGA or citrus pectin (25% methyl-esterified). The reaction was carried 

out under optimized conditions of pH and temperature for different time intervals from 0 to 60 

min. After the reaction enzyme was deactivated by keeping on ice for 5 min and the sample 

was treated with equal volumes of ethanol to precipitate un-hydrolyzed polysaccharides and 

protein. Ethanol was removed and samples were concentrated to 500 µL by heating at 50 °C. 

1 µL of sample was then loaded on the TLC plate (readymade silica coated aluminum TLC 

plates obtained from Merck, Germany) for running the degradation products under a solvent 

system containing butan-1-ol/water/acetic acid in the ratio of 5:3:2 (Lojkwoska et al., 1995). 

The spots on TLC plates were visualized by a solution containing 0.5% (w/v) α-naphthol and 

5% (v/v) sulphuric acid in ethanol (Cote & Leathers, 2005), after heating at 95°C for 10 min in 

hot air oven. Standard oligogalacturonides like D-galacturonic acid (S1), di-galacturonic acid 

(S2) and tri-galacturonic acid (S3) (procured from Sigma Chem. Co., USA) were used to 

analyze the degradation product formed from different substrates upon enzymatic treatment. 

 

6.1.3. Results  

6.1.3.1. Molecular architecture of three pectin degrading enzymes from 

Clostridium thermocellum 

Inspection of two protein sequences from C. thermocellum revealed that they contain one 

gene (pL1A) in the sequence ABN54148.1 (Figure 6.1A) and two genes (pL1B and pL9) in 

the sequence ABN53381.1 (Figure 6.1B) all putatively expressing lyase activities. Both the 
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protein sequences are associated with type I dockerin, which is the signature module of the 

cellulosomal proteins. Analysis of the deduced amino acid sequence of the three enzymes 

revealed characteristic N-terminal signal sequences with putative cleavage sites located 

between Ala-37/Thr-38 (ABN54148.1) and between Ala-33/Ala-34 (ABN53381.1) suggesting 

that the proteins are exported into the extracellular space. Homology searches using Blast 

(www.ncbi.nlm.nih.gov/BLAST), revealed downstream the signal peptide of ABN54148.1 a 

putative 302-aa family 1 PL (PL1A) followed by a 70-aa dockerin domain and a 124-aa C-

terminal family 6 CBM (CBM6) (Figure 6.1A). ABN53381.1 contains a 353-aa N-terminal 

family 1 PL (PL1B) and a 289-aa C-terminal family 9 PL (PL9). Sandwiched between these 

two catalytic domains is a 73-aa dockerin domain and 124-aa family 35 CBM (CBM35) 

(Figure 6.1B).  

 

Figure 6.1| Molecular architecture of modular protein sequences with accession numbers 

ABN54148.1 and ABN53381.1.  

 

 

(A) Protein sequence with accession no. ABN54148.1 that comprises of N-terminal PL1A catalytic domain, 

followed by DOC, type-I dockerin and C terminal CBM6 binding domain. (B) Protein sequence with ac no. 

ABN53381.1 that comprises of N terminal PL1B catalytic domain, followed by DOC, type-I dockerin and CBM35 

binding domain, with a C-terminal PL9 catalytic domain. 

 

Alignment of PL1A (Figure 6.2A) and PL1B (Figure 6.2B) domain with other PL1 homologues 

revealed two consensus sequence patterns in the enzymes catalytic domains, “VWIDH” and 

“VxxRxPxxRxGxxHxxxN”, which are signature regions of pectate lyases (Pel) (Hinton et al., 

1989; Barras, Van Gigsegem, & Chatterjee, 1994; Henrissat et al., 1996). The conserved 

arginine residue observed in the second region, identified as R-218 in the superfamily 

pectate lyase C (PelC from Erwinia chysanthemi) is the catalytic residue involved in proton 

abstraction (Yoder, Keen, & Jurnak, 1993; Scavetta et al., 1999). Cleavage of glycosidic 

bonds in which the aglycone sugar is galacturonic acid can be acid-base-assisted catalysis, 

mediated by glycoside hydrolases (Koshland, 1953) or via β-elimination reaction, which is 

initiated by proton abstraction from C-5 of the galacturonosyl residue on the reducing end of 

the glycosidic bond (Moran, Nasuno, & Starr, 1968). As R-218 belongs to a potential group 
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or groups involved in the proton abstraction in PelC and as it is highly conserved in catalytic 

domains of PL1A (position 190 in Figure 6.2A) and PL1B (position 209 in Figure 6.2B) it 

suggests that these three enzymes cleave α-1,4-linked galacturonic acid units of the pectate 

component of the plant cell wall by a β-elimination mechanism as expected for pectate 

lyases. The “VWIDH” region is highly conserved in PL1A and PL1B (Figure 6.2 A and B) and 

it is involved in the membrane transport and in the protein fold (Bruhlmann & Keen, 1997). 

Structural motifs (parallel β-helix) are also identified in pectate lyases from Erwinia 

chysanthemi and Bacillus subtilis (Yoder et al., 1993; Lietzke et al., 1994; Pickersgill et al., 

1994).  

PL9 catalytic domain bears profound similarity with Pel9A from Erwinia chryanthemi. Pel9A 

showed an endolytic cleavage pattern where it cleaves the polysaccharide by anti-β-

elimination mechanism, where a base catalyzed abstraction of proton is carried out from the 

C5 carbon (Anderson, 1998). In case of Pel9A the putative base is Lysine rather than 

Arginine found in other endo-pectate lyases (Jenkins et al., 2004). Such a consensus 

sequence was found in the catalytic domain of PL9, whose translated amino acid sequence 

is highly conserved in all the aligned sequences marked within a box in Figure 6.2C. The 

lysine residue involved in proton abstraction during β–elimination is located in position 269 of 

the PL9 sequence (Figure 6.2C).  
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Figure 6.2| Multiple Sequence Alignment of family 1 and 9 polysaccharide lyases performed by 

CLUSTALW program and viewed in GeneDoc ver2.7. 

 
 

Identical amino acid residues common in all sequences are represented by black shade, and similar amino acids 

which are common in atleast 3 out off 5 sequences are represented by grey shades. Consensus sequences that 

characterize pectate lyases are inside of black squares. (A) PL1A alignment was with following proteins: 1 (PL1A, 
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C. thermocellum ATCC 27405); 2 (Erwina chrysanthemi, PDB: 1PCL); 3 (Thermotoga maritima, PDB: 3ZSC); 4 

(Bacillus subtilis, PDB: 3KRG) and 5 (Acidovorax Avenae Subsp Citrulli, PDB: 4HWV). (B) PL1B was aligned with 

following proteins: 1 (PL1B, Clostridium thermocellum ATCC 27405); 2 (Bacillus Sp. N16-5, PDB: 3VMV); 3 

(Thermotoga Maritima, PDB: 3ZSC); 4 (Xanthomonas Campestris ATCC 33913, PDB: 2QX3); 5 (Bacillus Sp. TS-

47, PDB: 1VBL). (C) PL9 was aligned with following proteins: 1 (PL9, Clostridium thermocellum ATCC 27405); 2 

(Clostridium straminisolvens JCM 21531, GAE89695.1); 3 (Clostridium cellulovorans 743B, YP_003842407.1); 4 

(Acetivibrio cellulolyticus, WP_010245176.1); 5 (Caldicellulosiruptor kristjanssonii I77R1B, YP_004026944.1). 

 

6.1.3.2. Cloning, expression and purification of recombinant PL1A, PL1B and 

PL9  

DNA sequences of 906, 1059 and 867 bp, encoding PL1A, PL1B and PL9 respectively, were 

amplified by PCR and cloned into pET21a and pET28a expression vector as described in the 

method section. The recombinant proteins containing the His6-tags were purified by 

immobilized metal ion affinity chomatography. The expression and purification of PL1A, 

PL1B and PL9 proteins was analyzed by SDS-PAGE as shown in Figure 6.3 A, B and C 

displaying molecular size of approximately 34, 40 and 32 kDa, respectively.  

 

Figure 6.3| Hyper-expression and purification of PL1A, PL1B and PL9 using E. coli BL21(DE3) 

cells.  

 

The purity of the proteins was analysed by SDS-PAGE using 10% (w/v) gel showing (A) PL1A (34 kDa); (B) PL1B 

(40 kDa); (C) PL9 (32 kDa); Lane M: Fermentas high range protein molecular weight marker; Lane 1: Uninduced 

BL21 cells; Lane 2: IPTG induced BL21 cells; Lane 3: Cell pellet after sonication; Lane 4: Cell free extract, Lane 

5: Last wash from column and Lane 6: Purified recombinat enzyme. 

 

6.1.3.3. Biochemical properties of PL1A, PL1B and PL9  

The biochemical role of C. thermocellum cellulosomal PL1A, PL1B and PL9 enzymes was 

investigated by analyzing their activity against different substrates. All the three enzymes 

PL1A, PL1B and PL9 were predominantly active towards polygalacturonic acid (PGA) and 

pectin both from citrus (Figure 6.4). PL1B displayed relatively higher activity with 55% and 

85% methyl-esterified pectins from citrus than PL1A and PL9. On the other hand PL1A and 
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PL9 showed 30-40% relative activity with rhamnogalacturonan from potato (RGAP) and 

soybean (RGAS), whereas PL1B showed only 8% relative activity.  

 

Figure 6.4| Substrate specificity of PL1A, PL1B and PL9 towards pectic polysaccharides. 

 

PGA: Polygalacturonic acid, PC 25: Pectin (Citrus) (25% methyl-esterified), PC 55: Pectin (Citrus) (55% methyl-

esterified), PC 85: Pectin (Citrus) (85% methyl-esterified), PA: Pectin (Apple), RGAP: Rahmnogalacturonan 

(Potato), RGAS: Rahmnogalacturonan (Soybean), PGL: Pectic galactan (Lupin), PGP: Pectic galactan (Potato). 

 

The effect of pH and the temperature on the activity of the recombinant PL1A, PL1B and PL9 

enzymes against PGA was determined. The results showed that PL1A, PL1B and PL9 were 

active under alkaline conditions. PL1A and PL9 were active within pH range (6.5-9.5) 

showing highest activity at pH 8.5 (Figure 6.5A and C). PL1B was active within pH range (8-

10) displaying highest activity at pH 9.8 (Figure 6.5B).  

The optimum temperature was found at 50 ºC for both PL1A and PL1B and 60 ºC for PL9 

(Figure 6.6 A, B and C) which were expected because these enzymes originated from a 

thermophilic bacterium. Nevertheless all the three recombinant enzymes, PL1A, PL1B and 

PL9 displayed thermostability within the temperature range of 30 ºC to 70 ºC for 30 min 

(Figure 6.7 A, B and C). 

 

 

 

 

 

 

 

 

 



 

120 
 

Figure 6.5| Effect of pH on the activity of (A) PL1A; (B) PL1B; (C) PL9 towards PGA as 

substrate. 

 

 

Figure 6.6| Effect of temperature on the activity of (A) PL1A; (B) PL1B; (C) PL9 towards PGA as 

substrate. 
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Figure 6.7| Thermostability of (A) PL1A; (B) PL1B; (C) PL9 towards PGA, after 30 min of 

incubation of the enzyme at different temperatures. 

 

 

All the three enzymes showed an exclusive requirement of Ca2+ ions to achieve their 

maximum activity. PL1A and PL1B showed only 20% of their maximum activity in the 

absence of 5 mM and 0.6 mM Ca2+ ions, respectively, whereas PL9 showed 50% of its 

maximum activity in absence of 5 mM Ca2+ ions (Figure 6.8A, B and C). The optimum Ca2+ 

ion concentration required to achieve 100% pectinolytic relative activity were 5 mM for both 

PL1A and PL9, whereas 0.6 mM for PL1B. 

Kinetic parameters of these three enzymes were determined against PGA and are presented 

in Table 6.2. The data revealed that PL1A, PL1B and PL9, showed turnover number values 

(Kcat) of 1.3, 1.76, and 1.32 min-1 respectively (Table 6.2). The catalytic efficiency (Kcat/Km) 

values exhibited by PL1A, PL1B and PL9 were 41, 62 and 35 mM-1min-1 respectively, 

revealing that PL1B exhibit higher catalytic efficiency on PGA, than PL1A and PL9.  
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Figure 6.8| Effect of concentration of Ca
2+

 ions on the activity of (A) PL1A; (B) PL1B; (C) PL9 

against PGA as substrate.  

 

 

 

Table 6.2| Kinetic parameters of PL1A, PL1B and PL9 with Polygalacturonic Acid (PGA) from 

citrus. One unit of enzymatic activity (U) was defined as the amount of enzyme in mg that produces 1 

mmol/L of unsaturated product per minute. 

 

6.1.3.4. Functional properties of recombinant PL1A, PL1B and PL9  

Products released by the enzymatic cleavage of PL1A, PL1B and PL9 of PGA and pectin 

(citrus) were determined. The reactions were carried out under optimum conditions of pH and 

temperature for each individual enzyme as mentioned in Methods section. The samples from 

enzymatic reaction were collected at different time intervals of 0, 5, 10, 15, 20, 30, 45 and 60 

min and separated through TLC. PL1A produced unsaturated di- and tri-galacturonates along 

with other oligosaccharides of higher size. The accumulation of unsaturated tri-

galacturonates and higher size oligosaccharides was predominant after 5 min of the start of 

reaction (Figure 6.9A). It was evident from the TLC results that an increase in the amount of 

unsaturated di- and tri-galacturonates was found with increase in time and found to be 

Enzyme Substrate Kcat (min
-1

) Km (mM) Kcat/Km (mM
-1

 min
-1

) 

PL1A PGA (citrus) 1.3±0.03 0.0313±0.0005 41±0.23 

PL1B PGA (citrus) 1.76±0.05 0.0286±0.0002 62±0.43 

PL9 PGA (citrus) 1.32±0.05 0.0378±0.0004 35±0.4 
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highest at 60 min of reaction time (Figure 6.9A). PL1B from the beginning of the reaction 

started producing unsaturated di and tri-galacturonates, and no higher size oligosaccharides 

were observed. Accumulation of unsaturated di- and tri-galacturonates increased with time 

and found to be highest at 60 min of the reaction (Figure 6.9B). PL9 produced unsaturated 

tri-galacturonates and oligosaccharides of higher size, and the accumulation of this two 

products were found to be constant from 5 to 60 min of the reaction time (Figure 6.9C). The 

cleavage pattern of these three enzymes suggests that they cleave within the poly-

galacturonan main chain of PGA and pectin (citrus) thus following an endo cleaving pattern.  

 

Figure 6.9| Thin layer chromatography (TLC) showing the enzymatic degradation products of 

PGA (citrus) and pectin (citrus) (25% methyl-esterified).  

 

Chromatogram displaying hydrolysis by (A) PL1A (B) PL1B and (C) PL9 at 0, 5, 10, 15, 20, 30, 45 and 60 min. 

Standard oligosaccharides used were S1: D-galacturonic acid; S2: Di-galacturonic acid; S3: Tri-galacturonic acid.  

 

The mechanism by which these three enzymes from Clostridium thermocellum cleaves the α-

1,4 linkages in pectic polysaccharides thus resulting in enzymatic degradation is explained 

schematically in Figure 6.10. 
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Figure 6.10| Schematic presentation of mode of action of PL1A, PL1B and PL9 against PGA and 

pectin (citrus)  

 

 
 

Hydrolysis of PGA and pectin (citrus) by PL1A, PL1B and PL9 leading to production of corresponding unsaturated 

oligo-galacturonates. 

 

6.1.4. Discussion 

Clostridium thermocellum is known to hydrolyze not only cellulose but also hemicelluloses 

(Zverlov et al., 1994; Halstead et al., 1999; Fernandes et al., 1999; Blum et al., 2000; Fontes 

& Gilbert, 2010; Zverlov, Fuchs, & Schwarz, 2002). It was also shown that C. thermocellum 

could utilize polygalacturonic acid and pectins as carbon sources (Spinnler, Lavigne, & 

Blachere, 1986). The results described in this paper demonstrate that C. thermocellum 

cellulosome is composed of enzymes that are able to attack pectin and can degrade these 

complex polysaccharides. We have identified and characterized for the first time three 

cellulosomal pectinolytic enzymes PL1A, PL1B and PL9 from this microorganism. The data 

revealed that PL1A, PL1B and PL9 have catalytic activity on polygalacturonic acid (PGA) and 

pectin (citrus). Sequence similarity studies with proteins in biological databanks placed PL1A, 

PL1B and PL9 in families 1 and 9 of pectate lyases (PL), respectively. Up to the present date 

there are 23 families of polysaccharide lyases, of which PL families 1, 2, 3, 9 and 10 contain 

pectate lyases (http://www.cazy.org). 

Analysis of primary sequences of the cellulosomal enzymes under analysis here revealed a 

modular organization with the presence of a CBM, which is rare in pectinases (Pagès et al., 

2003). It is generally believed that pectins are more accessible to enzyme attack than 

cellulose and hemicelluloses, and as such it has been assumed that there has been less 

evolutionary pressure for pectinases to contain CBMs. However, Rgl11A and Pel10A from P. 

cellulosa and Pel4A from Clostridium cellulovorans are examples of prokaryotic pectinases 

that contain a cellulose-binding domain (Pagès et al., 2003; McKie et al., 2001; Brown et al., 
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2001). This report showed that CBMs are prevalent within cellulosomal pectinases and might 

be involved in potentiating the degradation of less recalcitrant substrates. Previous studies 

showed that functionally active family 6 and 35 CBM’s bind strongly to cellulose (Henshaw et 

al., 2004; Bolam et al., 2004). Family 6 CBMs display considerable promiscuity in ligand 

binding with different modules showing affinity for amorphous cellulose, xylans and β-glucans 

(Czjzek et al., 2001). In addition, CBM family 35 also reveals considerable plasticity in ligand 

recognition which is not surprising considering that this family shares sequence similarities 

with CBM 6. Both these families, CBM 6 and CBM 35, are structurally related to the β-jelly-

roll CBM superfamily (Boraston et al., 2004) and can be viewed as a subfamily of the large β-

jelly-roll CBM superfamily (Tunnicliffe et al., 2005). CBMs are prevalent in plant cell wall 

degrading enzymes and as a general function promote the interaction of the enzyme with 

their target substrate (Boraston et al., 2004). PL1A contains a CBM 6, while PL1B and PL9 

exhibit a CBM 35. The presence of CBMs in the structure of PL1A, PL1B and PL9 suggests 

that they are important in increasing their catalytic efficiency by bringing the enzymes into 

close proximity to their target substrates. However, in a recent work Montanier and 

colleagues (Montanier et al., 2009) while analysing the biological role of 4 members of family 

CBM35, revealed that the biological role of CBM35s is not dictated solely by the substrate 

specificity of their appended catalytic domains as members of these CBM family may 

recognize the products of pectin hydrolysis. Structurally, PL1A, PL1B and PL9 consist of an 

individual dockerin-containing enzyme integrated into the C. thermocellum cellulosome by 

CipA cohesin-dockerin interaction with a non-catalytic module CBM-like.  

PL1A, PL1B and PL9 are characteristic pectate lyases and preferentially degrade 

polygalacturonic acid, though they also act on pectins. Moreover, all the three enzymes 

displayed significantly higher activity with 55% and 85% methyl-esterified pectin (citrus). 

Similar high activity of pectate lyase on pectins with high degree of methyl-esterification has 

been previously reported only from Bacillus subtillis (Soriano et al., 2006). PL1A and PL9 

showed significant activity with rhamnogalacturonan from potato (RGAP) and soybean 

(RGAS), as compared with PL1B. The enzymes that degrade the backbones of pectic 

substances utilize two distinct cleavage mechanisms, the hydrolysis or the β-elimination. The 

method used to evaluate the PL1A, PL1B and PL9 activities provide evidence that these 

enzymes are lyases, as they catalyse the β-eliminative cleavage of glycosidic bonds with the 

production of Δ4,5 unsaturated galacturonates, which can be followed spectrophotometrically 

at absorbances of 232 to 235 nm. PL1A and PL9 was active within the pH range of 6.5-9.5 

with highest activity at pH 8.5, which is similar to those of Rgl11Y from C. cellulolyticum 

cellulosome (pH 8.5) and from C. cellulovorans cellulosome Pel4A (pH 8.0) (Pagès et al., 

2003; Tamaru & Doi, 2001), but PL1B was active within the pH range of 8-10 and showed 

highest activity at pH 9.8 similar to PelA from Bacillus sp. which showed pH optima of 10 

(Soriano et al. 2000). All enzymes have a requirement of Ca2+ ions to achieve their maximum 
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activity. It has been suggested that the pH value of some plant tissues changes during 

microbial attack which possibly indicate that the degradation of plant cell wall 

polysaccharides occurs sequentially according to the pH of plant tissues (Pagès et al., 2003). 

It is also known that pectate lyases require Ca2+ for in vitro activity and presumably utilize the 

abundant Ca2+ in the plant cell wall for in vivo activity (Barras et al., 1994; Herron et al., 

2003). 

Analysis of the degradation products of cellulosomal PLs by TLC conclusively inferred that 

PL1A, PL1B and PL9 followed an endo cleavage pattern on PGA and pectin (citrus), cleaving 

these substrates endolytically as was previously reported for PelA from Clostridium 

cellulovorans (Tamaru & Doi, 2001). These enzymes produced unsaturated di, tri and higher 

oligogalacturonates from PGA and pectin (citrus). PelC from B. subtilis (Soriano et al., 2006), 

also an endo pectate lyase, showed a similar cleavage pattern producing mixtures of 

different degradation products, whereas PelX from Erwinia chysanthemi an exo-pectate 

lyase always produced a single degradation product either unsaturated di or tri-

galacturonates (Shevchik et al., 1999). Hence, PL1A, PL1B and PL9 under investigation are 

conclusively endo pectate lyases. Pectic substrates are highly heterogeneous which may 

require many enzymes with different specificities and catalytic mechanisms for their complete 

breakdown. Therefore, the ability of these cellulosomal enzymes to degrade pectic 

substances suggests that cellulosomes are designed for the degradation of an entire set of 

carbohydrates within plant cell walls, and not only cellulose and hemicellulose. It is clear that 

within cellulosomes other enzymes presently of unknown function may target the degradation 

of pectic polysaccharides. 

6.1.5. Conclusion 

Thermostable enzymes are important resources in various industrial processes that occur at 

higher temperatures. Hence enzymes described in this study will be competent enough for 

industrial processes like fruit juice extraction, vegetable and fruit maceration or bioscouring of 

cotton fabric to increase the efficiency of dying at improved temperatures. These enzymes 

can be used as a cocktail for further efficient and complete degradation of pectic 

polysaccharides.   
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Abstract  

Barley-based diets contain a significant proportion of highly soluble β-1,3-1,4-glucans that 

are highly anti-nutritive for monogastric animals, in particular for poultry. Cleavage of mixed 

linked glucans by the addition of exogenous enzymes leads to a significant reduction in the 

degree of polymerization of the polysaccharide chains and a consequent reduction of digesta 

viscosity. Hydrolysis of β-1,3-1,4-glucans can result from the action of strictly specific β-1,3-

1,4-glucanases (EC 3.2.1.6) or β-1,4-glucanases (EC 3.2.1.4), generally termed endo-

cellulases that cleave the β-1,4-linkages of the β-1,3-1,4-glucan chains. Here we evaluated 

the capacity of two Clostridium thermocellum enzymes, β-1,3-1,4-glucanase 16A, termed 

CtGlc16A, and β-1,4-glucanase 8A, termed CtCel8A, to improve the nutritive value of barley 

based diets for broilers. The data revealed that CtGlc16A improves the performance of 

broilers fed a highly viscous barley-based diet. In contrast, although remaining active and 

retaining its molecular integrity during passage through the GI tract, CtCel8A was unable to 

affect the nutritive value of the cereal based diet. In vitro studies revealed that both CtGlc16A 

and CtCel8A are equally effective in reducing the viscosity of a pure β-1,3-1,4-glucan 

solution. However, the data demonstrate that the capacity of CtCel8A to cleave β-1,3-1,4-

glucans is significantly affected by the presence of cellulosic substrates. Taken together the 

results suggest that while active against β-1,3-1,4-glucans, in vivo β-1,4-glucanases tend to 

act preferentially on cellulosic substrates and not on mixed linked glucans. Thus, a significant 

optimization of current enzyme mixtures used in poultry nutrition could derive by estimating 

the contribution of β-1,4-glucanases to the overall β-1,3-1,4-glucanase activity expressed by 

the commercial enzyme mixtures. 
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7.1.1. Introduction 

Industrial poultry diets are based in cereals. However, these diets may contain high levels of 

soluble non-starch polysaccharides (NSPs) that significantly affect the efficiency of the 

digestive process, impairing animal performance (Smits & Annison, 1996; Choct, 1997). 

Barley incorporation in poultry diets is limited by its high content in NSP, mainly soluble β-

1,3-1,4-glucans, which upon solubilization lead to an increase in digesta viscosity. An 

increase in digesta viscosity slows digesta passage rate and affects the interaction of the 

endogenous digestive enzymes with their target substrates (Smits & Annison, 1996; 

Pettersson & Aman, 1989; Jozefiak et al., 2006). In addition, prolonged digesta passage 

rates promotes a modification in gut physiology such as the enlargement of gastrointestinal 

organs, which are detrimental to final carcass yields (Smits & Annison, 1996). High digesta 

viscosity also favors the proliferation of anaerobic microbes in the upper parts of the 

gastrointestinal (GI) tract, which affects animal’s health (Jozefiak et al., 2006). All these 

negative effects may lead to a decrease in feed intake as well as a reduction in nutrient 

digestibility, which consequently promotes a decrease in birds productivity (Pettersson & 

Aman, 1989). To counter the negative effects related with the solubilization of barley β-1,3-

1,4-glucans, commercial enzyme mixtures expressing cellulase and hemicellulase activities 

are widely used to supplement broiler diets (Bedford & Morgan, 1996). Enzyme 

supplementation of barley based diets for poultry results in the hydrolysis of β-1,3-1,4-

glucans allowing for a reduction in the degree of polymerization of the polysaccharide leading 

to a reduction in digesta viscosity, an improvement of nutrients digestibility and feed intake 

(Bedford & Morgan, 1996; Choct, 2006). In addition, it is now well established that broilers 

fed barley-based diets display a maximal response to enzyme supplementation at the early 

stages of the production cycle (Newman & Newman, 1988; Rotter et al., 1988; Nahas & 

Lefrancois, 2001) when the young chick has a poorly developed digestive system. Hence, 

the production of endogenous digestive enzymes at an early stage of growth is scarce and 

may hinder feed digestion (Nitsan et al., 1991; Dunnington & Siegel, 1995; Kirjavainen & 

Gibson, 1995). Therefore, by effectively contributing to reduce digesta viscosity, exogenous 

plant cell wall hydrolases contribute to improve the effectiveness of endogenous enzymes 

enhancing the animal’s digestive capacity, particularly when the raw-materials used in 

animals’ diets are highly prone to display higher viscosities, such as barley. 

Exogenous polysaccharidases used to supplement poultry diets are usually composed of 

enzyme mixtures displaying a large range of polysaccharide specificities. However, enzymes 

required to improve the nutritive value of barley based diets for poultry need to display β-1,3-

1,4-glucanase activity in order to depolymerize the anti-nutritive mixed linked glucans. β-1,3-

1,4-glucanases are Glycoside Hydrolases (GH; EC. 3.2.1). GH are classified in families 

based in primary sequence homology (Henrissat, 1991). Presently there are 133 families of 

GHs in the constantly updated Carbohydrate Active enZyme (CAZy) database 
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(www.cazy.org) (data collected on February 2015). Enzymes expressing strict specificity for 

β-1,3-1,4-glucan linkages (EC 3.2.1.6), also generically termed as β-glucanases, are 

currently grouped in GHs families 9 and 16. In contrast, enzymes that participate in the 

cleavage of β-1,4-glucan linkages (EC 3.2.1.4), which are generally referred as cellulases, 

belong to GHs families 5, 6, 7, 8, 9, 10, 12, 26, 44, 45, 48, 51, 74 and 124. Barley β –glucan 

is the major cell wall polysaccharide in endosperm cells of barley and is constituted by mixed 

linkages of β-1,3- and β-1,4 glucosidic bonds, generating a linear polysaccharide more 

soluble than cellulose (Xue et al., 2003). Barley β-glucan is composed mainly of β-1,4 

linkages, with a ratio β-1,3 to β-1,4 linkages of 1:2.5 approximately (Xue et al., 2003; Jamar, 

Jardin, & Fauconnier, 2011). Thus mixed linked glucans may be cleaved by β-1,4-

glucanases, which are enzymes that display a broader substrate specificity as they can 

degrade both β-1,4-glucans and β-1,3-1,4-glucans, or by β-1,3-1,4-glucanases that strictly 

cleave β-1,3-1,4-glucans and have no activity on β-1,4-glucans. Thus, β-1,3-1,4-glucanases 

do not hydrolyze cellulose, while β-1,4-glucanases (cellulases) are able to degrade cellulosic 

substrates but also the more soluble β-1,3-1,4-glucans by acting at the more abundant β-1,4-

glucan regions (Xue et al., 2003). Enzyme mixtures currently used to supplement barley-

based diets are evaluated by their β-1,3-1,4-glucanase activity. However, it is usually 

unknown which GHs contribute to the total β-1,3-1,4-glucanase activity; if the highly specific 

β-1,3-1,4-glucanases or the general β-1,4-glucan cutters generally referred as cellulases. 

Thus, it remains to be established which enzymes contribute most to improve the nutritive 

value of barley-based diets for poultry, if β-1,3-1,4-glucanases or β-1,4-glucanases. 

Here, we have compared the capacity of a highly specific β-1,3-1,4-glucanase and a typical 

endo-acting β-1,4-glucanase to improve the nutritive value of a barley-based diet for broilers. 

The enzymes were selected from the anaerobic thermophilic bacterium Clostridium 

thermocellum and consisted in the family 16 β-1,3-1,4-glucanase A (Ribeiro et al., 2012), 

CtGlc16A, and the family 8 β-1,4-glucanase A, CtCel8A, also known as cellulase 8A (Cornet 

et al., 1983). The two enzymes were recombinantly expressed in Escherichia coli, purified to 

become free of other side activities, and used to supplement a barley based diet for broilers.  

 

7.1.2. Materials and Methods 

7.1.2.1. Gene isolation and cloning into prokaryotic expression vector 

The thermostable β-1,3-1,4-glucanase of C. thermocellum, termed CtGlc16A (Ribeiro et al., 

2012), is a modular enzyme containing an N-terminal glycoside hydrolase family 16 catalytic 

domain and a C-terminal dockerin. The gene encoding mature CtGlc16A (residues 31-251) 

was amplified from C. thermocellum genomic DNA through PCR using the NZYProof DNA 

polymerase (NZYTech, genes & enzymes, Portugal) and the following primers: 5´- 

CTCGCTAGCACTGTGGTAAATACGCC -3´ and 5´- 

CACCTCGAGATTATCTTGCGGAACAC -3´ (NZYTech Ltd., Portugal). Primers included 
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engineered NheI and XhoI restriction sites (in bold) that allowed the subsequent cloning of 

the resulting nucleic acid into similarly restricted pET21a, generating the plasmid pGH16. 

The thermostable β-1,4-glucanase of C. thermocellum, termed CtCel8A, is also a modular 

enzyme containing an N-terminal glycoside hydrolase family 8 catalytic domain and a C-

terminal dockerin (Cornet et al., 1983). The gene encoding CtCel8A (residues 396-1734) was 

amplified from C. thermocellum genomic DNA through PCR using the NZYProof DNA 

polymerase (NZYTech, genes & enzymes, Portugal) and the following primers: 5´-

CTCCATATGGCAGGTGTGCCTTTTAAC -3´ and 5´-

CACGGATCCCTAATAAGGTAGGTGGGG -3´. Primers included NdeI and BamHI 

engineered and restriction sites (in bold) that allowed the subsequent cloning of the resulting 

nucleic acid into similarly restricted pET21a, generating the plasmid pGH8. Recombinant 

CtGlc16A and CtCel8A contained an engineered C-terminal His6 tag allowing the direct 

purification of the two polypeptides by immobilized metal affinity chromatography (IMAC).  

 

7.1.2.2. Expression and purification of CtGlc16A and CtCel8A 

To express the proteins, E. coli BL21(DE3) cells harboring the appropriate recombinant 

plasmid, pGH16 or pGH8, were cultured in LB medium containing ampicillin (100 µg ml-1) at 

37 ºC to mid-exponential phase (A600 0.4). At this point, isopropyl 1-thio-β-D-

galactopyranoside (IPTG) was added to a final concentration of 1 mM and the cultures were 

further incubated at 19 ºC during 16 hours. Recombinant cells were harvested at 5,000 ×g 

and the resulting pellet was resuspended in 10 mM Imidazol buffer (10 mM Imidazol, 50 mM 

NaHepes, 1 M NaCl, 5 mM CaCl2, at pH=7.5), submitted to ultrasonication and centrifuged at 

4 ºC, 17000 ×g during 30 min. The obtained His6- tagged recombinant protein extracts were 

purified by IMAC using 5 ml HiTrap chelating columns (GE Healthcare, USA) as described by 

Fontes et al. (2004). The purity of the resulting proteins was analyzed by SDS-PAGE 

(Laemmli, 1970). 

 

7.1.2.3. Biochemical properties of CtGlc16A and CtCel8A 

Unless otherwise stated, enzyme assays were determined following the method described by 

Fontes et al., (2000) by measuring the release of reducing sugars resulting from 

carbohydrate hydrolysis in Phosphate Citrate (PC) buffer (64 mM K2HPO4 and 12 mM citric 

acid; pH=6.5) at 40 ºC. The substrate used in this study was barley β-glucan at 0.25% (w/v) 

final concentration. Reactions were stopped by adding a DNSA based solution (1% DNSA, 

1% NaOH and 0.2% phenol) following the method described by Miller (1959). To explore the 

pH profile of CtGlc16A and CtCel8A 50 mM MES (2-N-morpholino- ethanesulfonic acid) (pH 

4.5-7), 50 mM Tris-HCL (pH 7-9.5), and 50 mM NaHCO3 (pH 9.5-11) buffers were used in 

enzyme assays employing 0.25% (w/v) barley β-glucan as the substrate. For thermostability 

experiments, the two proteins were incubated at temperatures ranging from 50 to 90 ºC. After 
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20 min at the required temperature, samples were withdrawn and residual activity was 

determined at 50 ºC and 45 ºC, for CtGlc16A and CtCel8A, respectively, by measuring the 

amount of reducing sugar released from barley β-glucan as described above. Determination 

of temperature of maximal enzyme activity was performed by incubating the enzyme at 

temperatures ranging from 50 to 90 ºC and measuring reducing sugar release as previously 

described. One unit of catalytic activity is defined as the amount of enzyme required to 

release 1 µmol of product per min. Resistance to proteolysis was tested essentially as 

described previously (Fontes et al., 1995a) by incubating the proteins with porcine 

pancreatine (Sigma P-1500) at 37 ºC and measuring residual enzyme activity as described 

for thermostability experiments. In addition the molecular integrity of the enzymes was 

accessed by SDS-PAGE analysis with 14% polyacrylamide separation gels. The capacity of 

the two recombinant enzymes to decrease the viscosity of barley β-glucan was evaluated in 

vitro. A solution of 1.5% (w/v) of barley β-glucan (Megazyme, Ireland) was prepared in PC 

buffer. Precisely 111 µL of each enzymatic extract, which supplied 1400 U/ kg of enzyme 

activity was added to the barley β-glucan preparation. Viscosity was measured at 6 xg using 

a viscometer (Model LVDVCP-II, Brookfield Engineering Laboratories, Middleboro, MA) with 

a cup maintained at 37 ºC, at time 0 and then at each minute after enzyme addition until 

levels of viscosity were stabilized. After stabilization, viscosity was measured until min 90 

every 15 minutes. At the same time, as a control reaction, the viscosity of barley β-glucan 

without addition of enzymes was measured over time as described above. The capacity of 

CtGlc16A and CtCel8A to depolymerise barley β-glucan in the presence of feed was 

investigated by using the commercial Azo-barley glucan method (Megayme, Ireland) with 

some adaptations. The both enzymes were incubated individually with 0.15 g of a barley 

based diet feed sample (reaction) or with 0.15 mL of PC buffer (control) during 10 minutes. A 

volume of 0.25 mL of azo-barley glucan was then added to the previous preparations and 

incubated at 37 ºC during 20 minutes. Reactions were stopped and β-1,3-1,4 glucanase 

activity was measured following manufacturer procedures.  

 

7.1.2.4. Feed analysis for β-glucanase activity 

In a previous study it was shown that levels of barley’s endogenous β-glucanase activity 

affect the efficacy of exogenous enzymes used to improve the nutritive value of barley-based 

diets for poultry (Ribeiro et al., 2011). To select a barley batch expressing lower levels of 

endogenous β-glucanases, five different barley lots available commercially were analyzed. 

The barley lots were milled at 0.5 mm and enzyme extraction was performed by adding 1 mL 

of PC buffer into 0.75 g of barley. The supernatant was recovered and used to quantify the β-

1,3-1,4-glucanase activity using a β-glucanase commercial assay kit (Megazyme, Ireland), 

following the manufacturer protocol. The incubation period was extended to 3 hours. The 
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barley lot expressing the lowest levels of endogenous β-1,3-1,4-glucanase activity (52.5 U/ 

kg of barley) was used as the main component of the basal diet described below.  

 

7.1.2.5. Enzyme feed incorporation 

In order to standardize the number of β-1,3-1,4-glucanase units used to supplement the 

barley-based diets, the catalytic activity of the recombinant enzymes against barley β-glucan, 

including the commercial enzyme mixture (Rovabio™ Excel AP ®), were determined in 

parallel at 40 ºC by measuring the release of reducing sugars as described above (Fontes et 

al., 2000). The extract containing the commercial enzyme was prepared by ressuspending 

250 mg of the enzyme in 10 ml of PC buffer, followed by an overnight incubation at room 

temperature with gentle agitation and centrifugation at 16000 ×g for 10 min. The two 

recombinant enzymes and the commercial enzyme mixture were incorporated in the feed at 

a concentration of 1400 U/ kg feed.  

 

7.1.2.6. Animals and diets 

Bird experiment was conducted in accordance with the Ethics Committee of Interdisciplinary 

Centre of Research in Animal Health (CIISA, Faculty of Veterinary Medicine, University of 

Lisbon, Portugal) and approved by the Animal Care Committee of the National Veterinary 

Authority (Direcção Geral de Veterinária, Lisboa, Portugal), following the appropriate 

European Union guidelines (Council Directive 86/609/EEC). One hundred and twenty 1-d-old 

Ross 308 male broiler birds were assigned to 40 pens of 3 birds each. Chicks were wing-

banded for individual identification. The 40 pens were randomly assigned to 4 treatments 

consisting of a barley-based diet not-supplemented with exogenous enzymes (treatment NC) 

or supplemented with the commercial enzyme Rovabio™ Excel AP (Adisseo, France; 

treatment PC), the β-1,3-1,4-specific glucanase CtGlc16A (treatment CtGlc16A) or the 

broadly specific β-1,4-glucanase CtCel8A (treatment CtCel8A). The trial duration was 35 

days. As stated above, all the three enzymes were incorporated at a calculated dose of 1400 

U/kg of feed. The calculated 1400 U/kg of feed of the commercial enzyme corresponded to 

the manufacturers recommended dose of 50 g of enzyme per ton of feed. The commercial 

enzyme mixture was a blend of Penicillium funiculosum β-1,4-xylanase (EC 3.2.1.8) and β-

1,3-1,4- glucanase (EC 3.2.1.6). The basal diet, which composition was displayed in Table 

7.1, contained 618 g/kg of barley and was formulated to ensure a nutrient availability as 

defined by the NRC (N.R.C, 1994). Throughout the experiment, chicks were given free 

access to water and feed, which were provided with drinking nipples and hanging feeders, 

respectively. Broilers were raised in wired floor pens that were located in an environmentally 

controlled room adjusted daily to the recommended temperatures, according to standard 

brooding practices. Feed consumption and body weight (BW) was determined weekly and 

mortality was recorded daily. At the end of the trials, one bird per pen was slaughtered by 
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cervical dislocation. The weight of the crop, gizzard and liver, and the length of the 

duodenum, jejunum, ileum and caecum were determined. Digesta samples from duodenum 

and jejunum, and ileum compartments were collected to determine contents viscosity as 

described above. 

 

Table 7.1| Ingredient composition and calculated nutrient content. 

Ingredients g/ kg 

Barley 615 

Soybean meal 47% 294 

Soybean oil 59 

Salt 2.5 

Calcium carbonate 8.4 

Dicalcium phosphate 18% 17.4 

DL-Methionine 1.7 

Mineral and vitamin premix
1 

2 

Nutrient content  

Energy (MJ ME/kg DM) 12.1 

Crude protein 208 

Ether extract 75 

Crude cellulose 51 

Methionine 4.69 

Methionine + Cysteine 8.20 

Lysine 10.9 

Threonine 7.58 

Calcium 9.20 

Available phosphorus 4.10 

 

1
Mineral-vitamin premix provided the following per kilogram of feed: retinol, 2.7 mg; cholecalciferol, 0.05 mg; α-

tocopherol, 20 mg; nicotinic acid, 30 mg; cyanocobalamin, 0.12 mg; calcium pantothenate, 10 mg; menadione, 2 

mg; thiamin, 1 mg; riboflavin, 4.2 mg; pyridoxine hydrochloride, 1.7 mg; folic acid, 0.5 mg; biotin, 0.5 mg; Fe, 80 

mg; Cu, 10 mg; Mn, 100 mg; Zn, 80 mg; Co, 0.2 mg; I, 1.0 mg; Se, 0.3 mg; monensin, 100 mg/kg 

 

7.1.2.7. Analytical procedures performed in digesta samples 

To evaluate the levels of β-1,3-1,4-glucanase activity present in the four animal diets and in 

digesta samples collected in different parts of the broilers´ GI tract, samples were initially 

centrifuged at 16000 ×g for 5 min and the supernatants were recovered for analysis. The 

barley and feed samples (0.75 g) were previously mixed in 1 mL of PC buffer. The mixture 

samples were subjected to vigorous stirring during 30 min, centrifuged and the supernatant 

was analyzed. Qualitative analysis of β-1,3-1,4-glucanase activity was assessed in agar 

plates, using barley β-glucan at 0.1% (w/v) mixed with agar at 2% (w/v) final concentration, in 

10 mM Tris-HCl (pH 7.5). Catalytic activity was detected based in the method described by 
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Ponte et al. (2004) with some modifications. Briefly, a Pasteur pipette was used to create 

wells in the agar plates, which were filled with 20 µL of enzyme extract from digesta samples. 

Subsequently, the plates were incubated for 16 h at 37 °C and dyed with 1% Congo Red 

(E.Merck AG®) in 10 mM Tris-HCl (pH=8) for 30 min. To observe regions where the 

polysaccharides were degraded, the plates were subjected to three 15 min washes with 1 M 

NaCl in 10 mM Tris-HCl (pH=8). For measuring the viscosity of small intestine contents, 

samples collected from the duodenum plus jejunum and ileum were centrifuged for 10 min at 

10867 ×g and the viscosity of sample supernatant was measured at 6 ×g using a viscometer 

(Model LVDVCP-II, Brookfield Engineering Laboratories, Middleboro, MA) with a cup 

maintained at 24 ºC. Zymogram analysis was performed as described by Fontes et al. (2004) 

and Ribeiro et al. (2011). Summarily, digesta proteins were separated through SDS-PAGE 

electrophoresis in 14% acrylamide gels containing 0.1% of barley β-glucan (Megazyme, 

Ireland), according to Laemmli (1970). After electrophoresis, polypeptides were renatured by 

subjecting the gel to five 30 min washes in 100 mM sodium succinate, pH 6.3, 10 mM CaCl2 

and 1 mM DTT. The gels were incubated for 16 h at 37 ºC in the same buffer and proteins 

were stained in a solution comprising 40% (v/v) methanol, 10% (v/v) glacial acetic acid and 

0.4% (w/v) Coomassie Brilliant Blue R. After destaining, gels were washed in 0.1M Tris-HCl 

(pH=8) for 20 min. β-glucanase activity was detected using a 0.1% (w/v) Congo Red solution 

for 15 min and washing with 1M NaCl in 10mM Tris-HCl (pH=8) until excess dye was 

removed. After Congo Red staining the gels were counter stained with 1N HCl as described 

elsewhere (Ribeiro et al., 2011). Areas of catalytic activity appeared as colorless zones in a 

grey background.  

 

7.1.2.8. Statistical Analyses 

Data related to bird performance were subjected to ANOVA according to the general linear 

models procedure of SAS (SAS, 2004) in order to detect significant differences between 

treatment groups. Chi-squared test has been performed to statistically assess if the presence 

of the enzymatic activity in gastrointestinal contents was different among groups. The 

experimental unit was the cage of 3 animals (n=10). Unless otherwise stated, differences 

were considered significant when P < 0.05. 

 

7.1.3. Results and Discussion 

7.1.3.1. Biochemical properties of the CtGlc16A and CtCel8A 

Two recombinant enzymes from the anaerobic thermophilic bacterium C. thermocellum were 

selected for this study. CtGlc16A is a family 16 GH with a restricted activity against β-1,3-1,4-

glucans (Ribeiro et al., 2012). In contrast, CtCel8A is a typical endo-β-1,4-glucanase being 

capable of hydrolyzing not only cellulosic polysaccharides but also β-1,3-1,4-glucans through 

the cleavage of β-1,4-linkages (Cornet et al., 1983). To evaluate the capacity of CtGlc16A 
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and CtCel8A to remain stable and active throughout passage in the broilers GI tract the 

biochemical properties of the two biocatalysts were compared. The data, presented in Figure 

7.1, reveals that both enzymes display a similar pH and temperature profiles, which may 

reflect their common origin in C. thermocellum. The two enzymes display broad pH optima 

with CtGlc16A more active on the neutral to alkaline range and CtCel8A on the neutral acidic 

range (Figure 7.1A). In addition, the two recombinant enzymes were shown to be completely 

resistance to proteolytic inactivation by pancreatic proteases. Thus, enzyme activity was not 

affected by incubation with a pancreatic extract and enzyme molecular integrity was retained 

after incubation with proteolytic enzymes (Figure 7.1C). Taken together these data confirms 

that both CtGlc16A and CtCel8A express the required biochemical properties to actively 

contribute to the depolymerization of β-1,3-1,4-glucans in the conditions prevalent in the 

poultry GI tract. 

 

Figure 7.1| pH (Panel A) and temperature (Panel B) profiles of CtGlc16A (●) and CtCel8A (○) and 

resistance of the two enzymes against proteolytic inactivation. 

 

In Panel A, these enzymes were incubated at standard conditions in MES, Tris or NaHCO3 buffers expressing 

different pHs, and β-glucanase activity determined. In Panel B, CtGlc16A and CtCel8A activities were determined 

with barley β-glucan at different temperatures. For thermostability, the enzymes were incubated for 30 min at 

different temperatures, and residual activity determined at 50 ºC or 45 ºC, for CtGlc16A and CtCel8A, 

respectively. In Panel C, CtGlc16A (lane 1) and CtCel8A (lane 2) were incubated for 30 min with a pancreatic 

protein extract and protein integrity evaluated by SDS-PAGE (lanes 4 and 5, for CtGlc16A and CtCel8A, 

respectively). In lane 3 the pancreatic mixture of enzymes was analyzed. M represents the low molecular protein 

marker. 
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7.1.3.2. CtGlc16A but not CtCel8A improve the nutritive value of barley-based 

diets for broilers 

In this study we compared the capacity of a highly specific β-1,3-1,4-glucanase, CtGlc16A 

(Laemmli, 1970), and a typical family 8 β-1,4-glucanase, CtCel8A (Cornet et al., 1983), to 

improve the nutritive value of barley-based diets for broilers. The both enzymes were 

recombinantly produced in E. coli and the enzymatic units of β-1,3-1,4-glucanase activity 

used to supplement the diets were measured such that they were identical and similar to the 

positive control enzyme mixture. Results concerning the productive parameters of broilers 

are presented in Table 7.2. Enzyme supplementation affected body weight of the animals 

since day 14 of the trial. At days 14 and 21 of the experiment, body weight of birds 

supplemented with the commercial enzyme mixture and recombinant CtGlc16A were 

significantly higher than those of non-supplemented and CtCel8A supplemented birds, 

although animals of the CtGlc16A and CtCel8A groups had similar body weights. At days 28 

and 35 of the trial, birds supplemented with the commercial enzyme mixture had similar body 

weights to birds supplemented with CtGlc16A and animals from these two groups had 

significantly higher body weights than non-supplemented or CtCel8A supplemented birds. 

Differences in body weight result from similar differences in weight gain for the period of 7-14 

and 14-21 days of the trial. Feed intake was not affected by the addition of exogenous 

enzymes. In addition, feed conversion ratio (FCR) displayed a tendency to be globally 

different (0-35 days) among treatments, showing lower values (P<0.1) for animals 

supplemented with the commercial mixture and the CtGlc16A. Taken together, the data 

suggest that the strict β-1,3-1,4-glucanase CtGlc16A contributes to improve the nutritive 

value of the barley based diet for broilers and the recombinant β-1,4-glucanase CtCel8A 

although able to degrade β-1,3-1,4-glucans, is unable to significantly improve broiler 

performance.  

 

The better body weight displayed by animals from PC and CtGlc16A groups at early stages 

of growth confirms the importance of enzyme supplementation of barley-based diets for 

young broilers. Several reports suggested the importance of supplementing both the poor 

production of endogenous enzymes and the insufficient microbial flora in young birds 

(Newman & Newman, 1988; Nahas & Lefrancois, 2001; Dunnington & Siegel, 1995), 

emphasizing the importance of exogenous supplementation at this initial period of the 

productive cycle. A previous study have shown the importance of enzyme supplementation 

of barley-based diets mainly in the first 11 days of the broilers growth, suggesting that 

enzyme supplementation in the initial period of broilers production is crucial to improve 

digestion efficiency and that enzyme supplementation in later stages might not be important 

since the capacity of birds in producing endogenous enzymes are already established and 

can counter the antinutritive effects of the β-glucans until the end of the production cycle 
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(Cardoso et al., 2014). Although the feed intake was not considerable different among the 

four groups of animals, the data suggest that the animals supplemented with the commercial 

enzymatic mixture and those supplemented with CtGlc16A revealed improved nutrients 

digestibility, which was reflected by the better body weight and FCR in these animals, mainly 

in the earlier periods of the production cycle. 

 

Table 7.2| Growth performance parameters of broilers fed on a barley-based diet non-

supplemented (NC) or supplemented with different exogenous β-glucanases. PC, a commercial 

enzyme mixture; CtGlc16A, the recombinant β-1,3-1,4-glucanase; CtCel8A, the recombinant β-1,4-

glucanase. 

 NC PC CtGlc16A 

and 

CtCel8A 

CtCel8A 

and 

CtCel8A 

SEM p(F) 

Body Weight (g)       

0d 41.2 41.1 40.6 40.7 0.381 0.6270 

7d 121 123 115 120 3.19 0.4518 

14d 280 
b
 325 

a
 313 

ac
 291 

bc
 10.8 0.0200 

21d 631 
b
 732 

a
 693 

ac
 661 

bc
 19.2 0.0052 

28d 1137 
b
 1252 

a
 1225 

a
 1161 

b
 26.3 0.0189 

35d 1794
 b

 1877
 a

 1901
 a

 1753
 b

 41.0 0.0490 

Weight Gain (g)       

0-7d 

7-14d 

 

80 82 74 79 3.038 0.3498 

7-14d 159 
b
 203 

a
 197 

a
 171 

b
 8.67 0.0023 

14-21d 352 
b
 412 

a
 390 

ac
 370 

bc
 11.2 0.0035 

21-28d 505 530 501 500 15.2 0.4700 

28-35d 657 626 676 592 24.7 0.3606 

0-35d 1753 1836 1860 1712 41.5 0.3310 

Feed Intake (g)       

0-7d 

7-14d 

 

98 100 93 97 4.45 0.6791 

7-14d 233 252 267 243 15.9 0.4878 

14-21d 523 573 552 525 16.2 0.1120 

21-28d 815 816 803 798 16.8 0.8282 

28-35d 1105 1013 1037 1020 32.7 0.1912 

0-35d 2774 2755 2751 2682 57.7 0.6972 

Feed Conversion Ratio       

0-7d 

7-14d 

 

1.24 1.24 1.26 1.23 0.050 0.9900 

7-14d 1.47 1.28 1.36 1.43 0.069 0.2100 

14-21d 1.49 
a
 1.39 

b
 1.42 

b
 1.42 

b
 0.028 0.1000 

21-28d 1.62 1.55 1.62 1.60 0.034 0.4081 

28-35d 1.73 1.77 1.72 1.76 0.052 0.9263 

0-35d 1.58 
a
 1.52 

b
 1.55 

ab
 1.57 

a
 0.019 0.0814 
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7.1.3.3. Exogenous enzymes affect the dimensions of broilers GI tract 

The effects of exogenous enzyme supplementation in the length and weight of birds’ GI 

compartments were measured and the data is presented in Table 7.3. Regarding to relative 

weight of the GI compartments, significant differences were found only at ileum weights. 

Ileum was lighter in animals supplemented with the commercial mixture or CtGlc16A, and 

heavier in non-supplemented or CtCel8A supplemented animals. Differences were more 

pronounced in the relative length of GI compartments. Thus, duodenum was found to be 

shorter in the animals supplemented with the commercial enzyme mixture while was longer 

in the birds supplemented with the CtCel8A. Non-supplemented and CtGlc16A 

supplemented animals displayed similar duodenum lengths. In contrast, the length of 

jejunum and ileum was significantly smaller for animals supplemented with CtGlc16A and the 

commercial enzyme mixture and longer for non-supplemented or CtCel8A supplemented 

animals.  

 

Table 7.3| Relative length and weight of GI tract compartments and viscosity of digesta 

samples of broilers fed on a barley-based diet non-supplemented (NC) or supplemented with 

different exogenous β-glucanases. PC, a commercial enzyme mixture; CtGlc16A, the recombinant 

β-1,3-1,4-glucanase; CtCel8A, the recombinant β-1,4-glucanase. 

 NC PC CtGlc16A CtCel8A SEM p(F) 

Relative Weight (g/kg BW)       

  Crop 3.26 2.67 2.78 3.16 0.312 0.4762 

  Gizzard 9.3 10.2 11.2 10.4  0.612 0.2079 

  Liver 22.6 23.4 22.9 23.7 0.791 0.7558 

  Duodenum 6.68 6.38 6.51 7.34 0.307 0.1306 

  Jejunum 14.9 12.6  13.6 13.6 0.674 0.1424 

  Ileum 11.4 
a
 9.56 

b
 9.40 

b
 11.5 

a
 0.581 0.0162 

  Caecum 2.44  2.66  3.04  2.43 0.168 0.0517 

Relative Length (cm/kg BW)       

  Duodenum 16.3 
ab

  15.2 
b
 16.3 

ab
  17.1 

a
  0.456 0.0500 

  Jejunum 42.1 
a
 37.6 

b
  36.9 

b
 40.1 

a
  0.898 0.0008 

  Ileum 43.3 
a
 38.7 

b
 38.3 

b
 42.3

 a
 1.261 0.0169 

  Caecum 9.8 9.7 10.2 10.0 0.394 0.8227 

Content Viscosity (cP)       

  Duodenum + Jejunum 8.79 
a
 5.84 

b
 5.57 

b
 6.14 

b
 0.410 0.0001 

  Ileum 12.9 
a
 6.85 

b
 7.57 

b
 7.26 

b
 0.959 0.0001 

 
 
Several studies reported a decrease in weight and length of GI compartments of birds 

supplemented with exogenous cellulases and hemicellulases. This effect is believed to be 

related with the decrease in digesta viscosity, which will increase feed passage rate and 

decrease the physical aggression of the digestive lumen derived from a higher viscous 
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digesta. Interestingly the size of the caecum tended to be higher (P<0.1) in animals 

supplemented with the CtGlc16A recombinant enzyme. Mathlouthi et al. (2002) also found 

improved gut morphology when supplementing a rye-based diet with a xylanase. In addition, 

Adeola and Cowieson (2011) also referred a possible increment in caecum dimensions as a 

consequence of enzyme supplementation. Enlargement of the last compartment of the birds 

GI tract was suggested to be related with an increase in the production of short chain fatty 

acids (SCFA) usually associated with diets supplemented with prebiotics (Van der Wielen et 

al., 2000; Campbell, Fahey, & Wolf, 1997) or diets supplemented with enzymes that promote 

the release of fermentable oligosaccharides in the small intestine (Adeola & Cowieson, 

2011). This increase in the SCFA in the caecum is related with the increase of the total 

anaerobic microorganisms and promotes the decrease in caecum pH. In addition, exogenous 

enzymes have been reported to modulate the gut microflora (Bedford & Cowieson, 2009) 

and to increase the proportion of lactic acid produced. Moreover, Jamroz et al. (1996) 

referred an increase in caecum fermentation when high incorporation (63%) of barley in diet 

was performed. Further studies aiming at profiling gut microflora in the latter portions of birds 

GI tract are required to evaluate if exogenous β-1,3-1,4-glucanase might mediate their 

effects through the microflora route as well as the decrease in viscosity.  

 

The effect of enzyme supplementation in digesta viscosity in a pool of duodenum and 

jejunum samples was measured and data is reported in Table 7.3. Digesta viscosity was 

affected by diet supplementation with exogenous enzymes. Digesta viscosity was 

significantly reduced (P<0.05) when animals were supplemented with the commercial 

enzyme mixture or the two recombinant enzymes. Since intestinal viscosity was decreased 

efficiently with the addition of both CtGlc16A and CtCel8A in the diet, the results suggest that 

poor performance found in animals supplemented with the CtCel8A was not a consequence 

of the inability of the β-1,4-glucanase to decrease digesta viscosity (see below). However, 

these results should be viewed with some caution as viscosity was solely measured at the 

end of the experiment and not in the first weeks of the animal growth when it is supposed to 

have a higher impact in animal nutrition. It is well known that a lower digesta viscosity in the 

small intestine in the first period of broiler growth is critical for broiler performance (Jozefiak 

et al., 2006; Fontes et al., 2004; Cardoso et al., 2014; Ponte et al., 2008).  

 

7.1.3.4. CtGlc16A and CtCel8A remain stable during passage through broilers GI 

tract 

In order to evaluate if the above reported differences in the capacity of the two recombinant 

enzymes to improve the nutritive value of a barley-based diet result from differences in 

polypeptide stability, samples from the various GI were collected and β-1,3-1,4-glucanase 

activity measured. The data, presented in Table 7.4, revealed that although β-1,3-1,4-
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glucanase activity was detected in the crop and caecum of animals from all groups only birds 

receiving diets supplemented with CtGlc16A and CtCel8A display significant levels of 

enzyme activity in the other regions of the GI tract. Intriguingly, non-supplemented animals 

and animals supplemented with the commercial mixture display similar levels of enzyme 

activity although the intensity of the halos collected from birds of the PC treatment were 

higher than those from non-supplemented animals (data not shown).  

 

Table 7.4| Number of birds, out of 10 animals analyzed, fed on a barley-based diet non-

supplemented (NC) or supplemented with different exogenous β-glucanases, presenting β-1,3-

1,4-glucanase activity in digesta samples collected in different GI compartments. PC, a 

commercial enzyme mixture; CtGlc16A, the recombinant β-1,3-1,4-glucanase; CtCel8A, the 

recombinant β-1,4-glucanase. 
 

 
NC PC CtGlc16A CtCel8A Chi-Square P- value 

Crop 8 10 6 9 - - 

Gizzard 2 1 9
 

6 18.4 0.0004 

Duodenum 2
 

2 10 8 16.6 0.0008 

Jejunum 1 2
 

10 10 29.8 0.0001 

Ileum 2 4 9 8 18.9 0.0003 

Caecum 8
 

10
 

9
 

10 - - 

 

Zymogram analysis was used to evaluate the effect of exogenous enzyme passage through 

the birds GI tract in recombinant protein integrity. The data, presented in Figure 7.2, suggest 

that both CtGlc16A and CtCel8A retain their molecular integrity throughout the entire GI tract. 

Thus, polypeptide bands of approximately at 32 (CtGlc16A) and 48 (CtCel8A) kDa are 

detected with unchanged variations in size in all GI samples collected in animals receiving 

the recombinant CtGlc16A and CtCel8A, respectively. The data also suggest that CtGlc16A 

displays a low catalytic activity in the gizzard of the animals supplemented with this 

recombinant enzyme. The commercial β-1,3-1,4-glucanase mixture used in this study is 

mainly represented by a 32 kDa enzyme and it presented at low but detectable levels of 

catalytic activity throughout the GI tract. In addition, an enzyme with approximately 96 kDa 

was detected in samples collected from birds of the three groups receiving exogenous 

enzymes, suggesting the presence of an endogenous enzyme in the GI tract of these 

animals. In a previous study (Cardoso et al., 2014), the presence of an enzyme of high 

molecular weight was also reported and it was suggested to be from microbial origin since it 

was not present in the animal feed. However, more studies should be performed to evaluate 

the secretion of endogenous enzymes presenting β-glucanase activity and the presence of 
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endogenous enzymes at different levels of the GI tract. Significantly, caecum samples of all 

animals including those from the non-supplemented group revealed an heterogeneous and 

wide range of β-1,3-1,4-glucanases with different molecular weights.  

 

Figure 7.2| Zymogram analysis for detection of catalytic activity against barley β-1,3-1,4-glucan 

of digesta samples collected from various regions of the GI tract of birds fed on a barley-based 

diet non-supplemented or supplemented with different exogenous β-glucanases.  

 

A) samples from birds fed on a diet non-supplemented; B) samples from birds fed on a diet supplemented with 

the commercial enzyme mixture; C) samples from birds fed on a diet supplemented with the recombinant β-

glucanase CtGlc16A; D) samples from birds fed on a diet supplemented with the recombinant cellulase CtCel8A. 

Proteins were fractionated through SDS-PAGE and stained for β-glucanase activity after enzyme renaturation. 

Abbreviations: St, low molecular weight protein standard; C, crop; G, gizzard; D, duodenum; J, jejunum; I, ileum; 

Cc, caecum; fNC, feed non-supplemented with exogenous enzymes; fPC, feed supplemented with the 

commercial enzyme mixture; f16A, feed supplemented with CtGlc16A; f8A, feed supplemented with CtCel8A. 
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7.1.3.5. Strict β-1,3-1,4-glucanase specificity is required for exogenous enzymes 

used to improve the nutritive value of barley-based diets for broilers 

Data presented above suggest that differences in the capacity of recombinant exogenous 

enzymes to improve the nutritive value of barley-based diets cannot be merely explained by 

differences in enzyme stability and integrity. Thus, to investigate if enzymes displaying strict 

β-1,3-1,4-glucanase specificity (CtGlc16A) or broad β-1,3-1,4-glucanase and β-1,4-

glucanase specificities (CtCel8A) have different capacities to reduce the viscosity of β-1,3-

1,4-glucans, the two enzymes were incubated with a barley β-glucan suspension and levels 

of viscosity measured over a 90 min period. The data, presented in Figure 7.3, suggest that 

both enzymes are effective in reducing the viscosity of barley β-1,3-1,4-glucans. This is not 

completely surprising as a reduction in viscosity results from the reduction in the degree of 

polymerization of barley β-1,3-1,4-glucans and by cleaving the β-1,4-linkages of the mixed 

linked glucan, CtCel8A effectively contributes to the production of smaller glucan chains. 

 

Figure 7.3| Effect of CtGlc16A and CtCel8A in the viscosity of a barley β-glucan preparation.  

 

The two recombinant enzymes were incubated with a barley β-glucan solution (1.5%) and viscosity measured up 

to 90 min. Viscosity of the same solution was also measured when the polysaccharide was not exposed to the 

enzymes (Control). 

 

Although β-1,4-glucanases can effectively reduce the degree of polymerization of barley β-

1,3-1,4-glucans, as revealed by the in vitro experiment described above, it is possible that 

presence of β-1,4-glucans may reduce the efficacy of CtCel8A to cleave β-1,4-linkages within 

β-1,3-1,4-glucans. To evaluate this possibility, the capacity of CtGlc16A and CtCel8A to 

hydrolyse β-1,3-1,4-glucans in the presence of the barley-based feed was investigated. The 

data, presented in Figure 7.4, revealed that there is a significant reduction of the activity of 

both enzymes in the presence of a barley-based feed extract. However, the magnitude of this 

reduction is much higher for CtCel8A, as only approximately 15 % of its β-1,3-1,4-glucanase 

activity was retained in the presence of the animal feed (Figure 7.4). In contrast, CtGlc16A 

activity against the artificial substrate was reduced to only 54% in the presence of the barley-
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based feed. Overall these data suggest that CtCel8A is preferentially targeting the β-1,4-

linkages of β-1,4-glucans that are highly abundant in cereal-based diets (more than 25% of 

structural polysaccharides found in barley is cellulose). In contrast, the strict specificity 

revealed by CtGlc16A limits the involvement of the enzyme in non-productive interactions 

with β-1,4-glucans and thus improves its efficacy against mixed linked glucans. Overall, this 

observation may explain why, in vivo, CtGlc16A is more effective in improving the nutritive 

value of barley-based diets for broilers than CtCel8A. 

 

Figure 7.4| Effect of feed in the activity of recombinant enzymes CtGlc16A and CtCel8A.  

 

The activity of the two recombinant enzymes was measured in the absence (Buffer) or the presence (Feed) of the 

barley based feed.  

 

7.1.4. Conclusions 

Here we have investigated if the improvement of the nutritive value of barley based diets for 

broilers results from the action of highly specific β-1,3-1,4-glucanases or β-1,4-glucanases 

displaying a broad substrate specificity that includes cleavage of β-1,3-1,4-glucans. The data 

firmly confirms that although retaining its molecular integrity and catalytic activity during its 

passage through birds GI tract, β-1,4-glucanase CtCel8A is unable to affect the nutritive 

value of barley based diets. In vitro it was observed that CtCel8A can effectively contribute to 

reduce the viscosity derived from the solubilization of pure mixed linked glucans. However, 

data suggests that presence of cellulosic substrates at high levels in barley-based diets may 

lead CtCel8A to establish non-productive interactions with β-1,4-glucans, thus limiting its 

capacity to hydrolyze the anti-nutritive β-1,3-1,4-glucans. These observations suggest that 

there is a considerable scope to optimize enzyme mixtures employed to supplement barley-

based diets by increasing the predominance of β-1,3-1,4-glucanases in relation to β-1,4-

glucanases. In addition, it might be highly relevant to know for each microbial enzyme 

mixture used in poultry nutrition what is the contribution of β-1,4-glucanases to the overall β-

1,3-1,4-glucanase activity expressed by the enzyme supplements. 
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Abstract  

Anaerobic cellulolytic bacteria organize a comprehensive range of cellulases and 

hemicellulases in high molecular weight multi enzyme complexes termed cellulosomes. 

Integration of cellulosomal components occurs via highly ordered protein:protein interactions 

between cohesins and dockerins, whose specificity allows the incorporation of cellulases and 

hemicellulases onto a molecular scaffold. Here we report the production of two mini-

cellulosomes containing one (GH16-1C) or three (GH16-3C) copies of Clostridium 

thermocellum Glucanase 16A (CtGlc16A). Assembling of CtGlc16A in the two protein 

complexes had no effect in the pH and thermal properties of the cellulosomal enzyme. Due 

to the presence of high levels of β-1,3-1,4-glucans, barley-based diets express considerable 

anti-nutritive value for monogastric animals, in particular for poultry. Thus, GH16-1C and 

GH16-3C were used to supplement barley based diets for broilers. The data revealed that 

the two mini-cellulosomes very effectively improved the nutritive value of barley-based diets 

for broilers, although the efficacy of GH16-3C complex seemed to be lower than GH16-1C. 

Analysis of the molecular integrity of the two mini-cellulosomes suggested that although 

cohesins and the CtGlc16A catalytic domain are highly resistant to proteolytic inactivation, 

linker sequences separating protein domains in scaffoldins and cellulosomal catalytic units 

are highly susceptible to proteolytic attack. Thus, overall the data suggest that efficacy of 

mini-cellulosomes to improve broiler performance results from the action of CtGlc16A per se 

rather from the association of the enzyme in a multi-enzyme complex. 
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7.2.1. Introduction 

Plant cell wall degrading anaerobic bacteria organize a large repertoire of glycoside 

hydrolases, carbohydrate esterases and pectate lyases into a high molecular weight multi-

enzyme complex termed the cellulosome, one of nature´s most elegant and effective 

nanomachine characterized so far (Fontes & Gilbert, 2010). The major player in the 

organization of cellulosomes is a non-catalytic modular protein termed scaffoldin, which 

contains a variable number of cohesin domains. Cellulosomal enzymes contain a C-terminal 

dockerin that tenaciously bind scaffoldin cohesins and this constitutes the primary 

mechanism of cellulosome assembly (Carvalho et al., 2003). Cohesin-dockerin interactions 

involved in cellulosome assembly were termed of type I. In addition, several scaffoldins were 

found to contain a C-terminal type II dockerin that does not interact with their internal type I 

cohesins but rather binds type II cohesins located in anchoring scaffoldins located at the 

bacterium cell surface (Adams et al., 2005). It is now well established that in contrast to type 

II dockerins, type I dockerins contain two identical cohesin binding interfaces (Carvalho et al., 

2007). This dual binding mode is most probably responsible to the introduction of an intrinsic 

flexibility into the quaternary structure of highly diverse and populated enzyme machinery 

(Fontes & Gilbert, 2010). Organization of cellulases and hemicellulases in cellulosomes 

improves enzyme stability and activity and provides a rational for the increased efficiency 

displayed by anaerobic organisms upon the degradation of highly recalcitrant 

polysaccharides such as cellulose and hemicellulose. 

The high-affinity protein:protein structure established between cohesins and dockerins (>109 

M-1) forms a blue print for the production of tailored multicomponent catalytic nanomachines 

for a range of biological processes that might benefit from enzyme proximity. This will require 

engineering scaffoldin surfaces to interact with defined dockerins to allow construction of 

macromolecular assemblies with specific functions, generically termed mini-cellulosomes. 

Recently, a variety of examples have been explored where mini-cellulosomes were used to 

optimize different biotechnological applications, mainly in what concerns to the production of 

second-generation biofuels originated from cellulosic biomass. The importance of these 

biofuels, predominantly the cellulosic bioethanol, relies on the origin of renewable sources of 

energy which can be responsible for a reduction in greenhouse gas levels leading to a 

decreased environmental impact and a diminished cost investment compared to first 

generation energies (Malça & Freire, 2006; Nordon, Craig, & Foong, 2009; Tamaru et al., 

2010; Sheridan, 2009). Recent studies described the possible involvement of engineered 

cellulosomal protein complexes in a new method called consolidated bioprocessing (BPC), 

which further combines enzyme production with cellulose saccharification and fermentation 

(SSCF) into a single process to produce ethanol (Lynd et al., 2002b; Lynd et al., 2008). Thus, 

Tsai, Goyal, & Chen (2010) reported an almost two-fold increase in both cellulose hydrolysis 

and ethanol production (0.475 g of ethanol/ g of sugar consumed) when using an optimized 
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consortium composed by four different engineered yeast strains capable of either displaying 

a trifuncional mini-scaffoldin carrying three divergent cohesin domains from Clostridium 

thermocellum, C. cellulolyticum and Ruminococcus flavefaciens or secreting one of the three 

required dockerin-tagged enzymes (endoglucanase, exoglucanase or β-glucosidase). More 

recently, Fan et al. (2013) studied the in vitro functional assembly of cellulosomes with two 

mini-scaffoldins on the yeast cell surface and recombinant cellulases intracellularly 

expressed in E. coli or secreted by yeasts. Although, according to Tsai, Goyal, & Chen 

(2010), the production method of ethanol presented when using E.coli lysate treated cells 

could not be considered BCP due to separate enzyme production, those cells whose 

anchoring mini-scaffoldins were optimized produced approximately 1138 mg/L of ethanol 

from microcrystalline cellulose within 4 days. However, it is to notice that the ethanol titer and 

cellulose consumption were lower than that obtained when using a yeast self-assembled 

mini-cellulosome (Fan et al., 2012). Attending to the length of scaffoldin II, Fan et al. (2013; 

2012) reported a higher display level on yeasts with smaller scaffoldin II (lower amount of 

cohesin II), as well as a maximum ethanol production when the mini-cellulosome had only 

two cohesins II. Considering the number of cohesin I domains, Cha et al. (2007) obtained a 

little difference in the effects on cellulosic and hemicellulosic substrates produced by three 

different C. cellulovorans recombinant mini-cellulosomes containing either endoglucanase 

EngB or endoxylanase XynA bound to mini-CbpA with one (mini-CbpA1), two (mini-CbpA12) 

or four (mini-CbpA1234) cohesin domains when the cellulosomal enzyme concentration was 

held constant, regardless of the copy number of cohesins in the cellulosome. However, a 

synergistic effect was observed when the enzyme concentration was increased to be 

proportional to the number of cohesins in the mini-cellulosome. Comparing mini-cellulosome 

with free cellulosomal enzymes, Murashima, Kosugi, & Doi (2002) reported an enhanced 

activity towards crystalline cellulose when using mini-cellulosomes.  

Cereal-based diets contain high levels of soluble non-starch polysaccharides (NSPs) that 

significantly affect the digestive process impairing animal performance. It is now well known 

that barley incorporation in poultry diets is limited by its high content in soluble β-1,3-1,4-

glucans that upon solubilization lead to an increase in digesta viscosity, reducing digesta 

passage rate and affecting the interaction of the endogenous digestive enzymes with their 

target substrates (Smits & Annison, 1996; Pettersson & Aman, 1989; Jozefiak et al., 2006). 

In addition, higher viscosities also lead to prolonged digesta passage rates promoting a 

modification in gut physiology such as the enlargement of gastrointestinal organs, which are 

detrimental final carcass yields (Smits & Annison, 1996). High digesta viscosity also favors 

the proliferation of anaerobic microbes in the upper parts of the GI tract thus affecting 

animal’s health (Jozefiak et al., 2006). To reduce the negative effects associated with the 

presence of barley β-glucans, commercial enzyme mixtures expressing high levels of β-

glucanase activity are currently added to broilers diets (Bedford & Morgan, 1996). 
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Exogenous enzymes added to poultry diets reduce the degree of polymerization of soluble 

glucans leading to a reduction in digesta viscosity, an improvement of diet digestibility and 

feed intake, thus contributing to improve animal performance (Bedford & Morgan, 1996). 

However, little is known about the mechanisms affecting the efficiency of exogenous 

enzymes used to improve the nutritive value of cereal-based diets in vivo. 

Here we aim to produce mini-cellulosomes expressing β-1,3-1,4-glucanase activity and use 

the engineered nanomachines to improve the nutritive value of barley-based diets for 

broilers. These mini-cellulosomes are based on C. thermocellum CipA scaffoldin and 

incorporate one or three CtGlc16A enzymes in a single nanomachine.  

 

7.2.2. Materials and Methods 

7.2.2.1. Bacterial strains and Plasmid 

Genomic DNA of Clostridium thermocellum ATCC 27405 was purchased from DSMZ 

(Germany). Escherichia coli DH5α cells were used for cloning and E. coli BL21(DE3) was 

used as the expression host. The plasmids used for cloning and expression were pET21a (+) 

derivatives. All the above mentioned items were procured from Novagen (Madison, USA). 

 

7.2.2.2. Gene isolation and cloning 

The thermostable β-1,3-1,4-glucanase of C. thermocellum, termed CtGlc16A (Ribeiro et al., 

2012), is a modular enzyme containing an N-terminal glycoside hydrolase family 16 catalytic 

domain followed by a C-terminal type-I dockerin. The gene encoding mature CtGlc16A 

(residues 30-334) was amplified from C. thermocellum genomic DNA through PCR using the 

NZYProof DNA polymerase (NZYTech, genes & enzymes, Portugal) and the following 

primers: 5´-CACACACAGCTAGCACTGTGGTAAATACGCC-3´ and 5´-

CACACACAGGATCCTCAAAGTGACGGAATTG-3´ (NZYTech, genes & enzymes, Portugal). 

Primers included engineered NheI and BamHI restriction sites (in bold) that allowed the 

subsequent cloning of the resulting nucleic acid into similarly restricted pET21a, generating 

the plasmid pGH16-Doc21a. pGH16-Doc21a encodes the bi-modular CtGlc16A, containing a 

N-terminal GH16 β-1,3-1,4-glucanase catalytic domain and a C-terminal type I dockerin. 

Previously we observed that dockerins are highly unstable when expressed in E. coli cells. 

However, cellulosomal enzymes are stabilized once dockerins bind their cohesin counterpart 

(García-Alvarez et al., 2011). Thus, cohesin-dockerin complexes are usually assembled in 

vivo in cells co-expressing the genes encoding the dockerin and cohesin containing proteins. 

Previously we produced a C. thermocellum mini-cellulosome containing three CtCel8A 

cellulases bound to a mini-scaffoldin comprising cohesin modules 3, 4 and 5 of CipA 

(residues 562–1030) (García-Alvarez et al., 2011). The mini-cellulosome was produced in E. 

coli cells transformed with a pET21a derivative containing the genes encoding the cellulase 

and the tri-cohesin mini-scaffoldin organized in tandem and under the control of separate T7 
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promoters (the plasmid was termed pG8D3C21a; see García-Alvarez et al., (2011) for 

details). Here we used pG8D3C21a construct and replaced the gene encoding CtCel8A by 

CtGlc16A gene through restriction digestion. Thus, pGH16-Doc21a was digested with SphI 

and BamHI and the DNA fragment containing the β-glucanase gene and the 5´-region of 

pET21a was cloned into a truncated version of pG8D3C21a from which the CtCel8A gene 

was excised after a SphI-BglII digestion, generating pG16D3C21a. pG16D3C21a contains 

the genes encoding the CtGlc16A glucanase and the three-cohesin mini-scaffoldin organized 

in tandem. In order to prepare a protein:protein complex resulting from the binding of a 

single-cohesin domain protein to CtGlc16A, to use as a control in the biochemical 

experiments described below, the same approach was employed to produce plasmid 

pGH16Doc-1Coh21a by replacing CtCel8A with CtGlc16A in plasmid pG8D1C21a, which 

contain the gene encoding CtCel8A followed by the gene encoding a single cohesin, cohesin 

3, of CipA scaffoldin. The two resulting plasmids used in this study, pGH16Doc-3Coh21a 

(GH16-3C) and pGH16Doc-1Coh21a (GH16-1C), were subsequently sequenced to confirm 

that no mutations were accumulated during gene amplification and the resulting sub-cloning 

steps. The engineered cohesin containing proteins (3Coh and 1Coh) contain a C-terminal 

His tag, allowing the direct purification of the assembled complex and unbound scaffoldins by 

immobilized metal affinity chromatography (IMAC). Since cohesin containing proteins are 

usually expressed at low levels in E. coli, it is expected that in both cases the majority of the 

proteins recovered by affinity chromatography will constitute the protein complexes. 

 

7.2.2.3. Expression and purification of CtGlc16A mini-cellulosomes  

E. coli BL21(DE3) cells were transformed with pGH16Doc-3Coh21a and pGH16Doc-

1Coh21a as described elsewhere (Das et al., 2012). Recombinant cells were grown in Luria-

Bertani medium supplemented with ampicillin (100 µg ml-1) at 37 ºC, 200 rev/min, till mid-

exponential phase (A600nm ≈ 0.4). Recombinant gene expression was induced by adding 1 

mM isopropyl-1-thio-β-D-galactopyranoside (NZYTech, genes & enzymes, Portugal) and 

cells were further incubated at 19 ºC for 16 h. The cells were harvested at 5,000 xg and the 

resulting pellet was resuspended in 10 mM Imidazol buffer (10mM Imidazol, 50 mM 

NaHEPES, 1M NaCl, 5 mM CaCl2, at pH=7.5), submitted to ultrasonication, centrifuged at 4 

ºC, 17000 xg during 30 min and, finally, the obtained His6- tagged recombinant protein 

extracts were purified by IMAC using 5 ml HiTrap chelating columns (GE Healthcare, USA) 

as described by Fontes et al. (2004). The purity of the protein complexes was analyzed by 

SDS-PAGE (Laemmli, 1970). 

 

7.2.2.4. Analytical Procedures 

Unless otherwise stated, enzyme assays were determined following the method described by 

Fontes et al. (2000) by measuring the release of reducing sugars resulting from carbohydrate 
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hydrolysis in Phosphate Citrate (PC) buffer (64 mM K2HPO4 and 12 mM citric acid; pH=6.5) 

at 40 ºC. The substrates used in this study were barley β-glucan, hydroxyethylcellulose, 

carboxymethylcellulose, arabinoxylan, xyloglucan, galactomannan, glucomannan 

(Megazyme, Ireland) at a 0.3% (w/v) final concentration. Reactions were stopped by adding 

a DNSA based solution (1% DNSA, 1% NaOH and 0.2% fenol) following the method 

described by Miller (1959). To explore the pH profile of GH16-1C (pGH16Doc-3Coh21a) and 

GH16-3C (pGH16Doc-1Coh21) proteins and compare it with the CtGlc16A, 50mM MES (2-

N-morpholino- ethanesulfonic acid) (pH 4.5-7), 50mM Tris-HCL (pH 7-9.5), and 50mM 

NaHCO3 (pH 9.5-11) buffers were used in enzyme assays employing 0.25% barley β-glucan 

as the substrate. For thermostability experiments, the three proteins were incubated at 

temperatures ranging from 60 to 90 ºC. After 20 min at the required temperature, samples 

were withdrawn and residual activity was determined at 50 ºC by measuring the amount of 

reducing sugar released from barley β-glucan as described above. Determination of 

temperature of maximal enzyme activity was performed by incubating the enzyme at 

temperatures ranging from 50 to 90 ºC and measuring reducing sugar release as previously 

described. One unit of catalytic activity is defined as the amount of enzyme required to 

release 1 µmol of product per min.  

In a previous study we shown that levels of endogenous β-glucanase activity affect the 

efficacy of exogenous enzymes used to improve the nutritive value of barley-based diets for 

poultry (Ribeiro et al., 2011). To select barley batch expressing lower levels of endogenous 

β-glucanases, five different barley lots available commercially were selected. The barley lots 

were milled at 0.5 mm and enzyme extraction was performed by adding 1 mL of 

phosphate/citrate (PC) buffer into 0.75 g of barley. The supernatant was recovered and used 

to quantify the β-glucanase activity using a β-glucanase commercial assay kit (Megazyme, 

Ireland), following the manufacturer protocol. The incubation period was extended to 3 hours. 

The barley lot expressing the lowest endo-β-glucanase activity was used as the main 

component of the basal diet described below.  

In order to standardize the number of enzyme units used to supplement the animal diets, the 

catalytic activity of the recombinant enzymes, including the commercial enzyme mixture 

(Rovabio™ Excel AP®), was determined in parallel at 40 ºC by measuring the release of 

reducing sugars (Fontes et al., 2000). The extract containing the commercial enzyme was 

prepared by ressuspending 250 mg of the enzyme in 10 mL of PC buffer, followed by an 

overnight incubation at room temperature with gentle agitation and centrifugation at 16000 g 

for 10 min.  

To evaluate the levels of β-glucanase activity present in the four animal diets and in digesta 

samples collected in different parts of the broilers´ GI tract, samples were initially centrifuged 

at 16000 ×g for 5 min and the supernatants were recovered for analysis. The barley and feed 

samples (0.75 g) were previously mixed in 1 mL of PC buffer. The mixture samples were 
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subjected to vigorous stirring during 30 min, centrifuged and the supernatant was analyzed. 

Qualitative analysis of β-glucanase activity was assessed in agar plates, using barley β-

glucan at 0.1% (w/v) mixed with agar at 2% (w/v) final concentration, in 10 mM Tris-HCl (pH 

8.0). Catalytic activity was detected based in the method described by Ponte et al. (2004) 

with some modifications. Briefly, a Pasteur pipette was used to create wells in the agar 

plates, which were filled with 20 µL of enzyme extract from digesta samples. Subsequently, 

the plates were incubated for 16 h at 37 °C and dyed with 1% Congo red (E.Merck AG®) 

in10mM Tris-HCl (pH=8) for 30 min. To observe regions where the polysaccharides were 

degraded, the plates were subjected to three 15 min washes with 1M NaCl in 10mM Tris-HCl 

(pH=8). For measuring the viscosity of small intestine contents, samples collected from the 

duodenum plus jejunum and ileum were centrifuged for 10 min at 10867 xg and the viscosity 

of sample supernatant was measured at 6 xg using a viscometer (Model LVDVCP-II, 

Brookfield Engineering Laboratories, Middleboro, MA) with a cup maintained at 24 ºC.  

 

7.2.2.5. Incorporating mini-cellulosomes in poultry diets 

Bird experiment was conducted in accordance with the Ethics Committee of CIISA, 

Faculdade de Medicina Veterinária, and approved by the Animal Care Committee of the 

National Veterinary Authority (Direcção Geral de Veterinária, Lisboa, Portugal), following the 

appropriate European Union guidelines (Council Directive 86/609/EEC). One hundred and 

sixty 1-d-old Ross 308 male broiler birds were assigned to 40 pens of 4 birds each. Chicks 

were wing-banded for individual identification. The 40 pens were randomly assigned to 4 

treatments consisting of a barley-based diet not-supplemented (treatment NC) or 

supplemented with the commercial enzyme Rovabio™ Excel AP (Adisseo, France; treatment 

Rov), or supplemented with the pGH16Doc-1Coh21a (treatment 1C) or supplemented with 

the pGH16Doc-3C21a (treatment 3C). All the three enzymes were incorporated at a 

calculated dose of 1500 U/kg of feed. The calculated 1500 U/kg of feed of the commercial 

enzyme corresponded to the manufacturers recommended dose of 50 g of enzyme per ton of 

feed. The duration of the trial was 28 days. The basal diet (Table 7.6) contained 615 g/kg of 

barley and was formulated to ensure a nutrient availability as defined by the NRC (N.R.C, 

1994). Throughout the experiment, chicks were given free access to water and feed, which 

were provided with drinking nipples and hanging feeders, respectively. Broilers were raised 

in wired floor pens that were located in an environmentally controlled room adjusted daily to 

the recommended temperatures, according to standard brooding practices. Feed 

consumption and body weight (BW) was determined weekly throughout the experiment, and 

mortality was recorded daily. At 28 days of age, one bird per pen was slaughtered by cervical 

dislocation. The weight and lenght of the crop, gizzard, liver, duodenum, jejunum, ileum and 

caecum were determined. Digesta samples were collected at duodenum and jejunum, and 

ileum compartments to determine contents viscosity as described above. 
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7.2.2.6. Zymogram analysis and resistance of mini-cellulosomes to proteinase 

attack 

Zymogram analysis was performed as described by Fontes et al. (2004) and Ribeiro et al. 

(2008). Summarily, digesta proteins were separated through SDS-PAGE electrophoresis in 

14% acrylamide gels containing 0.1% of barley β-glucan (Megazyme, Ireland), according to 

Laemmli (1970). After electrophoresis, polypeptides were renatured by subjecting the gel to 

five 30 min washes in 100 mM sodium succinate, pH 6.3, 10 mM CaCl2 and 1 mM DTT. The 

gels were incubated for 16 h at 37 ºC in the same buffer and proteins were stained in a 

solution comprising 40% (v/v) methanol, 10% (v/v) glacial acetic acid and 0.4% (w/v) 

Coomassie Brilliant Blue R. After destaining, gels were washed in 0.1M Tris-HCl (pH=8) for 

20 min. β-glucanase activity was detected using a 0.1% (w/v) Congo Red solution for 15 min 

and washing with 1M NaCl in 10mM Tris-HCl (pH=8) until excess dye was removed. After 

Congo Red staining the gels were counter stained with 1N HCl as described elsewhere 

(Ruijssennars & Hartmans, 2001). Areas of catalytic activity appeared as colourless zones in 

a grey background.  

The ability of mini-cellulosomes to resist to protease degradation was evaluated by 

incubating the two protein complexes (approximately 30 μg) with a 50 μg of pancreatin from 

porcine pancreas (Sigma, #P-1500) in Buffer A (50 mM Hepes, 50 mM NaCl, 5 mM CaCl2, 

pH 7.5) at 37 °C during 30 minutes. Negative controls consisting on the reaction without 

pancreatin were prepared, as well as a reaction only with pancreatin in Buffer A. Mini-

cellulosome integrity was evaluated by SDS-PAGE, as described above. 

 

7.2.2.7. Statistical Analysis 

Data related to bird performance from each experiment were subjected to ANOVA according 

to the general linear models procedure of SAS (SAS, 2004). The Least Squared Means 

procedure was used to detect significant differences between treatment groups. The 

experimental unit was the cage of 4 animals (n=10). Differences were considered significant 

when P < 0.05. 

 

7.2.3. Results and Discussion 

7.2.3.1. Construction of mini-cellulosomes expressing β-1,3-1,4-glucanase 

activity 

The open reading frame of CtGlc16A, amplified by polymerase chain reaction was used to 

replace the gene encoding CtCel8A in plasmids previously prepared to produce a mini-

cellulosome containing CtCel8A bond to mini-scaffoldins either containing 1 or three cohesin 

domains (García-Alvarez et al., 2011). Two C. thermocellum mini-cellulosome protein 

complexes (Figure 7.5 A and C) of roughly 52 and 156 kDa were produced. The complexes 

comprising one (C3; 20 kDa) or three cohesin modules (C3–C4–C5; 52 kDa) of CipA bound 
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to one or three cellulosomal CtGlc16A glucanases (34.9 kDa), respectively, were purified 

from E. coli via nickel affinity chromatography (Figure 7.5 B and D).  

 

Figure 7.5| Molecular architecture of mini-cellulosomes (A & C) and protein purification (B & D).  

 

The molecular architecture of mini-cellulosomes containing 1 cohesin fused to 1 CtGlc16A enzyme or 3 cohesin 

domains fused to 3 CtGlc16A enzymes are displayed in panels A and C, respectively. The two complexes were 

expressed and assembled in vivo in E. coli and purified through IMAC using a Poly-histidine-tag located at the C-

terminus of the mini-scaffoldins as the affinity tag. SDS-PAGE was used to confirm complex homogeneity as 

observed in panels B (GH16-1C) and D (GH16-3C), respectively. 

 

The genes encoding the truncated versions of CipA (C3 or C3–C4–C5) and CtGlc16A were 

co-expressed in the bacterium under the control of separate T7 promoters (see Materials and 

Methods). The recombinant CipA derivatives, C3 and C3–C4–C5, were engineered to 

contain a C-terminal His6-tag. The levels of expression of CtGlc16A were estimated to be at 

least five times higher than the levels of expression of C3 or C3–C4–C5 mini-scaffoldins (not 

shown). Thus, during expression, the mini-scaffolds became saturated with the cellulosomal 

glucanase, allowing the purification of homogeneous complexes through affinity 

chromatography that targeted the C-terminal His6-tag of C3 or C3–C4–C5, respectively. 
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7.2.3.2. Assembly of CtGlc16A in mini-cellulosomes does not affect pH and 

temperature stability of the enzyme 

CtGlc16A is a typical β-glucanase as it does not exhibit any activity against soluble cellulosic 

substrates and hemicelluloses but displays specificity for β-1,3-1,4-glucans, such as lichenan 

and barley β-glucan (Ribeiro et al., 2012). The enzyme displays a broad pH optimum (pH 6-

9), with maximal activity at pH 8.0, and is thermostable at temperatures of ~70 °C. In 

addition, CtGlc16A was found to be completely resistant to proteolytic inactivation (Ribeiro et 

al., 2012). Thus, CtGlc16A biochemical properties suggest that the enzyme is particularly 

suited to resist the harsh conditions observed during feed processing and poultry digestion 

(Ribeiro et al., 2012) and thus constitutes an ideal candidate to be assembled in mini-

cellulosomes. In fact, CtGlc16A is a cellulosomal enzyme isolated from the anaerobic 

thermophilic bacterium C. thermocellum. 

Organization of cellulases and hemicellulases in mini-cellulosomes is supposed to confer 

additional stability into the enzyme complex and improved activity on the hydrolysis of 

recalcitrant substrates (Fontes & Gilbert, 2010). Here we interrogate the biochemical 

properties of CtGlc16A when organized in mini-cellulosomes containing one (GH16-1C) or 

three-cohesin (GH16-1C) mini-cellulosomes. The data, presented in Figure 7.6, revealed that 

mini-cellulosomes GH16-1C and GH16-3C displayed optimum temperatures and pH similar 

to those expressed by uncomplexed CtGlc16A; the mini-cellulosomes expressed a broad pH 

optimum (6-9) and displayed unaltered optimum temperatures and thermostability when 

compared with CtGlc16A. The substrate specificities of GH16-1C and GH16-3C were also 

probed against a range of natural substrates at optimized pH and temperatures. The data, 

presented in Table 7.5, revealed that the two mini-cellulosomes retained a strict specificity for 

β-1,3-1,4-glucans. Thus, reflecting the specificity displayed by CtGlc16A, the mini-

cellulosomes were unable to degrade cellulosic substrates and a range of the most frequent 

hemicelluloses. In addition, the capacity of the enzyme to degrade β-glucans is not affected 

by the binding to the mini-scaffoldins although a slight reduction of the activity of GH16-3C 

during the hydrolysis of barley β-glucan is observed. This might reflect a restriction of 

CtGlc16A flexibility upon its organization of mini-cellulosomes. This flexibility is of primary 

importance in the hydrolysis of soluble substrates. In contrast, organization of mini-

cellulosomes is of primary importance to improve the catalytic efficiency of hydrolysis of 

recalcitrant substrates such as cellulose. 
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Figure 7.6| pH (Panel A), temperature (Panel B) and thermostability (Panel C) profiles of 

unbound CtGlc16A (GH16) or the enzyme when organized in mini-cellulosomes GH16-1C and 

GH16-3C.  

 

 

 

In Panel A, the enzymes were incubated at standard conditions in MES (●), Tris (■) or NaHCO3 (▲) buffers with 

different pH, and β-glucanase activity determined (% of glucose released). In Panel B, CtGlc16A (●), pGH16Doc-

1Coh21a (■) and pGH16Doc-3C21a (▲) activity were determined against barley β-glucan at different 

temperatures. In Panel C, thermostability of the enzyme and enzyme complexes was determined by incubating 

the proteins for 30 min at different temperatures, and residual activity determined at 55 ºC (figure labels are the 

same as panel B). 
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Table 7.5| Substrate specificity of CtGlc16A, GH16-1C and GH16-3C, measured at 70 ºC and pH 

8.0
a
.  

 

Substrate CtGlc16A GH16-1C GH16-3C 

Barley β-glucan 2845.1 ± 35.98 2859.4 ± 98.39 2321.2 ± 139.50 

Hydroxyethylcellulose 0 0 0 

Carboxymethylcellulose 0 0 0 

Arabinoxylan 0 0 0 

Xyloglucan 0 0 0 

Galactomannan 0 0 0 

Glucomannan 0 0 0 

 

a
CtGlc16A and CtGlc16A mini-cellulosomes were incubated with a variety of carbohydrates (0,25%) and release 

of reducing sugars measured through the DNSA assay as described in Material and methods. Enzyme activity is 

expressed in number of enzyme units per mg of CtGlc16A. Values are the average of three independent assays. 

 

7.2.3.3. Using mini-cellulosomes to improve the nutritive value of barley based 

diets for poultry 

The effect of assembling CtGlc16A in mini-cellulosomes organized by scaffoldins containing 

1 (GH16-1C) or 3 (GH16-3C) cohesins, respectively, in improving the nutritive value of 

barley-based diets for poultry was analyzed in an animal trial using 160 broiler chicks. Mini-

cellulosome GH16-1C was used as a control mini-cellulosome as it contains exclusively one 

enzyme per protein complex and should thus behave as a typical single enzyme. Basal diet 

(Table 7.6) contained a major proportion of barley (>60%) and was formulated to ensure a 

nutrient availability as defined by the NRC (N.R.C, 1994). Barley contains a significant 

proportion of β-glucans which, due to its intrinsic viscosity, display considerable anti-nutritive 

properties for monogastric animals, in particular for poultry. Thus, the basal diet was either 

not supplemented with exogenous enzymes (negative control group, NC) or supplemented 

with three different β-glucanase preparations: the two mini-cellulosomes prepared above 

(GH16-1C and GH16-3C) or a commercial enzyme. The four diets were fed broiler chicks 

during a 28 day trial.  
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Table 7.6| Ingredient composition and calculated nutrient content. 

 

Ingredients g/ kg 

Barley 615 

Soybean meal 47% 294 

Soybean oil 59 

Salt 2.5 

Calcium carbonate 8.4 

Dicalcium phosphate 18% 17.4 

DL-Methionine 1.7 

Mineral and vitamin premix
a 

2 

Nutrient content  

Energy (MJ ME/kg DM) 12.1 

Crude protein 208 

Ether extract 75 

Crude cellulose 51 

 

a
Mineral-vitamin premix provided the following per kilogram of feed: retinol, 2.7 mg; cholecalciferol, 0.05 mg; α-

tocopherol, 20 mg; nicotinic acid, 30 mg; cyanocobalamin, 0.12 mg; calcium pantothenate, 10 mg; menadione, 2 

mg; thiamin, 1 mg; riboflavin, 4.2 mg; pyridoxine hydrochloride, 1.7 mg; folic acid, 0.5 mg; biotin, 0.5 mg; Fe, 80 

mg; Cu, 10 mg; Mn, 100 mg; Zn, 80 mg; Co, 0.2 mg; I, 1.0 mg; Se, 0.3 mg; monensin, 100 mg/kg; 

 

Animal performance data, presented in Table 7.7, revealed that as early as day 7 and along 

the entire trial animals from NC group had lower (P<0.05) body weight than animals fed on 

diets supplemented with the exogenous enzyme preparations. At days 7 and 14, animals 

from the Rov group presented the highest body weights that were similar to the animals from 

GH16-1C treatment (P>0.05). In addition, although GH16-3C animals had similar body 

weights to animals from the GH16-1C group (P>0.05), they presented lower weights 

(P<0.05) than animals supplemented with the commercial enzyme. These data suggest that 

on the initial period of the broiler growing period assembling CtGlc16A in a 3 cohesin mini-

cellulosome might restrict the efficacy of the exogenous β-glucanase. Weekly weight gains 

were only significantly different until day 14 (Table 7.7).  
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Table 7.7| Growth performance parameters of broilers fed on a barley-based diet non 

supplemented (NC) or supplemented with different exogenous enzymes. Rov, a commercial 

enzyme, GH16-1C, mini-cellulosome construct containing 1 cohesin, GH16-3C, mini-cellulosome 

construct containing 3 cohesins. 

2.  

NC Rov GH16-1C GH16-3C SEM p(F) 

Body Weight (g)       

0d 42.3 42.0 42.0 42.2 0.16 0.3059 

7d 126 
c
 150 

a
 146 

ab
 140 

b
 2.32 0.0001 

14d 298 
c
 393 

a
 394 

ab
 370 

b
 7.26 0.0001 

21d 664 
b
 784 

a
 766 

a
 749 

a
 13.5 0.0001 

28d 1105 
b
 1234 

a
 1229 

a
 1227 

a
 22.4 0.0004 

Weight Gain (g)       

0-7d 

7-14d 

 

81.6 
c
 108 

a
 104 

a
 96.5 

b
 2.33 0.0001 

7-14d 174 
b
 243 

a
 245 

a
 232 

a
 5.60 0.0001 

14-21d 363 386 375 379 9.17 0.3447 

21-28d 443 450 465 478 12.8 0.1494 

0-28d 1063 1192 1188 1185 42.7 0.0621 

Feed Intake (g)       

0-7d 

7-14d 

 

111 
b
 129 

a
 128 

a
 120 

a
 3.60 0.0028 

7-14d 254 
c
 329 

ab
 331 

a
 312 

b
 5.99 0.0001 

14-21d 529 
b
 575 

a
 558 

ab
 547 

ab
 10.4 0.0129 

21-28d 746 765 786 774 17.5 0.3553 

0-28d 1608 
b
 1798 

a
 1780 

a
 1753 

a
 33.7 0.0012 

Feed Conversion Ratio       

0-7d 

7-14d 

 

1.36 
a
 1.19 

b
 1.24 

b
 1.24 

b
 0.035 0.0110 

7-14d 1.46 
a
 1.36 

b
 1.36 

b
 1.36 

b
 0.024 0.0048 

14-21d 1.46 1.49 1.49 1.45 0.020 0.3044 

21-28d 1.69 1.74 1.70 1.62 0.031 0.0866 

0-28d 1.53 1.56 1.50 1.48 0.028 0.2389 

 

During the first week of the trial, animals from NC group displayed the lowest weight gains 

while broiler chicks of the Rov and GH16-1C groups displayed the best performances. In 

addition during this initial trial period GH16-3C broilers presented an intermediate weight 

gain, suggesting a lower efficacy resulting from enzyme assembly. Overall the data suggest 

that exogenous enzymes act predominantly during the initial period of the broilers grow 

(before day 14). This has previously been observed in other studies using barley based diets 

for poultry (Jozefiak et al., 2006) suggesting that has bird ages the capacity of the 

endogenous enzymatic repertoire is improved and can face the inherent increase in digesta 

viscosity resulting from the presence of high levels of β-glucans (see below). Data presented 

in Table 7.7 also revealed that supplemented animals presented higher feed intakes 

(P<0.05) when compared with non-supplemented animals and this difference predominate at 
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the initial periods of the trial. In addition, Feed Conversion Ratios (FCRs) were lower for 

animals of the supplemented groups during the first two weeks of the experiment. Thus, the 

better performance revealed by animals supplemented with microbial β-glucanases results 

not only from a higher feed intake but also from an improved efficacy of nutrient digestibility 

as reflected by the improved FCR revealed by animals receiving exogenous enzymes. The 

mortality rate of experiment was 1.25 % and was not related to treatments. Taken together 

the data suggest that exogenous enzymes improve the nutritive value of barley-based diets 

for broilers. This effect operates during the first two weeks of broiler grow. In addition, 

assembling of β-glucanases in mini-cellulosomes seems to restrict their initial efficacy as 

result of a lower enzyme flexibility imposed by cellulosome assembly upon the hydrolysis of a 

predominantly soluble substrate. 

The relative weight and length of the bird’s GI compartments, as well as digesta viscosity are 

presented in Table 7.8. The relative weight of the bird’s GI compartments was affected by 

treatment for the ileum (P<0.05) and jejunum (P<0.1). Ileum and jejunum from supplemented 

animals were lighter than from animals not subjected to feed supplementation. In addition, 

the relative length of bird’s duodenum and jejunum was affected by enzyme 

supplementation. Animals from supplemented groups had shorter duodenum and jejunum 

when compared with the non-supplemented animals. Several studies have reported a lower 

overall size of the GI tract in birds subjected to supplementation with exogenous plant cell 

wall degrading enzymes (Choct & Annison, 1990; Choct, 1997). Exogenous enzymes 

contribute to decrease digesta viscosity that is the main factor contributing to the 

enlargement of the birds’ GI tract. Hence, data presented in Table 7.8, revealed that digesta 

viscosity in the duodenum+jejunum and ileum was different among birds fed the different 

diets. Digesta viscosity in the duodenum and jejunum, and in the ileum was lowest (P<0.05) 

for animals of the GH16-1C and GH16-3C groups. However, duodenum and jejunum and 

ileum viscosity was also significantly lower in the animals from Rov group in comparison with 

the non-supplemented animals, where the viscosity reached the highest values.  
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Table 7.8| Relative weight and length of gastrointestinal tract compartments and viscosity of 

digesta samples of broilers fed on a barley-based diet non-supplemented (NC) or 

supplemented with different exogenous enzymes. Rov, a commercial enzyme, GH16-1C, mini-

cellulosome construct containing 1 cohesin, GH16-3C, mini-cellulosome construct containing 3 

cohesins. 

 NC Rov GH16-1C GH16-3C SEM p(F) 

Relative Weight (g/kg BW)       

Crop 3.08 3.47 3.79 3.59 0.232 0.1904 

Gizzard 11.8 
b
 15.3 

a
 12.4 

b
 13.4 

ab
 0.84 0.0315 

Liver 27.5 30.0 29.1 28.4 1.06 0.3890 

Duodenum 10.5 10.4 9.02 8.70 0.861 0.3477 

Jejunum 17.0 14.6 14.5 14.5 0.77 0.0637 

Ileum 13.5 
a
 10.6 

b
 11.6 

b
 11.6 

b
 0.66 0.0339 

Caecum 3.14 3.08 2.94 2.98 0.178 0.8539 

Relative Length (cm/kg BW)       

Duodenum 24.5 
a
 20.1 

b
 22.1 

ab
 20.9 

b
 1.08 0.0366 

Jejunum 58.4 
a
 52.6 

b
 52.4 

b
 50.2 

b
 1.95 0.0327 

Ileum 59.9 53.6 53.7 55.1 2.39 0.2197 

Caecum 14.8 14.2 13.2 13.3 0.65 0.3032 

Content Viscosity (cP)       

Duodenum+ Jejunum 9.08 
a
 7.27 

b
 5.50 

c
 5.07 

c
 0.676 0.0001 

Ileum 14.9 
a
 11.4 

a
 7.03 

b
 7.47 

b
 1.396 0.0005 

 

 

7.2.3.4. Molecular integrity of mini-cellulosomes upon passage through the GI 

tract 

Data concerning the qualitative detection of β-glucanase activity in digesta samples collected 

in various GI compartments are presented in Table 7.9 and the qualitative β-glucanase 

activity present in the feed is present in Figure 7.7. The results revealed that β-glucanase 

activity could be detected in the crop and also in the caecum of animals of all treatments. 

However, only supplemented animals, in particular those of the GH16-1C and GH16-3C 

treatments, did presented significant levels of β-glucanase activity in the gizzard, duodenum, 

jejunum and ileum. This observation suggests an improved stability of CtGlc16A when 

compared with the commercial enzymes upon passage through the GI tract. It is intriguingly 

that β-glucanase activity was detected in digesta samples collected in the crop of the non-

supplemented animals. However, the intensity of the halos corresponding to β-glucanase 

crop activity of non-supplemented animals is considerably weaker when compared with the 

supplemented groups. Although a barley lot expressing lower levels of endogenous β-

glucanase activity was selected for this study the sensitivity of the plate assay implemented 

to screen for exogenous enzymes was sufficient to detect it.  
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Table 7.9| Number of birds, out of 10 animals analyzed, fed on barley-based diet not 

supplemented (NC) or supplemented with different exogenous enzymes, presenting β-

glucanase activity in digesta samples collected from various GI compartments. Rov, a 

commercial enzyme, GH16-1C, mini-cellulosome construct containing 1 cohesin, GH16-3C, mini-

cellulosome construct containing 3 cohesins.  

 
NC Rov GH16-1C GH16-3C Chi-Square P- value 

Crop 9 7
1 

10 10 2.401 0.4934 

Gizzard 0 2 9
2 

10 32.6 0.0001 

Duodenum 0
2 

0 10 10 39.0 0.0001 

Jejunum 2 0
2 

9
2 

10 31.5 0.0001 

Ileum 0 0 10 10 40.0 0.0001 

Caecum 8
1 

9
2 

8
1 

8
1
 - - 

1
 n=8; 

2
 n=9 

 

Figure 7.7| Qualitative plate assay for detection of β-glucanase activity in the barley-based diet 

not supplemented (NC) or supplemented with a commercial β-glucanase or with the mini-

cellulosomes GH16-1C or GH16-3C. 

 

NC, barley-based diet not supplemented; Rov, barley-based diet supplemented with a commercial β-glucanase; 

1C, barley-based diet supplemented with mini-cellulosome GH16-1C; 3C, barley-based diet supplemented with 

mini-cellulosome GH16-3C.  

 

The integrity of exogenous enzymes during passage through the GI tract was verified 

through zymogram analysis. The data, presented in Figure 7.8, revealed that the caecum of 

all animals is populated with a large range of β-glucanases presenting molecular masses 

ranging from 20 to 100 kDa. In contrast, a limited number of polypeptides expressing β-

glucanase activity are present in other portions of the GI tract. In particular, a prominent 

96kDa protein is present in the majority of the digesta samples collected in both 

supplemented and non-supplemented animals and this might constitute an endogenous 

enzyme expressed in barley seeds. In addition, a second potentially endogenous but 

nonetheless less prominent polypeptide is identified in samples of the majority of the animals 
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and presents approximately 34kDa (Figure 7.8A). Digesta samples collected in the gizzard, 

duodenum, jejunum and ileum of supplemented animals displays the presence of highly 

active polypeptides. The majority of the β-glucanase activity expressed by birds 

supplemented with the commercial enzyme mixture seems to be represented by two 

polypeptides of 32 and 36 kDa, respectively (Figure 7.8B). These proteins are clearly visible 

in the small intestine of supplemented animals, although in some GI fractions they seem to 

be absent. This may result from a partial inactivation of the polypeptides due to pH 

denaturation or proteolysis.  

With the exception of gizzard, zymogram analysis of digesta samples of animals 

supplemented with mini-cellulosome preparations revealed the presence of β-glucanase 

activity. Zymogram analysis is preceded by SDS-PAGE. During SDS-PAGE protein 

denaturation will lead to the de-assembling of mini-cellulosomes. Thus, zymogram analysis 

of mini-cellulosomes should reveal exclusively the polypeptide bands corresponding to the 

cellulosomal catalytic units. The data, presented in Figures 7.8C (GH16-1C) and 7.8D 

(GH16-3C), suggest that in the crop of animals receiving the GH16-1C and GH16-3C mini-

cellulosomes, CtGlc16A is present in two forms, with molecular masses of 28 kDa and 35 

kDa, respectively. These two bands in the crop are present approximately in similar 

proportions. In contrast, when duodenum, jejunum and ileum digesta fractions are analyzed 

(Figures 7.8C and 7.8D), CtGlc16A is observed exclusively in the 28 kDa form. CtGlc16A 

used in this study is a bimodular enzyme containing an N-terminal GH16 β-glucanase 

catalytic domain and a C-terminal dockerin module, which is responsible for anchoring the 

enzyme into the cellulosome. The two modules are separated by a proline-rich linker region. 

Data presented in Figures 7.8C and 7.8D suggest that the linker sequence separating the 

two CtGlc16A modules is prone to proteolysis in the avian GI tract, and the 28 kDa band 

corresponds in size to a CtGlc16A truncated derivative lacking the C-terminal dockerin. 

Proteolytic cleavage of the bi-modular exogenous β-glucanase starts in the crop where only 

50% of the enzyme was present in the intact form. Taken together data presented here 

suggests that proteolysis affects the integrity of mini-cellulosomes used to supplement 

barley-based diets for poultry by removing the dockerin sequence of CtGlc16A most probably 

through cleavage of the linker region separating the two sequences.  
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Figure 7.8| Zymogram analysis of digesta contents of broilers fed on a barley-based diet not 

supplemented or supplemented with different exogenous enzymes.  

 
 

A) samples from birds fed on a diet non-supplemented; B) samples from birds fed on a diet supplemented with 

the commercial enzyme mixture; C) samples from birds fed on a diet supplemented with the GH16-1C; D) 

samples from birds fed on a diet supplemented with the GH16-3C. Proteins were fractionated through SDS-PAGE 

and stained for β-glucanase activity after enzyme renaturation. Abbreviations: St= Low molecular protein marker; 

Cr= crop; G= gizzard; D= duodenum; J= jejunum; I= ileum; C= caecum. 
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In order to confirm that endogenous proteases are contributing to unbound CtGlc16A from 

mini-cellulosomes through the removal of the enzyme C-terminal dockerin, the two protein 

complexes were incubated in vitro with a pancreatic mixture of proteases (see materials and 

methods section for details). After 30 min incubation at 37 ºC the proteins were separated 

through SDS-PAGE to evaluate of mini-cellulosome integrity. The data, presented in Figure 

7.9, confirms that CtGlc16A is indeed susceptible to proteolysis and proteases cleave the full 

length enzyme to generate a truncated version of the recombinant β-glucanase consisting 

exclusively on the enzyme’s catalytic domain (28 kDa). Linker regions play an important 

function in the efficacy of CAZymes and cellulosomes by contributing to the flexibility of the 

modular enzymes and the quaternary structure of protein complexes (Coutinho & Reilly, 

1994). Glycosilation of protein linker regions is known to protect them from proteolytic 

cleavage (Tomme et al., 1995). CtGlc16A was recombinantly produced in Escherichia coli 

that is unable to glycosylate proteins (Demain & Vaishnav, 2009; Kamionka, 2011). It is 

presently unknown if Clostridium thermocellum cellulosomal enzymes are glycosylated at 

their linkers. However, this study clearly indicates that protection of linker regions of 

cellulosomal enzymes from proteolytic cleavage is fundamental to maintain cellulosome 

integrity. Finally, cohesin domains seem to resist to the protease attack although mini-

scaffoldin C3-C4-C5 was susceptible to proteolysis at its linkers (Figure 7.9, lane 4). 

 

Figure 7.9| SDS-PAGE analysis of mini-cellulosomes GH16-1C and GH16-3 before and after 

incubation with a pancreatic mixture of proteases.  

 
 

 
 

Lanes 1 and 2: mini-cellulosomes GH16-1C and GH16-3, respectively);  lanes 3 and 4: mini-cellulosomes GH16-

1C and GH16-3 after incubation with a pancreatic mixture of proteases, respectively. In lane 5 the pancreatic 

mixture of enzymes was analysed. M represents the low molecular protein marker. 
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7.2.4. Conclusions 

In conclusion, this study reports the in vivo construction of two mini-cellulosomes based on 

scafoldins with 1 or 3 CipA-derived cohesin domains. The protein complexes were purified 

and protein stability studies revealed that CtGlc16A biochemical properties are not 

significantly affected by protein complexation. However, the catalytic efficacy of GH16-3C 

mini-cellulosomes seems to be slightly reduced. This may represent a decrease in enzyme 

flexibility resulting from protein complexation. Protein flexibility is highly important for the 

hydrolysis of soluble carbohydrates. The two mini-cellulosomes are shown to be very 

effective in improving the nutritive value of barley-based diets for poultry. However, the 

efficacy of the recombinant nanomachines is not improved when compared with 

commercially available enzyme mixtures. Whether this represents a comparable efficacy of 

the three enzyme systems under analysis (commercial unbound enzymes, GH16-1C and 

GH16-3C) or a saturation of the animal feed with exogenous enzymes it remains to be 

established. In addition, endogenous proteases were shown to affect the integrity of the 

recombinant mini-cellulosomes by cleaving the linker region that separates CtGlc16A 

catalytic and dockerin domains. Thus, in future studies protection of linker regions needs to 

be improved as the molecular integrity of mini-cellulosomes is critical to potentiate its use in a 

variety of biotechnological applications.  
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8. GENERAL DISCUSSION AND FUTURE PERSPECTIVES 

The work presented in this thesis describes the discovery and characterization of novel 

carbohydrate-active enzymes (CAZymes) in anaerobic microbes producing cellulosomes, 

particularly in the thermophilic Clostridium thermocellum and in the important ruminal 

bacterium Ruminococcus flavefaciens. The former, although producing one of the best 

characterized cellulosomes to date, still displays many features that need to be elucidated 

concerning the complete repertoire of CAZymes that are organized in the multi-enzyme 

complex, and the last, producing one of the most intricate, and potentially versatile 

cellulosome described to date, represents an ideal resource for mining novel biocatalysts. 

Here we have looked for open reading frames predicted to encode CAZymes bearing 

dockerins and thus constituting the catalytic members of bacterial cellulosome complexes. 

After this initial bioinformatic analysis we aimed at producing cellulosomal modules of 

unknown function that could support an enzyme discovery project. This was achieved 

through the implementation of novel high-throughput (HTP) methods for cloning, expression 

and purification of recombinant proteins. As a proof of concept that this approach would be 

effective to discover novel CAZymes in unexploited cellulosomes, the recombinant proteins 

of unknown function were screened for arabinofuranosidase activity. Chapter 3 reported the 

strategies developed for cloning 239 genes encoding cellulosomal modules of unknown 

function from R. flavefaciens (223 genes) and C. thermocellum (16 genes), and to express 

and purify their encoded proteins at high levels in Escherichia coli. A novel expression vector 

(pHTP) was constructed to afford cloning through a ligation-independent (LIC) system based 

on the complementation between nucleotides of single-stranded sequences from both the 

plasmid and the insert. The LIC-based method developed here is very efficient and allows 

obtaining high percentages of recombinant clones using vector to insert ratios of 1:2 to 1:10, 

even when large DNA fragments are intended to clone. The efficacy of the method is similar 

to that of other cloning systems that are commercially available. To support growth of E. coli 

to high cell densities, in order to obtain high-levels of recombinant protein expression from 

the lac-based promoter of pHTP vector, two different auto-induction media systems were 

developed. The media were tested for small, medium and large-scale production of 

recombinant proteins in different E. coli strains. The data revealed that recombinant protein 

overexpression was automatically induced as a result of serving lactose together with 

different metabolizable carbon sources other than glucose or glucose producing 

carbohydrates, to the recombinant bacteria. Similarly, a novel lysis buffer system was 

developed in this project and shown to be equally effective when compared with other 

commercially available systems and with the mechanical sonication of cells. In addition, cell 

lysis through the use of lysis buffers was shown to be more effective during the 

implementation of HTP projects, as it allowed the rapid disruption of dozens to hundreds of 

recombinant strains in a single step. 
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The novel HTP cloning, expression and protein purification platform was used to clone 239 

genes and express them in E. coli. The data revealed that 184 cellulosomal proteins were 

produced in the soluble form (77% efficiency). The polypeptides were purified with yields of 

60 μg to 2 mg of recombinant protein collected in a final volume of 0.15 mL of elution buffer, 

from a total culture volume of 5 mL. This yield was sufficient for the implementation of a 

functional screen based on a colorimetric substrate. In this work, we describe the 

identification of a novel α-L-arabinofuranosidase in Ruminococcus flavefaciens which 

constitutes the founding member of a novel CAZyme family. The novel CAZyme displays 

distant similarities with members of families 43 and 62 Glycoside Hydrolases (GH43 and 

GH62), thus belonging to Clan GH-F. The data confirms that modules of unknown function 

identified in cellulosomes could constitute novel CAZymes suggesting that other enzyme 

activities can be discovered in the pool of 184 proteins produced here if other enzyme 

screens are used. In addition, the HTP protocol described here could be adapted to 

recombinantly produce other groups of proteins of different origins and families and having 

different biological functions allowing the screening of novel enzyme activities and 

preliminary evaluation of their appropriateness for further structural and/or biochemical 

studies.  

Although an effective system was developed in this work for the HTP cloning and expression 

of bacterial genes, it is well known that there are several difficulties related with the 

overexpression of recombinant proteins in E. coli. Among others, production of proteins in a 

soluble and active form remains, most of the times, unreliable to predict and constitutes a 

problem for some protein types. Thus, in Chapter 4 we described the generation of a 

comprehensive set of novel vectors to improve the levels of proteins expressed in the soluble 

form in E. coli. The vectors allow the fusion of the encoded recombinant protein to a 

protein/peptide partner (tag) that is known to be expressed at high levels and in the soluble 

form in E. coli. Although the fusion technology has already been extensively explored, the 

range of tags currently available is still limited while the efficacy of the different tags differs 

significantly with the protein type. The novel pHTP vector series created here contain 

engineered N-terminal fusion tags upstream of the vector´s cloning regions. The cloned 

genes will remain under the control of the T7 promoter and the tags selected for 

incorporating in the vectors were previously shown to be highly effective in raising levels of 

protein expression and solubility. In addition, in order to increase the repertoire of available 

tags, three novel fusion partners were tested in this work, including two recombinant proteins 

highly expressed in the soluble form in E. coli (Rf1 and Rf47, from Chapter 3) and a mini-

cellulosome (CEL). Rf1 and Rf47 will allow the transcription of a single mRNA molecule 

encoding a soluble and a difficult to express protein to provide the required stability for 

efficient protein translation and at the same time protect the hydrophobic patches of the 

neighbour polypeptide, thus restricting the formation of inclusion bodies. The last system 
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(CEL) was developed to allow recombinant proteins to be integrated through an appended 

dockerin module into cohesin domains of the C. thermocellum CipA scaffoldin and thus 

precluding the formation of protein aggregates. After development of the different pHTP 

vector derivatives, a comparison study was implemented that compared the capacity of 12 

different fusion systems to drive the expression of 8 different recombinant proteins in 

BL21(DE3). The cells were grown upon 5 different culture conditions. The data revealed that 

the recombinant proteins displayed different degrees of expression and solubility and that 

both the fusion partner and induction temperatures are the two major factors affecting these 

parameters. The percentage of proteins present in the soluble cell extract when using Rf1 

and Rf47 as fusion partners was similar and higher than the percentage obtained with the 

remaining tags, including well-established solubility tags. Rf1 and Rf47 tags have an 

impressive performance at higher induction temperatures (37 ºC). Taken together the data 

suggest that the fusion tags may be ordered in the following order considering their capacity 

to enhance solubility of the fused proteins: Rf4 > Rf71 > Trx > MBP > NusA > His6 > Fh8 > 

DsbA > SUMO = GST > CEL > Dsbc. A decrease of temperature during growth enhanced 

the percentage of soluble proteins, which is in agreement with previous data that suggest 

that a reduced rate of protein synthesis, conferring time for the proper fold and avoiding 

protein degradation, improves solubility (Chesshyre & Hipkiss, 1989; Spiess, Beil, & 

Ehrmann, 1999; Hunke & Betton, 2003; Sørensen & Mortensen, 2005). The use of either 

auto-induction media or the standard Luria-Bertani (LB) media had no effect in the capacity 

of E. coli to produce soluble recombinant proteins. Furthermore, the addition of IPTG to the 

auto-induction media at the mid-log phase did not improve the levels of soluble proteins. 

Protein purification allowed extrapolating both levels of protein solubility and protein 

expression and suggested that both Rf1 and R47 fusion tags perform among the best ones 

tested. Interestingly, spontaneous cleavage was observed for some large fusion systems 

after passage through the Ni2+-columns, which could be attributed to the internal position of 

the affinity tag (His6), between the two protein sequences (solubility tag and target protein). 

The CEL system tag failed to enhance protein solubility. Many factors could explain this 

result, including inadequate cohesin-dockerin interactions or even some conformation 

constraints during protein folding when cohesin-dockerin modules interact. However, the 

dockerin module alone could constitute a fusion partner to enhance protein solubility. Overall, 

these results are in close agreement with other comparative studies (Hammarström et al., 

2002; Braun et al., 2002; Shih et al., 2002; Dyson et al., 2004; De Marco et al., 2004; 

Marblestone et al., 2006; Bird, 2011; Costa et al., 2013), and suggest that the efficiency of 

the fusion tags depends on the target protein. Thus, since there is no tag that display a high 

efficacy when applied to different types of proteins, the best combination of tag-fused protein 

needs to be experimentally determined. Taking this in consideration, we developed an 

ampicillin cloning vector, pHTP28, which will constitute the entry clone into the pHTP cloning 
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system. After cloning into this vector, the gene is sequenced to confirm that no mutations 

accumulated during the isolation of the nucleic acid. The LIC system supported by the pHTP 

vector series will allow the transfer of the gene from the entry clone into a range of different 

expression vectors, which are all kanamycin resistant, in a single step. After transfer into the 

destination vectors there is no need for further gene sequencing. Using this methodology a 

single gene can be transferred into a range of different vectors in a highly effective way and 

the most appropriate tag leading to the production of high levels of soluble protein easily 

identified and selected. 

In Chapter 5, the effect of a CBM32 on the activity of one of the major cellulosomal enzymes 

of C. thermocellum ATCC 2740 (Cthe_0821, here named Man5A) was evaluated. Man5A is 

a typical modular enzyme comprising a signal peptide, a GH5 catalytic module, a family 32 

CBM, and a C-terminal type I dockerin module. Some truncated versions of Man5A were 

engineered to generate GH5 protein derivatives with or without the CBM32 (rGH5-CBM32 

and rGH5, respectively). The CBM32 module was also produced individually (rCBM32). 

Mannanase activity was evaluated for rGH5-CBM32 and rGH5 constructs while rCBM32 was 

evaluated for binding to mannans and glucomannans. Both rGH5-CBM32 and rGH5 were 

highly active toward konjac glucomannan and moderately effective toward β-1,4-D-mannan, 

ivory nut mannan, and carob galactomannan. No activity was detected against guar gum, 

either for rGH5-CBM32 or rGH5, suggesting that Man5A prefers unsubstituted mannans to 

highly galactosylated galactomannan. The crystalline structure of ivory nut mannan could 

explain the low activity of Man5A against this substrate, which is usually observed in GH5 

mannanases. However, the enzyme activity toward ivory nut mannan and β-1,4-D-mannan 

(both insoluble polysaccharides) was higher in the presence of the CBM32 than when acting 

alone. Thus, CBM32 seems to play an important role in the hydrolysis of insoluble mannans 

by C. thermocellum Man5A. Besides its role in enhancing the proximity of the enzyme to the 

target substrate, CBM32 seems to decrease the resistance of the substrate to enzyme 

attack, as suggested by the weak biphasic action of rGH5-CBM32 toward the insoluble β-1,4-

D-mannan when compared to the clear biphasic action showed by rGH5 against the same 

substrate. Activity-stimulating effects of CBMs toward insoluble substrates have been 

observed in several CAZymes (Maglione et al., 1992; Mangala et al., 2003; Sakka et al., 

2011). rCBM32 showed specificity for the termini of mannans as confirmed by the limited 

retardation observed in the mannan-containing gels. The affinity profile of rCBM32 reflected 

the preference of the catalytic domains for less-decorated mannans once its electrophoretic 

mobility was not affected by the presence of guar gum, but was slightly retarded by inclusion 

of konjac glucomannan and carob galactomannan. ITC data suggested that rCBM32 

contains two sugar binding sites that display a preference for mannose, although they can 

also recognize glucose-configured ligands. The preference of CBM32 from C. thermocellum 

Man5A for the non-reducing ends of β-manno-configured oligosaccharides was not 
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previously observed in family 32 CBMs. Thus, this work provides evidence that β-mannose-

containing polymers should be included within the specificities known for this CBM family. In 

addition, the work provides novel insights into the capacity of CBMs to affect the activity of 

appended catalytic modules. C. thermocellum Man5A-CBM32 is presently commercially 

available from NZYTech. Other novel CAZymes identified in cellulosomal bacteria were 

investigated in this study and are also currently present in the Company portfolio. In Chapter 

6, the biochemical properties of three C. thermocellum pectate lyases (PL) were evaluated 

aiming to investigate their role in the anaerobic conversion of biomass by C. thermocellum 

cellulosome. Homology searches using BLAST revealed that the protein ABN54148 includes 

a signal peptide followed by a putative family 1 PL (PL1A), a dockerin type I domain and a C-

terminal family 6 CBM (CBM6). In addition, ABN53381 contains a signal peptide followed by 

a family 1 PL (PL1B), a dockerin type I domain, a family 35 CBM (CBM35) and a C-terminal 

family 9 PL (PL9). Although pectinases, in contrast to the majority of the other CAZymes, 

generally show a simple structure lacking CBMs, this work provides evidence that C. 

thermocellum cellulosome contains modular polysaccharide lyases belonging to PL families 

1 and 9. The presence of CBMs in cellulosomal pectinases suggests that they potentiate the 

degradation of pectins. Prokaryotic pectinases containing cellulose-binding domains have 

previously been described (Pagès et al., 2003; McKie et al., 2001; Brown et al., 2001). More 

interestingly, families 6 and 35 CBMs display considerable promiscuity in ligand binding, and 

a recent work (Montanier et al., 2009) suggests that family 35 CBM may recognize the 

products of pectin hydrolysis. So the CBM found in the cellulosomal pectinases may bind the 

protein to the products of pectin hydrolysis thus targeting the enzymes to the regions of the 

cell wall that are being actively degraded, as pectins are of the initial targets of plant cell wall 

hydrolysis. All the three enzymes (PL1A, PL1B and PL9) were highly active towards 

polygalacturonic acid (PGA) and pectin (up to 55% methyl-esterified) both from citrus. 

Relatively high activities were observed for PL1B against 55% and 85% methyl-esterified 

pectins from citrus, and for PL1A and PL9 against rhamnogalacturonan from potato (RGAP) 

and soybean (RGAS). The data showed that PL1A, PL1B and PL9 are characteristic pectate 

lyases, as they catalyse the β-eliminative cleavage of glycosidic bonds with the production of 

4,5 unsaturated galacturonates. An endo-cleavage pattern on PGA and pectin (citrus) was 

observed for all the three enzymes, by producing unsaturated di, tri and higher 

oligogalacturonates. From the current 23 families of polysaccharide lyases present in the 

CAZy data base (www.cazy.org), only families 1, 2, 3, 9 and 10 include pectate lyases. Thus, 

for the first time three cellulosomal pectinolytic enzymes from C. thermocellum were 

identified and characterized. However, the high heterogeneity found in pectic substrates 

evidences that within cellulosomes other enzymes presently of unknown function may target 

pectic polysaccharides. It is clear that the degradation of plant cell wall by cellulosomes 

implies a vast repertoire of distinct cell wall-degrading enzymes to achieve the hydrolysis of 
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the diverse structural carbohydrates. The possibility to use these enzymes in different 

industrial and agricultural processes is remarkable.  

The experiments described in Chapter 7 explored the utilization of CAZymes in poultry 

nutrition. In recent years, the utilization of CAZymes, primarily glycoside hydrolases, 

carbohydrate esterases and pectate lyases, in poultry feed has increased significantly. This 

is mainly due to the rising costs of traditional raw-materials and the search for alternative 

ingredients (e.g. barley, oats, rice and wheat) that could improve the economic efficacy of 

feed production. However, a great majority of alternative feed ingredients contain significant 

levels of antinutritional factors that contribute to decrease their intrinsic nutritive value 

(Charlton, 1996). Since simple stomach animals do not produce an endogenous repertoire of 

enzymes to degrade plant cell wall structural polysaccharides, there is a need to integrate 

exogenous biocatalytic activities directly in the diets through the provision of microbial 

CAZymes. It was previously suggested that the use of a broad range of enzymes with 

different substrate specificities to ensure a large spectrum of action may be unnecessary in 

several cases since degradation of the antinutritive soluble non-starch polysaccharides 

(NSPs) can result from the action of individual enzymes expressing the required specificity 

(Ribeiro et al., 2012). Thus, in Chapter 7, we investigated if the improvement of the nutritive 

value of barley-based diets for broilers results from the action of highly specific β-1,3-1,4-

glucanases or β-1,4-glucanases displaying a broad substrate specificity that includes 

cleavage of β-1,3-1,4-glucans present in barley. The capacity of two C. thermocellum 

enzymes, β-1,3-1,4-glucanase 16A, termed CtGlc16A, and β-1,4-glucanase 8A, termed 

CtCel8A, to improve the nutritive value of these diets was compared in vivo. The data 

suggested that although retaining its molecular integrity and catalytic activity during passage 

through the bird’s gastro-intestinal (GI) tract, contrary to CtGlc16A, CtCel8A did not 

contribute to improve the performance of broilers. Nevertheless, in vitro experiments 

revealed that CtCel8A effectively contributes to reduce the viscosity of a β-1,3-1,4-glucan 

preparation similarly to what was observed to CtGlc16A. In addition, differences in the 

capacity of the recombinant exogenous enzymes to improve the nutritive value of barley-

based diets cannot be merely explained by differences in enzyme stability and integrity. 

Thus, we postulated that the presence of β-1,4-glucans in barley based-diets may reduce the 

efficacy of CtCel8A to cleave β-1,4-linkages within β-1,3-1,4-glucans. This phenomenon was 

confirmed in vitro by observing a significant reduction of the β-1,3-1,4-glucanase activity of 

CtCel8A in the presence of the animal feed (only 15% of its β-1,3-1,4-glucanase activity was 

retained), compared to that for CtGlc16A (β-1,3-1,4-glucanase activity reduced by only 54%). 

Thus, β-1,4-glucanase CtCel8A seems to be unable to affect the nutritive value of barley-

based diets by undertaking non-productive interactions with its preferred substrate, cellulose. 

These observations suggest that current commercial enzyme mixtures used in poultry 

nutrition could be optimized by estimating the contribution of β-1,4-glucanases to the overall 
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β-1,3-1,4-glucanase activity expressed. Enzyme mixtures with predominant β-1,3-1,4-

glucanases are most adequate to supplement barley-based diets.  

Chapter 7 explored the use of mini-cellulosomes expressing β-1,3-1,4-glucanase activity for 

supplementation of barley-based diets for poultry. It is known that cellulosomal enzymes are 

stabilized once dockerins binds their complementary cohesin (García-Alvarez et al., 2011). 

Thus, an animal trial was conducted with one (GH16-1C) or three (GH16-3C) copies of C. 

thermocellum Glucanase 16A (CtGlc16A), each of which appended to a C. thermocellum 

CipA cohesin via its dockerin domain. The data revealed that although protein complexation 

had no effect in the biochemical properties of CtGlc16A, the catalytic activity of the 

cellulosomal enzyme seems to be slighted reduced in GH16-3C during the in vitro hydrolysis 

of soluble barley β-glucan. A restriction of CtGlc16A flexibility upon its organization of mini-

cellulosomes could explain this observation. Animals submitted to GH16-3C treatment had 

however similar body weights to animals from the GH16-1C group, though lower than 

animals supplemented with the commercial enzyme. In addition, supplemented animals 

presented higher feed intakes and lower Feed Conversion Ratios (FCRs) when compared 

with non-supplemented animals. A lower overall size of the GI tract in birds subjected to 

supplementation with exogenous enzymes was reported. In general, the data suggested that 

the two mini-cellulosomes were effective in improving the nutritive value of barley-based 

diets for poultry. However, their efficacy is still lower than the commercially available enzyme 

mixtures. In addition, the integrity of the recombinant mini-cellulosomes was affected during 

passage through the GI tract, due the presence of endogenous proteases. Thus, data 

presented here revealed that linker regions between the catalytic and dockerin domains 

constitute a target for protease attack. This work clearly suggests that further research 

should be achieved in order to develop mechanisms to protect the susceptible linker regions 

in mini-cellulosomes that might be used not only for feed supplementation but also in a 

variety of other biotechnological applications. 

In conclusion, this thesis describes a totally novel approach for the discovery of novel 

CAZymes in a pool of dozens to thousands of open reading frames encoding proteins of 

unknown function. A HTP platform was developed while a novel series of cloning and 

expression vectors were constructed to support simple and automatable cloning methods 

coupled with high levels of expression of soluble recombinant proteins. In addition, novel 

biochemical capacities in cellulosomal CAZymes and CBMs were described in detailed here.  

Future work should address the possibility of screening the proteins produced here for other 

enzymatic or CBM activities. In addition, studies in the pHTP expression vectors should be 

extended, in particular to analyse the effect of tag removal in recombinant protein stability 

and the efficacy of different cleavage systems. Furthermore, it is expected that next large-

scale experiments include only three or four fusion partners that showed the best results in 

the small-scale screening.  
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ANNEXES 

 

Supplemental information – Chapter 3 

Table S3.1| Primers used to construct the pHTP vector. 

 

Primer Sequence (5’→3’) 

p28F TCCGTCGACAAGCTTGCG 

p28R GCCGCTGCTGTGATGATG 

ccdbF CATCATCACAGCAGCGGCCCTCAGCAAGGGCTGAGGGGATCCGGCTTAC

TAAAAGCC 

ccdbR CGCAAGCTTGTCGACGGACCTCAGCGGAAGCTGAGGTTATATTCCCCAG

AACATCAG 

 

 

Table S3.2| Molecular architecture and primary sequences of the 184 expressing proteins 
encoding modules of unknown function from Ruminococcus flavefaciens (Rf) and Clostridium 
thermocellum (Ct). The modules studied in this work are highlighted in bold in the molecular 
architecture column. The unknown module here identified as an α-L-arabinofuranosidase is 
highlighted in grey (Rf137). 

No. Molecular Architecture Primary sequence in amino acids 

Rf 1 

[(1-29)SIGN][(32-367)GH5_4][(368-
635)UNK][(636-680)LNK][(681-

765)DOC1] 

GECHGYIDRTTGEWHEASLPIINKMMEIMDDESIQWASERH
IPTVKHQSYAEGTTFLEGPYELDASKEKTYQNTTPGGDGE
VEWSQLEGKEVAIKFTGSTPVLCFSDASYGGWTEMKPYDI
DKENGIAYYNMAKVPDLWGDDPTTIAHMQAKTPKLTTVES
VNILAAPEGEIKEPEATSKIKKINLKDAKNEDTLYVNLEGAPS
TKTNGALGFMKGDEWTQIEWSGSTDADGKLTVEIPLADAV
VGGTVEFQIWAGFKDLDVKDYSIV 

Rf 2 
[(1-27)SIGN][(28-271)GH11][(272-
315)LNK][(316-551)UNK][(552-

621)DOC1] 

KYVQVVNNSDGGRGEIIPPYIYYSSTTNGSMYAAENGCFSA
STDASEISRFYAGIEQPDGLNQYHIIGPDNTVTADYKFENTY
KDSYQLSYNLSGKNDYKYTDIIIIENSNDHPLQYNFKDIRSS
HRIPDILEPTLCKTYTVNGHEYDLYKDEYDVDGHWISNTYE
TYIVVRKDQEEGPILEGSIDFKKHMKQIDEDLIGNFEADSVF
CVLETDYTYGTLKALKNDIVFETDDYPY 

Rf 3 

[(1-26)SIGN][(31-118)DOC1][(119-
156)LNK][(157-384)GH16_lic][(385-
421)LNK][(422-670)GH16_lic][(671-
699)LNK][(700-921)GH16_lic] 

DLGTPMNANATAVADFRKGSTPLFFASDGWENGDPFDCG
WYKGQTSLDSGVLTLTIDKDKTGKYNYAGAEYRTSDHYGY
GYYETSMQAIANDGVVSSFFTYTGPSEDNPWDEIDIEVLGK
DPTKVQFNYYTNGQGNHEFMYDLGFDSSKAFHTYGFDWQ
PDHITWYVDGKPVYTANQNIPKTEGRIMMNTWPGRGVDG
WLNHYNGNTPLTARYQWVTYNNGGAGNNNQQTQTTQQP
TTTSTTTTTTTTTTQWQWQPTTTTTTTQPVQQGAIADKGT
PMDTSATMISDFRTGNAGDFFASDGWTNGKPFDCWWYK
QNAQIKGDHLELSVDRKWTNDSNPDWNPAYSGGEFRTNK
FYSYGYYETSMQAIKNDGVVSSFFTYTGPSDDNPWDEIDIE
ILGKDTTKVQLNYYTNGVGNHEKMIDLGFDSSLEYHTYGFD
WQPNYIAWYIDGKEVYRATENIPKTAGKIMMNAWPGKTVD
DWLKAYNGNTPLTARYQWVTYKNSPKNGGNNNQWQNP
WQPQQTTQTTTQGWQQPVTTTQAQVNVQNNGMNKNAT
MVSDFTTGKAGDFFASDGWTNGKPFDCWWYKQNAQIKG
DHLELSVDRKWTNDSNPDWNPAFSGGEFRTNNFYHYGYY
ETSMKAIKNNGVVSSFFTYTGPSDDNPWDEIDIEILGKDTTK
VQLNYYTNGVGNHEKMIDLGFDSSQDYHRYGFDWQPSYI
AWYIDGKEVYRAYDNIPKTPGKIMMNAWPGKTVDDWLNAF
DGRTPLTAYYQWVTYNKQ 

Rf 4 

[(1-38)SIGN][(39-333)GH30_8][(334-
425)X92][(426-446)LNK][(447-
590)CBM22][(591-596)UNK][(597-
660)DOC1][(661-689)LNK][(690-
1039)UNK] 

QLDFYKSAIKNMGDTSRISAKLRAAENGSPLTIAYLGGSITE
GKMYTSPFSSYVKNTFAKGGFTEINAGLSGTSSVVGLVRS
EREIFSKKPDIVFLEFSVNDHEDISYKKCFESLVKKIIDQPQE
PAVVILINRSKGGFSTQAQMAPIGQNANVAVISMDDALTKA
FNSGFLQPGDYFNDEYHPHAKGGQLVADCLGYYFRQAMK
TENATPAYTYPSKTVYGNEYSTCYNADPSTDLKNFNAGSF



 

B 
 

TKANGYSSGLYYTYNNSKNGNTPMTFKVDGKGIILVFKANS
SGMGSVSVTVNGKTTKVNGNKQYTWGGPDAEVAYYQDT
AGELDVSIKMDNAGSDFAIEGIGVIR 

Rf 5 

[(1-30)SIGN][(31-504)GH30_5][(508-

652)CBM62][(653-796)CBM62][(797-
860)DOC1] 

AANVTISPNNTYEINKGIFQGWGSSLCWWANRVGYSDSLS
QKAADAFYGDDGLRLNIARFNIGGGDDPSHHHITRTDSNM
PGYTKYNNGVVTYDWTADANQRNVLDRCIKAAGDDMIVE
MFSNSPPYYMCKSGCSTGNKNAGQNNLKDDQYTAFAEYL
AEVCKHFEENWNVKVQSIDPMNEPYTNFWGAFSPKQEGC
HFDIGNSESTILVELKKSLAKRGLNDIIISASDETSIDTQIEAY
NALSADAKSVVGRIDTHTYGGSKRSQLKDTAIKAGKNLWM
SEVDGKGTAGVNAGGMSAGLWLAQRITTDCNDLNASAWIL
WQLIDNHVSSVGYNGNKDSGMPNINDGFWGVAVADHDKN
EIILSKKYYAFGQYTRYIRPGMTMLKSSGSTMAAFDKKNNQ
LVIVAYNTSGSASDINFDLSQFDELGASAQTIRTSPSENWA
DIGKTAINGSSLKASLAANSVTTFIINGVKGG 

Rf 6 
[(1-22)SIGN][(23-142)UNK][(143-
433)GH43][(434-587)CBM62][(588-
796)UNK][(797-858)DOC1] 

APEPIVKYDFETSSGGTVKDISGNGNDMRLSGNASVSADG
ERGNVLVLDGSTDTYGAMPDGLLDGVRDYTVSMDIKSQSE
GDFFTFAQGQDKEKYAFLKVAKDHFRFQTTTDTWRGESG
FRYDLDGTRWHNYTLVVNGAVGKLYVDGELVKETSDLTTG
PADMGSKQSCLIGKSYYPEDIMFSGSIDDLAIYKNALTESEV
KAMLGKGK 

Rf 7 
[(1-29)SIGN][(30-61)UNK][(62-
393)GH43_D][(394-684)UNK][(685-

748)DOC1] 

NGVFSPYEAHSAAELVGTAQIDYDMTDPYAPIVSAKQAGS
WTAVRGVQFTESENASQPAAAELLQMNIDTIQYDLTVTSLD
APTTITMYASAQNGVKNQSSVEVTGKGKYKVSVDMNSAK
GFQIVGCFTAANDTPVTMEVDSITLNGKYNIAVAAELTNTRE
WADGLRNIWNGFSDGDAVYTDDHAMLKYVKADDAIELFAA
ENAGITNNAPLVEKPISFAASVKGKGSIDVHLDAPTGDLLTS
IAFDSPSSFTTVYSDPISNIGGTHDLYFVYSNQGVSMQSWL
FTESSE 

Rf 8 
[(1-24)SIGN][(25-269)UNK][(270-

335)DOC1] 

ADFINPVYEDSESYQKQISEWNTKATHAPELSKDFSDLCNG
DIIDMWVNDNINDGIIYVIYQRPDLYSVSIAKDTTDSSEEIEK
YLSAQLGSNTELTVTNEPYDEFIIIDIEFNGKDHELNYLLCDK
ALSIVSQKYNVVSSAAFINRRFFGEYHISWDACTVNENNFS
DFNEKQISDLNKAFTDNNIKAQYDPDSEKIVFSSDITAKEHL
EYAAFIKDNYDQKVSMQGLVSAQNEYSQNLELKTD 

Rf 9 

[(1-25)SIGN][(26-329)UNK][(330-
475)LNK][(476-524)UNK][(525-
1000)X139][(1001-1025)LNK][(1026-

1106)DOC1] 

MSQANYNQKGPEWERPANIEIFENGKSVVSQNVGIRTKGA
ASRAWAQKSFNIFTRMDYGKGEVEYDLFEGKSTKAKNNKV
IDKFNGFTIRNGGNDNMAGFFRDSVNQSLVGDRDMATQAT
SECILFIDGEFWGIYQLTEKYNSDYFKSHYGIKKNDVAYIKN
NSLEEGSDQDLSDWNNLLSEISRADMTSDSAYQQISQKLDI
QSFIDYFAAQIYWGNHDWPNNNTAAWRSNSVDPENPYSD
GKWRMVLFDTEYSANLADKVNEVGPTFNSFSQFGGGGG
WGGFMGGGGSLSGAFTALMKNAEFKKQFELSFMDMANY
NFDTKNTTEAINYYKGFKQQIVDTYARFPSSKNIHNASTFDE
DYKLLETFYNTRYGNITSMMKSYMGLTGSLASVSISNDGSK
GSVKFNTIALDDSLSTWSGKYYTDYPVTVKATAKEGYTFDH
WDVTGANVSNTTSDEITVPVSEGVSIKAVYKEGG 

Rf 10 

[(1-31)SIGN][(32-549)UNK][(550-

626)LNK][(627-880)X161][(881-
962)DOC1] 

ADTTKEAVVDGLTYVYVPDSPNKNECTVQLIYDDANKQVT
KHDTVSIPEKIGNYTVTTLGSDDKSIMQSKNADSVHVTTIKL
PHSIKNIHKNAMLDVNLPLLQTLYVDLNNLEFVSEGVFGYLS
AVSEIYVYDKADKAFYPTSEDLDKYRELVSIEGLKFEEIKDK
LDWFMISKEEYEKNPNVNGKLEFINAVSTSTYTRKVGYMYA
QEAVKKYGIDSDKLSVLQKSDKISNYISGHVRYSFLFPYAET
IKDEQKCERLASTALSIIGFHTGVCGGYAHSFEMMARAAM
GNDIVDKAADVQCVSVPGHALNAVRPKHSDDNSGYYLVD
NTGSVFMQGQGKAVGEYDEIMDGYVYGLYATDQDTIDSN
HDIKIVKAKNMFSEGVSQIYLRDETKTPINIELYDKNNSKDK
YINFTSYPVTGSTFYLEELPHTKCGEINPLGAGLNLYVEPNI
YHEYRISNSKGEAVFGGDGEHKFKLGNVEYVCTITTRDYN
SESPYGKMAPHTANKNYFEVVIKQLTD 

Rf 11 
[(1-31)SIGN][(32-549)UNK][(550-
626)LNK][(627-880)X161][(881-

962)DOC1] 

IPNIIPPKGKVLEYTGKPQELIVPGQTTGGTIVYRNGMLNGY
YEEIPTGTEVGTYSIDYMIIGDENYYGANDDYAILNPRQGRK
NYAFPYCFNCSREPAYPAKGENTNLFKISNPLVDFEKFGTT
ASGKWTLEYVSAYGNFDMSLSKHSDILKSIAKALQQSYALT
DKDINNVSIYELKDDGKHIAYGCIFSTAANDAEVLFIGDTWG
NSGGGGYVLTNEVLSDRKTFTAAQDLIGISNQKMTLYGSVI
AEIRE 

Rf 12 
[(1-21)SIGN][(23-618)X134][(619-

826)UNK][(827-890)DOC1] 

MQADAAEEEFAVRDKWGYCSTANYAESEHFVIFYGNNDTT
GKVNDAFIKRNLEAYERLWHCYTEYLGMTNLNVDIYGKSTK
KYKTNIYLTYTGLDQYKEGWAFMSSEDGYGIEIISPEAMLD
DLTIAHEFGHVVHYQQHNWVDQEISGAWWEPMANWFRE
MYLGSSYNPTDTKTGNFDPYLRNLSLALPHGRNYYETWPF
LAYIAYNPDNLEGLGITSIHRLLSESKPDEYPLDMITRILGTD
AHIVLGNYAKRMVTFDFGMKEAYREQFRKVMNQTPYYWN
LFYTVPDQTAEGAYRVPEEEAPMQGGLNIIPLEIKGDDITVK
LNGLSDDPNAGWEACLVTVDKDGNSSYSQLFTDGEVMSIA
ANGAESAYITVIGTPKKFVRENAFHKEKDSSYKNGDERRRY



 

C 
 

PYEFTMTGADIVKSGGYSKSKGKAHPNGGGFVASTAKVDD
SVYVGPDAMVLGNAVLTGNVRVEDHAVVANTVTASDNVVI
SGHAVVDGGGWIYVDNGWKQGAVRLSDNAVISDSAVVAG
GVTVSGNAKVLQKAYIADGVTLSENAVAKGMAYAYGKGGY
SGQVILDGDYANEETLKSGIGFGWLDTANPKY 

Rf 13 
[(1-29)SIGN][(30-578)UNK][(579-

645)DOC1] 

EDFTDTSVTDINEEDNTIYGDVYFPMGRVNGCEMYAGDKL
DLSNIPLELVTYSSYDNNYRNPILYHCEFTVGSGLYSDMYT
LDTSQVDMNTPGDYKVIVRPKKGAVGTFTTKDNHTSLNPG
YAPPDGDYDICMKGIESYIPVKVYDMEEAAESPLYLKFYTE
AIEIRSGGGTMMELVGAKASKVKYEVADTSIANIRTANTSNK
MLALDGLKEGETTVTVYASDGRILTEKIKVLPPVEVPEEPET
DIRTGTTTTVAGGTQYVPTTTSKSTVSTVDKWWYDLETTTT
TIAHTSMSETETTTTTTTIHIDYRTLAEYDKSPMKVGTTRKII
FKHPETGTADDLYYVGDATDNIMVTHEKGTNYVIVTALSEG
KASFYAAAKGCAFPVSVQLEITAADEFTGMPEKIVYQKGEE
LDLSGIKTADGKDAEIAPEEITLTGPVSSVKKHTAKEFATLE
DGKYIVRAGNLTFNVYIDDPEDPSRYVQLKNARVTEAEVKN
GPVYVNFDGIDEAFYYDADAGMRADWTGVTMKKGDVVSG
VLRTSERGSNATYIY 

Rf 14 
[(1-177)JUNK][(178-200)SIGN][(201-
772)UNK][(773-852)DOC1] 

KAETYEPEVSESALSIKQFVEESNIDLDINSDGKLDVFDVYA
AYRCETGNVDGVPVNIREKYDALPQKWENASGEKGYLNY
DSFAEYYFTYYDFRPEYFDPNYYIDNCPDTYDDELPLDVIK
QAISGIEKWDDAAFTRTIWYVRNDDGTFRPFCEDDIDRAYF
YDEESGKYTPDNNFFAFEAAASPIHEFIRNFKSYYTAELFLN
NELMDLIINSDMTDVDINSDGVYDFDDIVLIEHYLNNFIFTGT
YEYDSIIAALDYHETSSYQENYPAELREAAYCPLSEDEWNK
AHDFIDTVRYYFAHDALIIKCMTENYLLENTVDPKYFDPVYY
AKNHLAEYEFDKCWIGTKGELFGTLGYYEYFSLKYGPGSE
KNKALFELADKREIYYEDEVNAAFPTYYKNVKTGKLPVPDM
DLDGETGIADYLILEEIDDEYVSIGDRDPFAPLVRRYPEIKAE
ISISPEARENYMTNFDFNNNGISCDFLETECMRMYIFGELES
QYESREDLCDAIYNYLNTHPDMKYSRISAEKMEELNQKYG
VNFTPVEDEEEEETYDLPESVDIIQNYSSFNQVFN 

Ct 15 
[(1-28)SIGN][(29-
470)COG5337][(471-533)DOC1] 

ASRPEGWTEETHGKKATPNYSVVFPEDKVNRIDIIISPENFQ
RMENDVFKVFMMSNEDPIYVSATVKFNNHTWWHVGIRYK
GQSTLTGAMMSMSHKYPFRLNFDKFEDDYPEIDNQRFYGF
DELIFNNNWYDPSFLRDKLTSDIFRDAGIPAPRCAFYRVYV
DTGNGPVYWGLYTVFEDPSDKMLEYQFENPNGNLYKGQQ
APGGDLTIFDKRGYEKKTNEKADDWSDLQALVAALNAPKT
DPAKWRADLEAVFNTDSFLKWLAINTTIVNFDTYGWVTKN
HYLYQDLADNGRLVFIPWDYNLSLSSTNPWGIKPPSFSLDE
IGRNWPLIRNLIDDPVYKHIYHTEIENTLNIYFREFNVIEKARR
LHELIRPYTVGSEGEIKGYTYLTNGEAQFNQALTQLIEHIST
RHREARSYLSSVNYYTPIPERTPTPFPSPTPKKP 

Ct 16 
[(1-30)SIGN][(31-176)X140][(185-
330)X140][(331-490)UNK][(491-
973)X139][(974-1051)DOC1] 

YENRGKEWERPVHIEYFETDGKLGFSMDMGLRIHGGYTRK
YPQKSFRLYADHNNDIGEIKYEIFPGLRGTGTGKKIKSFERLI
LRNAGNDWTGALFRDEMMQSLVSHLKIDTQAFRPCIVFLN
GEYWGIYHIRERYDDKYLKSHYGLDDDKVAILDVYQTPEVQ
EGDSSDVLAYTNDVINYLKTHSITEKSTYDYIKTKIDIENYIDY
YVAQIFFGNTDWPGNNVSIWRYKTDDGQYHPEAPYGQDG
RWRWMLKDTDFGFGLYGKSPSHNTLAFAAGDIREGQANE
EWAVFLFKTLLKNEEFRNEFINRFADQLNTSFVPSRVISIIDD
IVATLEPEMKEHTDRWPFIKLTATSPWDTTWSQEVNRIRNY
ANSRPSYVRQHILSKFRNNGVTGTALVTLNTDSTRGHIRIN
SIDIVSDTPAVTNPNRWSGTYFKGVPITLKAIPKEGYVFDH
WEGINGSVEASSDTITVNLSNDLNVTAVFRP 

Rf 17 

[(1-27)SIGN][(28-413)UNK][(414-

704)GH2_6][(705-1363)UNK][(1364-
1444)DOC1] 

ADISFTHKEWTGQSGAEDIFAVNREAASVNPVPFHDDASA
VNAVWDYNAREQSDYLQMLTGENEDWELNVVQNEEKAA
PYRWGGFMNADYKGKDGDGWKTVQLPKSWTCLGFDFPI
YDNVVMPWQSNYDKYVPCPTAPTNYNPVGLYRKKFTLDS
SMKENGRRIYIQFDGVESAYYVYVNGKAVGYSEDTFSPHR
FDITDYLKDGENLLAVEVHKFCDGTWFEGQDMIYDGGIFRD
VFLVSSPSVQISDYTVRTDLDDSYTNAELQLSIDVKNTTGNT
VSGWTLQADAYDENGNNILSGASTAVDKVNGWNKGTFNIK
TKVMSPKLWSAEDPNLYALVLTLRDDKGNVQEKVSTQLGF
REVGFTPTQVDNSYKVTTKQWQPITING 

Rf 18 
[(1-27)SIGN][(28-413)UNK][(414-
704)GH2_6][(705-1363)UNK][(1364-

1444)DOC1] 

QSFWFSANSQQLAANTVSVYNENNFLDLSEFNVNWKLLKN
GIAIGSGTIDDAQCAPLSKNSFTVPFRLPEKYYSGDEFILDIS
VTTKKATDLLPVGTEVAYEQLNIDSSGSSAKYNSGDSSVTV
VDTPDAYVPTNEHNDFNFSINKKTGLIEKYTYKGDLLIDKGP
TPNFWRGNVENDGGSARSKLFDTAWENAMNGAEVIGIDT
GEGSNGAKTVTSHLNLPKAGNTKVDIKYTIHPDGRVDVDFN
VDATRSGLGNFIRVGSMMTLPEGSEQLSWYGNLTESFND
RKSGGRQGVWESTVSEQFFPYMKADDTGNLTDVKWISVK
NSSNSSGLLIAANGTVEASALHFYPEDLQKADHVYKLSPRK
ETILSVDYGSMGTGSATCGQGTLEKYRLPSGRTYKWSYSII
PVSSEADGKALSTTAAKLRSDGISVQDKSSNALTIPVKSPA



 

D 
 

VFKSTSEGNAVSGSLSIPSGNSIGKSLEGKNSFTVEAEFVP
TGNPGFNMIASKGDHAFGLRTENGMLYFFIHAGGEWRTVS
YKTGTDEASGWIGRKHQLAGIYDAENNMIKIYCDGKMVAE
KSTGTSSGITSSSYDLTMGACPETGRTSMADFYEFRVYSK
ALSESELASQRTASPAYAPDSPYVKLWLDFDNIAENEAIDDI
PDDIPQVDP 

Rf 19 

[(1-32)SIGN][(33-282)UNK][(283-

890)GH97][(891-906)UNK][(907-
1028)CBM35][(1029-1095)DOC1] 

DIYTELHAVSQGSNSAHAVLKGADASVITDNSIGSDVLYLK
GSHNGGGWLQLPSLFESGCGGGFTLAMKFMLKEGASDYS
RLFQFSPVPFASGNSSSYSSPDISIDLKDKTAFRASIFAGSG
MDTENDKKHRAIYDLSAAPDTDKWHDLVLVCSPDGAGYYI
DGQKLTYSSETVSDVVNSLFSENVLSSYVYNSLGRSLYND
DDIAACFDDVAFYTRPLSGTEITSLPDDADYLYTFEKDTLEE
GEAVPV 

Rf 20 

[(1-28)SIGN][(29-99)UNK][(100-
120)X159][(121-195)UNK][(196-
216)X159][(219-239)X159][(242-
262)X159][(265-285)X159][(286-
501)UNK][(502-583)DOC1] 

HGAFENTGCIETVDGIDYVDNWAVDGDSNSLKDAAIREGT
RGVAEFAFLLCNKTEHLSFPDSIMYTLPLCYASSKGPAVTID
FSGHSIGERAFTGAKKLTDIYIYDRECDIFDDEKTIPETFKEP
TELDDDLIIDSGSSDNDKISGGNSHSKSIQGPSGSELVIDEE
LPEEMPYTASPVITADEETKDNRVTIHGYIGSTAEAYAKKYN
RKFQPID 

Rf 21 
[(1-36)SIGN][(37-244)UNK][(245-

398)COH2][(399-489)DOC1] 

SDVKEYKLMGVTYSIYSDHCEVTDGSQASGDVFIPVSIGGQ
TVTVIGGNAFKGSSITSVSMSSVTQISSGAFRGCQLLETVA
FPSKLATIGSGAFADCPKLTEADLPQSVKSIGEDAFSGDKS
LKTVTVRNPLCEIGDKSSTLSGTAVTISGYTDSTAQKYAEKY
GFTFQSLGVSPLTTTTAASTTTRTTTTTAKPTTTSTTTKATT
T 

Rf 22 

[(1-34)SIGN][(35-113)UNK][(114-
134)X159][(137-157)X159][(160-
179)X159][(181-201)X159][(202-
216)UNK][(217-237)X159][(240-
260)X159][(263-283)X159][(286-
305)X159][(307-327)X159][(328-
338)UNK][(339-359)X159][(362-
382)X159][(385-405)X159][(408-
427)X159][(428-464)UNK][(465-
485)X159][(488-508)X159][(511-
531)X159][(534-553)X159][(555-
575)X159][(576-585)UNK][(586-
606)X159][(609-629)X159][(632-
652)X159][(655-675)X159][(678-
697)X159][(699-719)X159][(720-
737)UNK][(738-758)X159][(761-
781)X159][(784-804)X159][(807-
826)X159][(828-848)X159][(849-
866)LNK][(867-887)X159][(888-
912)UNK][(913-933)X159][(934-
960)UNK][(961-981)X159][(982-
1714)UNK][(1715-1791)LNK][(1792-

1878)DOC1] 

DSLRCSDSNSRISNSGYGYFTVYPESDELTVSFSCRIKSKK
DINIDPTVTVTMDNEHHTPIMGSVELQASAISLGGPRYVSEL
SAEVYGIAEKGQEVTILVNGKAADTVTTSDKTGKYRKVITLP
DGNAGDEYTIAAKCGKNTSADIKTTYIKDSPVLKSADFSDS
HFRTSHDITTVFTEGKSPVIVTYIGSSFSFRMKMANSDKIKH
LYLTSTKGGEMKYIEAEYDKAKDEWTASGRFDESNRYYIP
GYLNIAVVTENDYPTIDIDNDEPADSFRINNYTDDISKNSSA
ETLFADDNKLLAKTTISNGKLSIDYGYFSASADSIKIGGKAVS
AKDAAAAPDKNGFTKLPLNVIEEGEQSECYYRIMGADDSKT
LVEGLFDKKDISQFSSHKSLVLIKKGSTEPSFMIHGVSDLST
DDTDLFSFPMIGDMGTELAMYAGDTAAFSKLLAESGQDGL
LDVMTMLYGSKFVSILAGSELKTSVNTVGGLTGPWTLAVD
AAILLGEAENYNCYGRVMSEKYPLFTNPGCIRLIVDPSGKT
YEAVKTNPVEDVQVTIYYKDENGKEVKWDPEEYDQENPLM
TNSDGGYAWDVPEGEWKIKAVKEGYEDAESDWLPVPPA
WTDVDIAMVSYEAPVLKSAECKDGKITVHFSKYMDIETVSS
DNFTATGYSNISVVPVLDSKGDVYADTFEITGTVDKTAVKD
GTVTIKASGKADSYAGTAMKASEVKAKVEGDITAVV 

Rf 23 

[(1-25)SIGN][(26-232)UNK][(233-

253)X159][(254-448)UNK][(449-
468)X159][(471-490)X159][(493-
513)X159][(515-535)X159][(537-
557)X159][(558-732)UNK][(733-
803)DOC1] 

DAESSDYHSQSSISFNYPYDKADLSLWQYKVLDSLDGVYD
KPCIELTHCSSTDKTIVVPSEIEGLPVVSLGQGVFSSDPYLE
ESTIYFPDSLQHFDRNFMPDENSILIYTESGDKYLCYSYFNE
NTGADPKHLRLLQCGNRKNIVIPEAIGNLPVSETGIYLLQYA
KDAESLELPDTITYFDEYLLGESTSLKKLKLPAHINILPSH 

Rf 24 
[(1-33)SIGN][(35-115)DOC1][(116-
147)LNK][(148-1104)UNK] 

ITYIHLKGSSITVDGDNATVSGTTVTISHSGTYMIDGTLDDG
QINVNIPDETVDAETVKLFLNGVNITGKSAPAILVTNAENTSI
NLVDGSANTISDGDTAYAGDYLGAAVIEAKDDLTIKGGDKG
TGTLTVTANTQDGISCNNDIKLTGGIINVTTLNATDKTDAVK
GKKSVTVKGGTVTVDAEGDGIKSSKGAVAVEGGNISIKAGN
DAVQAETTIDISGGTLIAGGDRGLTAVTAVNITGGNVYATAT
DNQADDKLIKSDAQPVILLNCKDDATNEKDGTWKKSNILQ
WESMNGTGQNVTAEFTKKFKYVLISSETIKAGTTHFVNTAA
GKWITHTNDQEGLFPVSNGVNIFENVNLAGAEAGVPVPPS
TETPDTTTDGYTITLGSAMATNASAEVASVANNVCTIKQPG
TFTVTGEMTGGQIVVDVDKTAYPDGVVELALSGMSLTNTS
DSPIYVASIGDEVVISAKNGTENTISDGTSYTNADSDTGAIY
SKDDIKFKGKGTLTVNGNAADAIVGKDDVKIYNGNLIVNAKD
DGIRGKDSVTIGNTSSDGTEVDYSNLSVKVKTEGGDGIKAT
STEASSTAKQVGIVTVNGGAVNIESYADGISAEQFFVMNGG
DLNIKTYQGSGFTGSAAGGNTGGWGGGFGMGMDGNANK
TDISAKGIKAVGLYDEAGTTWQSVGNIDINGGNITIDSSDDA
VHCGGSMNLYGGTYTIASADDGFHSDHELNIGKTAANTFD
DVQIYISKCYEGIEGVTINQNSGTVYIISGDDGYNAAGGADG
SGFGNTGGGWGGGMMSSSTGTLNINGGLIVANSANGDHD



 

E 
 

AIDSNGDINLNGGYVCANGQEPLDCGDSGNTINYKGGSVIT
MTAGNTNLSQRYSFVDNSGNVIVSFISASGNPGQNCTNCT
AQSGGTVSGGKTVNAQSDKYSVTVGGTISGATQITAAASS
GGGMGGPGGRQPGQPW 

Rf25 
[(1-29)SIGN][(30-464)UNK][(465-

537)DOC1] 

NTTLADPDLSYLYDEENNYYCIAVGMHDVECIVPTEYNGKK
VGELNLDHVFIADYDFPPDVKTDTVILHVPDDIAVDGKYWL
AEQTGVPCIMLAYGSGKTETFLSADYESLLEKIKTESENDIS
LTEAEYKNMMLQIVPYNTGRENREYPILETGFKYDRGFSTY
RENGHTYIKIMAFMAGKDIYLPEVLNGQKIDRLKLGDITDPR
GGSPQIGKLVFPACPMEIERSTLNKPEIKEIVFGGDVTLPKM
AFYGNEFLENVTFKGKAELDNTAFWKCEKLKNINISPDEFP
AGVTFNQCRDLMTINGESPVNDDGSIKPEYEKIFKEKFYNT
DGIGFVNKYVDYRVKQAVSEAVTDDMSDMEKVKALHDKLC
SMTAYDHGNTEDPKNHVDVSVFLNDSTVCEGYARAMNLM
LHEAGVESCYVDTDTHAWVIVKLGD 

Rf 26 

[(1-27)SIGN][(90-
331)pfam00112][(332-
988)UNK][(989-1001)LNK][(1002-

1075)DOC1] 

MGDKENYQYNFQHDSYIPVQTMAAAEDDADLAEGTPSYM
ANVFKNDCQCQIEAVSTYFMNPSTDYEVTVYSGLQDPADP
SSGTPSSVTKGHSDLTGYFTIPLDEAVPVGGDEYFSVVVKI
SSAESAFVVPLETVLIAKDRETGEIENIGSYTTYDGICWYTG
ENESFFSPDGNEWSSSDAGNYDYSEEEKEELLQIFSEELY
DGLEEEDVEEKERADRQMAHYTELFEHSDVSIIMGNISLKA
FGNSVDTVHFSHPSGAVPLNECIELTASGVDKILYHITDENG
MSKEFEYTEPIPVKKDEVLVAHTPESGLSKRNYHPAKAEFF
SFGYDVTPEYYSPKLSYAEKISASKYHIELPTANDKVRFFPV
SDCDITYNGETVFNYQMTEQFDIPLGETVFEFELKKENALD
NTVTVVVSRSPVSFDTETEKLKISGNSEVYAPDGTRLITGS
DVGAYAGQRLTVKDGGNEFEISVPERRKIADRVIDYGREDI
LFFEEFGEKDAQIKTGNSTEFVDLDGRISSHHTEEDGIVRT
CVRIIPGETFTFRMKATDKLFASEELVVKVPEAPDFPEKMP
AYTIQDGEPVFEDDTIRCIFIPEDEKQPIENYLEYYKYENDR
EGFVKLMSDRYGVDNEEDLSTILWALNLINPTDVSKTQYIIM 

Rf 27 

[(1-24)SIGN][(25-229)UNK][(230-

249)X159][(252-272)X159][(275-
295)X159][(296-495)UNK][(496-
516)X159][(519-539)X159][(542-
561)X159][(564-583)X159][(586-
606)X159][(608-628)X159][(629-
700)UNK][(701-761)DOC1] 

ADEETELWNKFLKYDLCITDYDSLTEKEQELCHFIYDTETRA
EDTIVCNRARAILAGYDVGNRITVEQAEKYKHIVNPEDFLFY
NGSINDYYEYEFPSLLTVPDISHIDEPDICNEYWLDDTKSSAI
IYNSNGLYIQNYNNEGEIEYSELIDTAIKEKTDIEKNGLVFTVL
PDDSLSLTEYKGADKEVKIPSEIDGHFVKSIDIG 

Rf 28 

[(1-25)SIGN][(26-48)UNK][(49-
149)X142][(150-200)UNK][(201-
310)X142][(311-759)UNK][(760-

831)DOC1] 

SCNMVWQDNAPNISLNKIAFTCSVWTDDSPVYAENLYIEVP
ETINVIYDHWKTSITHIMQITLEYPSGKTVTYKSEDYEDYLQT
SGRFKEYNRIMSDYDWMRQVDDVMGEDTAWILSSPDDYE
RLPQYTDADKLVVGNISDYTSAPYIEELVFPDNIKKLTFGYS
AFDNTRIGKLVLPDCPVNIDRTTWVNAEIKEIVFGGDATLPS
MLFYGNQFLENVTFKGKAELENTTFWKCEKLKNINISPDVF
PAGVSFNQCRDLMTINGESPVNDDGSIKPEYEKMFKEKFY
NTDGIGFVNKYVDYSVKKAVSEAVTDDMSDMEKVKALHDK
LCSMTRYDHGNTDDPKNHVDVSVFLNDSTVCEGYARAMN
LMLHEAGVESCYVDTDTHAWVIVKLGDHYFHVDPTWDDN
DEDITTYNWFMKADSEIKDDPSHSNWKMRCPSIMHNFQW
EKMP 

Rf 29 

[(1-25)SIGN][(26-329)UNK][(330-

475)LNK][(476-524)UNK][(525-
1000)X139][(1001-1025)LNK][(1026-
1106)DOC1] 

APALISRAASSVTINEVCPKNTTYRAADGNYYDWVELYNSS
GSSVDIGGWGITDKADKPYRFTLPSGTVIPAGGRKIIFFDAT
AGETDTSIAPFGLSNSGETLTLTDASGNIASQITFEALASDN
SYGQYPDGSGEFYTLSATPDSANTAPEGSNAVRTPGFSAE
SGFYDNGFSLSLEVPEGTTVYYTTDGSDPTTESEKYSSPIT
VKDMTSEPNKYSARTDITAYTDILAPDEGVLKAAVVRAMAV
DGQGRTSDIITKTYFVGSANVEKYRNMKVISLVTDPDNLFD
YEKGIYVKGKVYDDSN 

Rf 30 
[(1-26)SIGN][(27-314)UNK][(315-

382)DOC1] 

AAEISPPSPEAVSAEARIVYERFDSVTEAGLYVRENLKRHT
EELHIILSPWSGSADILNDVLGVAFAETGRGDEGDYLRLSIE
GYSSYTGYMLLDQVLDIRFNYNSTIEEEAAFAEKEAEFLAS
MDIDRMDEYEKITAVYDYLVKNVDYAENFERSEVYTAYGAL
VEKVAVCQGYIQAMYRILTDMGVSCRAVNGEGNGGDHVW
GIAAINDTYYLLDPTWDSQFDGVFKIFFLKGYGDFDEYSSP
VVHITGTGDERNSAFVPDCTSESFTMAYPVAESAFDPQTY
YDS 

Rf 31 
[(1-35)SIGN][36-620)X231][(621-

966)UNK][(967-1033)DOC1] 

DGSRISDFSISDVKMTDDYCTNAFEKEMKYLLSFDTERLLA
GFRENAGLSTNGAKRYGGWENTNIAGHCVGHYLTALAQA
YQNPNVTSDQKDALYKRMKTLIDGMQACQQHPRGKKGFL
WAAPVPSDGNVERQFDRVEIGKANIFDDAWVPWYTMHKLI
AGIVDVYNATQYAPAKDVGSALGDWVYNRCSGWSQQTRN
TVLSIEYGGMNDCMYDLYRITGKDSHAAAAHVFDEDALFQ
KVSNGGRDVLNGRHANTTIPKFIGALKRYMVLDGKTVNGQ
KVDASAYLKYAENFWDMVTTHHTYITGGNSEWEHFGKDDI
LDAERTNCNCETCNSYNMLKLSRELFKITHDSKYMDFYEN
TYYNSILSSQNPETGMTTYFQPMATGYFKVYSTQWDKFW
CCTGSGMESFTKLGDTIYMHDNDSLYVNFYQSSVINWAEK



 

F 
 

NVSITQESTIPDGASVKFTIKGSSDLDLRFRIPDWIDGTMGV
SVNGTKYSYKTVNGYADVSGSFSNGDVIELTVPSKVRAYP
LPDSPDVYGFKYGPLVLSAELGKDDMKTDSTGMWVTIPKD
KKVASETIKISKQGQSVASFMNEINE 

Rf 32 
[(1-620)X231][(621-966)UNK][(967-

1033)DOC1] 

HLVRGSNVLTFTLNDTNTKLTFTPHYKQYQQRYGIYWKFV
PNGTVIEEKLPRAKTSVTDTVQPGYGQYESDNLHGMVEVG
TVGVTNDSTYRYVKNGGWFTYRMAVDETAPQLRLRVKLR
KTDNGKSLRVRVGDSVLWAGTLDYSGNKDVYDLLLTIPQD
VRDRCTYSLTADGTEHSVLDVTFSPDEEGKESAKICDFIYM
EAVTPAYETSSDIAYFVDCGDHKSDTATGKDRFGIYNSVTE
QLYGPDEVSGKNWGLIDDSTDQYNGSSKSGGLYTANTWC
DEANTADGADKSNSFRYTKNQYENNIARHLDYGFELPNGT
YSVEMCFCDPWGCSKNPTAYANLGKD 

Rf 33 
[(1-30)SIGN][(31-454)UNK][(455-

523)DOC1] 

EIPSIRIQNTTYRDTGYVVQTSDNTADIFLHSGKNYVKSKSE
DMCFYFNYDPYDKPDELLELNCVFSDQMLEELTIGQMRGE
FDYDLNYALFNPPTLRKIIFKGEYQKFVVPFPAIHGTTELKTI
VFPEKCDLIEIEEKGIFNVGLEEIEFPHYTRLYYRAFSNAPLL
ENITFSNGCDIRSLAFDNCPSIKNLTFNGECNVGALTFTGNE
NIENIDISDTNKTTFHWSAFNDCVNLMTINSECLFDSETHDF
TGKYKQFIFDNFSAAENVGFINEYLRMQVGKIIDENITPDMS
DIQKVRALHDWICNKVDYDHDDANAAKNHRDTSVLFNDRT
VCEGYSRFYDILLREAGIESCYVDSSDHAWNIIKIGGHYFHS
DTTWDDLDSSYKWFLRSDSEMKKEGGSHGEWTLREPSPL
HAYDSTEVP 

Rf 34 
[(1-24)SIGN][(26-103)DOC1][(104-
381)UNK] 

EFFINNGEMPLDPFGSGLESDIDADRLLGGSWEFLSKGDPL
STPSYTADFFNYDREFRISMDKTGIYGTGYYETSNYFDTPR
GCYNLLRNTEEMNIKLSPNSPEMHFGGMIDTHFTAANVDG
AYIMAISVIGNGISVFDQILGPETQAADGIWILRKNSNETHHII
DDTEMASLREKGTTFYAYRWLDLGSEVYLQTVNAETKEVV
LDDGMPHEAMFFSYANNGHALTAVKYKIAGAEDKANSGKY
RPALVKVTTDPSGNVTEMEEVPRFAYGYYHVL 

Rf 35 
[(1-20)SIGN][(21-216)UNK][(217-
297)DOC1][(298-727)UNK] 

PATIQTPPKNNSYLFDSYDDLAEALTKADSFKTADSDSYGE
LFNNTVSAFENKDITLYVPALNGKECELMNKEGFSNITLLTS
ELYNLPWIWYHCKADNSDIDIKLAYHSIIENDALNSAKTYYDI
LKLIAPEAPNPDNYTEFESYQKIYESKISLANDKNVDAMISEI
KDSNKVYVMFNYDGMLVSIYADQNALTEEFWNSFSLNNLI
WKLGKTDNDKSIDNSAIAGKIFAYEKEGAGGYCTLSFNENG
RFLYYPGRLSSYMSGGDWKIDGDTVSLIGMVDKTIYLKITD
DTLVYIAEGSDEFPYMEIKDGEKFAIYRPEISSDKFQLNSRY
SEYGLGDPKVELNLIASELPEFCYVENVRLYDEDDNFIGMM
SPAMDADIWSYLVDCNVTEECSKTYYTLTKIRCGAKNYLDD
VRSEITVNFKVAPAP 

Rf 36 
[(1-27)SIGN][(28-745)UNK][(746-

822)DOC1] 

FPAARICTPITAEAAKNEVRIKVVDMATDMPIENVDAAASTV
KDFSREDSRFSWNTSDAVEFPIEGAYNNDWYVKLYNVPEE
YNYNAVYTIDRDTRTFGDYTIRLVKKSQDNNVTICSAHDEP
VAKVLLKAADMDVYDKKGNWFCTIKSNEGTYLPDGEYSVK
FKENVLENSGVCVKGEASQKLTIKDGVPTDTIFFLLASDEEK
KPNVSFTIKNEGEDTSSTEDLGRVVITGDGFTLDTDGSAYL
GDGHYTAHRYNFPKNGFNQTGNEERDQHNIDIIADSLLNKT
EDIEFNVVDGKPDRDLVFVKVPVNRPAEEEGATAKIKIVDK
ATGKNIEGVDVEVIAGINATGKSLAKWNTSDEEEKVLTGLS
GNPNLAFGIDLSNVPEEYDFQKRYIFGFAKDSKEESWVVEL
EKKNGPVAEEGATAKIKVVDKATGKNIEGIDVVAISGLNATA
KSIAKWNTSDEAEKIIKGLAGDPRIVYGIELSNVPKEYEYNK
QYIFSFAKDSKEESWVVELEKKNGPVAEEGATAKIKIVDKA
TGKNIEGIDVVAISGLNATAKSIAKWNTSDEAEKIIKGLAGDP
RIVYGIELSNVPKEYEYNKQYIFSFAKDSKEENWIVELEKKN
GPVAEEGDIGFRLYSRYKGLWDRKDNEMVGYVIITDGADD
FIGKYKLDEMISLPDGKYKAEIEVNSKGYSCFSEQKIQFTVD
EGKAVENLDFNVERWN 

Rf 37 
[(1-19)SIGN][(20-496)X160][(497-

571)DOC1] 

YTVSNAEDDTALYKLASSLGADTDYLNIPNFKHHVQERAFS
HEVYLRFLENCTNYEASNNPEGELFMGLSGGLCYGISAVQ
MLSHNGVISPSDIVNGAETLSEISYSPETDVILSGYHTSQVY
YDNNYLINYRPIEINSRTQCDELIKTAERNMAAKRYFVILYA
GDNAHAVTGIGIADGSWKYGGVEFDKCILTLDSNSYIDENT
ADPFRKESCIFINSKTKEYYVPKYKFGTISGSVQKQIITIDDD
EIVNYHGVIAPTVSIERDLSETASMILEKSDLKRYDVTVKDK
EGNEHSLSELGNKIGFIGNAMYYIQGRDFHIDVSDRTQFGK
NYNDKFSISTQGWYFEGETVNEHGIFDVNGQNQSVSAKG
GEKTGYIMTVKYNEGNYPCTPHFNWSFSGKTDSNLKTEIT
EKGMILHSDGSIETKISTADVTFNEKGSISDAAAFPCEETITA
VNDVLVTFDDNNKLCFYIDPDGD 

Rf 38 
[(1-29)SIGN][(30-346)UNK][(347-

417)DOC1][(418-656)UNK] 

AETQTSAVRTDYLDSIRSDIEAFMNENHISAQTYIAPISEGK
DCLHVLFYADQDEEMKKTEEYLIQNDIPYLNTVIDTTTGRTK
GFVILKPNYIDSFKSKVKAFMNENNISGKVYTDGFKESEKIIV
DVMSDSDVQTVKNFIETEGKGAFYTDITPLGPDKGIRLCAG
EESLMNIQGDVAQFMEENNIRGYTYSGDVITVVCVEKEDIE



 

G 
 

MIKSFVAEKGYRAERLEYTLPDFEVDPPETAPTELEDIRMA
LDDFINQQGINGYTKIAPHKSKDMVWVILDPFGDEYQRKINL
FMYLYGIDENSVLVTAMTSNAGITN 

Rf 39 
[(1-29)SIGN][(30-346)UNK][(347-
417)DOC1][(418-656)UNK] 

YYTQTIDWYMDDLPSGVYDICMGNGKSAVITNTDELKEYIA
TVAPQKSIDSYQKKYSDSFFDENVLLINSVNQGAGTDVGYE
FSNIDLSDKEFNISLKGTIGYDQPAASVMSLCIAQVTVPKTA
YHGQPVNWVKDGNSNNISETEQLWCIFVSSLEWNGLTYH
DNDSVDTGNYTKDAYIGKVSDFKGAYKDTVNYRINPDDSV
YTTKESKDVLIVVKADAYSPYGAEVAMTSADYAGTS 

Rf 40 
[(1-29)SIGN][(30-387)UNK][(388-

453)DOC1] 

AETSTAAPTVIQTTTIPSNNQITTTKPESPQTITTTPAIKRPTL
EEVVEFPTEGKFPMKFKVVDEASKEVVKGLDMELYTLDEY
SVDANFIDKLAEWNTTDSETYSCELPYSFEDRNSYSAYGV
VIKNMPEGYVYTFSGENSKCFPVDYRPMTIWADVINGNDT
HEHEYVIRIEKEGTEHNYVTSTKTNTQTNVTTETSAIHQTLE
EIIEFPTEGKFPMKFTVVDEASKEVVKGLDMELYTLDEYSV
DANFIEKLAEWNTTDSETYSCELPYSFENRNSYSAYGVVIK
NMPEGYMYTFSGENSKCFPVDYRPMTIWADVINGNDTHE
HEYVIRIEKEGTIHNPVTSSVSDSDVITTTT 

Rf 41 
[(1-30)SIGN][(31-553)UNK][(554-

620)DOC1][(621-803)UNK] 

AAYNWDNRPDWTPDDFNSAMEFLNHHGTTYAEDGMICIV
KHVPNGKHMAAKIEAVGNEGDQRTDSRYESKIFSFGFEVP
DETQPENGEKTALQDYMEFHGYTDGSFVDYHYEALMIKEN
QDSKFNIMTGIVGEDEELDESKAAVYTFDGDTETDIWGWL
PDSYVEYRIFIDIYGNLSNHDGKLVYCHDVNYSTGATLKVD
QQGEGKLKCTVNSSTYNEMVMLRAGDTSHLVQVYEGEEE
GDVTVSFDSNIPWAPAETKDPVLTADLHVNADLTIRDKIYDV
PEWIPQDSESLIDFYNKHGKIWIQDGLICTIRPVTDYKSERY
SYSFGGSAADKIKQYTIFSKSINPFEEYSSILYDVNVYDIPKG
TDLTINYDLTYAERTSLNSFVFEKDATGNVTQKDFYAWLPD
CVEEYDAYYEKHGAFSIQDGYIMYCTECPIGTGYDLNVKQS
GTGGVAEFHQETITPVENTVLDGGSNFVIKLFKPTKEGVVR
LDLYKARIDTDVLPENGVDTAYFRIDKDMKIYEA 

Rf 42 
[(1-27)SIGN][(29-103)DOC1][(104-
401)UNK] 

SVEVFTAEDRPVVPKIPSYIFPQAVDISTIPSFTDKPYCILNN
NIPAFDPDDLNGTPFESYEEPDEFGRCGVCVAAVGTELMP
TEKRGEIGMIKPTGWHLDKYDFVDGKYLYNRCHLLGYQLT
GENANPNNLVTGTRYLNTKGMLPFEDEIASYVKKTDNHVL
YRVTPLFADDELVCRGVAMEGWSVEDSGASVCFNVFCYN
VQPGVVIDYATGENHADESYIATTTVTETTVRTTVTTTVTQP
PVEYDFVANKNSKVFHRPDCTSVDKMSEKNRWYFQGSRE
ELIADGYKPCSNCQP 

Rf 43 
[(1-16)UNK][(17-613)X134][(614-

843)UNK][(844-925)DOC1] 

LSLCAVPCGYYAQAADEYAVRDPFFNFNKGYNYYESEHFQ
FIWGNSGDSAKVNTAFLEGNAKNMEACWHVYMDELGMAP
PCESVESYLRDGKKYKTNIYISGTGLEGMADDWAYMSWD
SGGFAYMFCCVDSMRYDPPSWVFPHEFGHVMTAHQLGW
NSNKYSYAWWEALGNWFREQYLYSDYSTDDTGHGTDFFE
TYMKNLSFTFPLGRDYYAAWPFLQYLTENPENLEGYGSEF
VKTMLQQGEKDEFPFDQVERLAPADMKDILGYFAAHMAGL
DFKKGSSYRARLNELLAQGDWNWQQIYTMPEKITTPDGKG
AKYRVPTERAPQFAGLNIIPVEINGSFTVKLSPETNVKGAD
WRACVVQQTSDGKCTYSPLFGPDETITVEPVSGADAYISVI
ATPDTDTVKKYGLPGIYDDKAMFSESNVPFSSKTQYPYSLV
FDEDKDSTNVAVKARKVSTSSSDPWQRATYAPHPNGGGL
VASTAKVDATVYVAPDAVVKGSATVKGNVKLLDHAVVEGN
AVVSDNAVIAGYGMVAENASVSSNARVDDCGLVMGRAKIS
GNAKVIESACVYDDVTMTDNSVAKGIAFAMAKGKLSGQGV 

Rf 44 
[(1-16)UNK][(17-613)X134][(614-
843)UNK][(844-925)DOC1] 

IDGDYYDDSGKSISKGTSYGWTSTQSYADSRPYTDKLMYA
YDFDSDSTLSFSDRYTSTYGVNSGAEWENERTSAKGVLTF
SGGNYADIDKGVLYSDSEEIQISFLDREGSGKAQNLLMLGD
EKSHISVTLENNNITAEFAVDGKETKSVTAEKAYTSGEWTT
LRLITDSGKAQLIVNGNKAADGDISASPKDVADALGYGEGV
YRIGSGFNGSVDFVRFFSDEADAPSET 

Rf 45 

[(1-31)SIGN][(32-561)UNK][(562-

639)LNK][(640-889)X161][(890-
963)DOC1] 

ADATKEAVVDGLTYVYVPDSPSKNECTVQLIYDDTNKQVTK
HDTVSIPEKIGNYTVTAIGDDKQGIVISRNEDDIHVETIKLPN
TIKEIHKRALVDIDMPYFSTLYVNINDLETVGEDAFGGYTRIT
DIYAYDKIDKAYYQTNTDLDKFRELVGIDHLKFQEISKTSFDL
VLSKSEYDKNKCVNGRLEFINEVSSSPYSRLVAAMYAKEIV
KKYGFDDPKLTNLQKMEKIFNYIAMNSRYSTIYTYNADADK
RRGMDNLKGTAMSNLGFHSGVCGSKAHAFEALCGAAMG
YDIINKDRDILCVGIPAHALNAVRLEHNDKDEGYYLVDVTGD
MFMQGVQKGLVDYTAFGDDWNYNGYICGEKGSRHDSDA
ATRPMKLINDPNIFYKGISCAYIVDDTKGPIHIEMRDKNDKS
NKYIDYTSAAPTSPDSYLGQLPYTKQYSIDSGKALYLEPNM
YYEISISNSKGEAVFKEEGDHKFKLGDAEYEISFHTRDYGT
ETPYGAVAPHTAFKNYFEIYIKQLSDDPKPDTYPAV 

Rf 46 
[(1-31)SIGN][(32-561)UNK][(562-
639)LNK][(640-889)X161][(890-

963)DOC1] 

VKKETPNLILPKGKEMEYTGSLQELIEAGKASGGTLQYKIGE
NGEWSEKIPTAAEVGDYTVYYRVVGNEKYYGADTDADIKG
RKNYSFPYCYDCQRNPAHPSKGESCRAYQLKEPLIGDRVF
GKNIIKGNWTMEYVSAYKDFESPSKYLIGLVEKTQEADSLS



 

H 
 

TPDDISIYELKRDGEHNSYGVVIAVSEGENELLYFGDTIKYG
GGYILSKEAISDSKTFVIEKDLKEIIVETVKLSGTVNSKIFNTA
T 

Rf 47 

[(1-23)SIGN][(24-43)UNK][(44-
108)DOC1][(109-125)LNK][(126-
731)UNK][(732-756)TM][(757-

762)UNK][(763-784)TM][(785-
1123)UNK] 

PIETSLTKQMADKAKELGTAVNVYNYLYNNMRSEFYYGSR
KGAIGTFEQGGGNDSDLSSLLIAMLRYLGYDANYVTDIVGF
SAEQLMKWTNTDSLDAALAIYSCQGRENMPYEKAGVTYYF
CDYTYVQVVDAGKTYYLDVCFKEYETQKNSIKTLDAGASA
SDVERILQKTDLNYLDSISDSAYNNAMSNLDGQSYAFSSKK
IVQRNITKLPTTSPHLFNVEPTVTEKLDDNRCDIIEIGFNNSR
KKTYHASELYKKNITVEYVISDDTKETHEWVDFDASSIFNLP
PYALGQALTVAPVIKIDGQAVLTGPAIDFESKQTLYINSKTG
GKSEKFEEELCPGELCCIVFDVGTISPNELSEAYSKSIDQTT
SANQKYQLNETTDASKVNEKNVYNANYLGSILRLTGVMYF
SQLDIYTQTLAEKKSVNCEDTVKIGVFGFKPGVYPSKVQVA
GEPYGIDKNGQFIVDILSNAVSTVSEVSNSEQLRAFNMERG
YISSELESAILEQIVGVESLSTVQLFKRAQEKGINIVSLSKNT
TKKVSDLKISDEDAKRLQAEIDAGNTIITMEQSITVGKWTGI
GYIVETADQASQAFMISGKTNGGVCSSS 

Rf 48 

[(1-23)SIGN][(24-43)UNK][(44-
108)DOC1][(109-125)LNK][(126-
731)UNK][(732-756)TM][(757-
762)UNK][(763-784)TM][(785-
1123)UNK] 

DIIETIANNYDYYMNGNEEAGTQVKINAAINVITFGVTKIGGAI
ISQAKNATNCAKYGKNVITGLKNSGFTTAEVNAQISKFSKL
GCSQTTIETLLKNPKSMFLGDDVLSFLGKQGGNQRILAELV
LSNGDDFTKALMKTGAIDEFCDVIRKYGETANRDFLSVTTK
DADLGKAIDTYKALDDIAGKYSEDAMHYDFVDGKYKSKYNL
SADLVKLNKEAEEVMYPEIRTLTDDVATIAQNTGWSTEDITA
IKNHLFNDIVLKNDGYGLLDSDYEIAVAWKRLIEGKFYDCDIL
LLEHELFETTYYNYFHDVNSCTISEAHNFAEKYYNWRAMID
ELMGF 

Rf 49 
[(1-25)SIGN][(26-368)UNK][(369-

454)DOC1] 

ADDDKKDFVVIGDSIAAGEIRDGFVEHNYGEILADYYGGTV
ANYATSGMDSDVLLKSVKELSDEQKNAVKEAECVVISIGGN
DIIHYFSKSMLTYFAEPNPANDFKNFLKAGYTEADIPEEPTID
DLMKMVDADSVANFSKNMVNALELLGEIRGTASKLRNSSN
GYIKTHIVKNLTDTIAEIKSINPDAEIVVQNIYQPVQLTPEYLA
KTYGSGSKYIDIVGQVRDVAEGLTSSFDEQLAAVAADTGVK
KADIRTDFTSMEDGVTQSDANPGHAAYFVDIATGSLSTGD
VHPNQKGHLAIASKIITTLGDTHNDGGLLSDIYENLSDKASY
PVAALKTYEAA 

Rf 50 
[(1-25)SIGN][(26-277)UNK][(278-

343)DOC1] 

LVPLSANAVYIPAASYDEVQKQLEGYTYITEFAVQESDPNY
PSDSYDLYIRMPEEADTTCEVKLLMKENYDTVDVTFPEGG
GRKAITEAMQKAGIDGKLLPGDNVNCECRLYDKVSADKVK
KLYTILNDSGNITDFVYSTDLYTIRKGSANSESLSRFGFCTY
DYDKGIWTPPDEQIAKRERFVELTKEILPDAAVELTSFSDKR
EGFTAYEASVVPASSMTLKEWIDFSLEVNEKLGGFGGFGIA
EEVEIP 

Rf 51 
[(1-24)SIGN][(25-496)X160][(497-

570)DOC1] 

VENPDLKALAESLGFESDHFSFGNFSRTEDILPVNYDYFDE
YYNSLENLTKVRAEDAYKRSNETGAAFGLCTLEMLSHNGVI
SPSDIFPEADKLSDIEYCDAVDKYISLYEAAQERFAIREYYR
YLLYRTSTGEQADRLIEIAERSMAEGRYFLMISRLSMDDEN
DNAPLMIVTVGSGIAEGEWEFDGKKYDKCVLTSDPNSRYT
DSETIPNPRKPFEERLCVFINSETKDVTIPDYAKHGFNDLKI
ASIDNDSLLNYNGFINPSTEIEGEDMSMYNCISDTTKYGMK
YEGEIIDNNGVGEPFEFGPGAVIGKKFRIKSIRDFIPESYILK
NVALPSDIYIIGVYGQFHLLSSKETVFDFDTEDNKAVFTSDG
EFVFRGEYTFNEGYYKSNPYCDWGIEGSAVNQASIDFRDN
GAVISSDSPIKDCLVSVQSFYFTDPDPKYDMLHFNSDNEVM
ISLNEEEKLNLSIDPDND 

Rf 52 
[(1-28)SIGN][(29-286)UNK][(287-

358)DOC1] 

DGNEPPDYEALQENLEKMKENGFGTPATDSEICYKANSIEE
VVTEHSGENYIALSGDIKDLHLQRYGENIYNMDDTGKLHIIS
YFWEGSEIKIKKGTELPWDKLGRTYIQKTDDENYLLERGNE
RNNVEKALATLRKCENVLAISNNFILYEDTKNSATIEGFYYK
GTKSSDDIISANPDLKLNYVDLSDKDSKNYPLCDKYDSFFYI
RSDNYKMTDIYGLFSEMKKNGDDFSCNISSTELVVLDKEAD
VYSYCQDAV 

Rf 53 
[(1-25)SIGN][(26-349)UNK][(350-

421)DOC1][(422-833)UNK] 

EEPAETETVYTLGEKELTVADVITFSNMNRVLQWADFTDYS
GEILHLKNKLWESEWQFAVADGEDGLMLRICGSTDKFPAHI
YLSDSSKRQIDIRSDDVQSFLNKGAGEDSLTVSEEVKEHFR
VYETYSDEFTKPERRLVQDFKSIMRYYNVPLRGAFTEFDNI
DDVLASASVLKKYYIVEYEDGSVKSYDEHLNEMKSNIQTIH
DGVQVDLPYLTIPEKAWNAFYNADFAKTYISPHAQVENVY
WLSGESSMMGTAIYYRTSVGDYVYYYYHTIGEALFPVAEF
CAYQQAIKDEIAKYPEAGGGINIADVWDLTDYRLKANIS 

Rf 54 
[(1-25)SIGN][(26-349)UNK][(350-
421)DOC1][(422-833)UNK] 

FKFHSVTDIRYNDDNHTKWTGFIARSENDLINILAENEGVSA
DKATIEGIDSNTFKDKSIVIVYSICTAGNSYSIIDNISVKGTSID
VSTISKKPMVPTPDMLFRRYVYVIDKNAVTNADSFNFTDES
SYYQYDEENEAVAWFKKNGDIAGNNDGITNADALAVQKKL
LGLDKTDNQSIDSSLIANKVFVYEKSADPGIYDDLCALSFGS
NGMYTYHIGYYTSSNQDQGTWEISEDTLVLTGRYGTNKFR
YEDKALIYIAEESDGFSKFTDKSTPKDGDKFNLAEEPDYAAI



 

I 
 

NNLSEIVTIKTDYTPIMSDWSGIGILLEFDSKDYSISLRTNDG
HFTTWDIAKGSGPIKNAGVTYDIGNSGYIFWTPDGSEFDAD
YQNEIVIIGEKDGKSVKLGSIIVTPSNNHTLTAALK 

Rf 55 
[(1-27)SIGN][(28-282)UNK][(283-

357)DOC1] 

ADGIIYDQHDAKWSEVKFDKYSTTASTMELSGCGIFSFCNA
IYALNGTIADAYEVADWAVNIGGYRPGAGGTYRYPFYQQV
EEAFGERYGFRVDGYYTGAVTDEVLIDHLKNGGVAVVNVP
WHFMTITGYNEENETYHVLECAVDMPKRGLEADSWATAE
TMSTGRTEVGWYVLLSDTGTSDRTIPASLDLNCDGMVNSI
DASLITARYSEILNDTPLSNYGMTDDIRNTIDTCADIDHNGT
VTQRDADILLRWI 

Rf 56 

[(1-24)SIGN][(25-348)UNK][(349-

369)X159][(372-392)X159][(395-
414)X159][(417-436)X159][(439-
459)X159][(461-481)X159][(482-
547)UNK][(548-614)DOC1] 

AEAQPSDVSEIDSTASDNNNKLKKELTLEDVDNLSQKGYEL
TVKDFDNYNYHDTGEDVLSGINREYIIDEEYSLVVIDKDSDV
ETVPESIVLFSNKGFAADIRSSEYQDFFATPIMYLITEMPDA
EYTAYINVILDNGSLYWCQIEKSYADTIVDPSEYTDDLAKSP
RGFAKKDLKLNDDMLGSIKAVGKEIAKNSNQNELVECTKYT
ITSERERLFLVNDGKSYAVADFGENCKIINNENVQKLIAELV
ATGYSETVSAVDEKNGISGSYSENIKWTLDADGVLTLSGEG
EIPDLTESAPWSSRRADIQTIIVEDGITSIGKD 

Rf 57 
[(1-25)SIGN][(26-496)X160][(497-

580)DOC1] 

AENPDLQALANSLGAETDHFNFTNFQRSEDFRPLNWDYFD
NFYKTCTNWTAYSGESRYLTSGQTVALGMSILEVLSHNGVI
RPSDILPNAQTLSEIDFCKEADKYITLYQMLQEHHEFNSAYR
YKLFQWSPEQEVEDLCKIAENNMINNRYFLIFINCKSEENLP
VMLASVGIGITDGEWEFNGKKYDKCILTLDPNGVAPDSSPE
SPIPMPFKESVCIYVNSETNDFICPAYFEKNLSNFKIAAIDDD
SILNYKGAINPSNEINEKYSTLNCVLKNGMEYEVEAQKSDG
STQIIPDGYNIKGRYIKGENDNLKIKSTKIYEPEDKSEPLPSEI
TYVDERGQISMASSKEAVYTIEKNKYTFEGDNNYSFWFFTA
LNEGFYNYSPRYEWHIQGDVTDNICFEYLDDGILLRSDNEM
KNIFFTSFDYKKGESGLPIKWQQNGKYLKFDSRNDVMISLD
DNYELYLKIDPDND 

Rf 58 
[(1-20)SIGN][(21-943)UNK][(944-

1024)DOC1] 

QPGYVYDPGSITAFAEEQSDETAATVRAEDDSHEPETAYV
ETTMNVIPPVTTTVPVTTGGIQICTTLVGNSKLTIEKMPDKIIY
KKGEKLDLSGLVLKFSNDYTEYTYTDDDISDEFNISTEFDSS
KPGRYIVHISDKYNPLFASFSVRVLAADRPDDYVSSVVFND
TTGTLTLKGNVAVDDVIDFSENSAVKKIVAEKGTVFPADCS
GMFRKFTVASIDLSNADTSNVTNMSEMFYDFTGCESIDLSG
FDTSKVTDMSSMFEGCTASSIDVSGFDTSSVTDMSGMFSL
CGNIESIATGRFDTSKVTDMSRIFNCCFNLKSVDISSFDTSN
VTNMAYMFNCCGSLVSIDLSGLDTSKVTDMKHMFAWCECI
AALDLSRFDTSKVTDMEDMFDGDDSLAVLDLSAFDTSNVT
NFEGMFANCGSLRSIYVDKFDVLKAEKTEDMFYACQYLIG
GNGTIWDPEKRDIKYARIDEKDAPGYFTKKTADTVITLPEVG
TVTYDEETDTLTLKGNIVPAHVKRYRNAGTIIAEEGTVLPEN
CDNLFNDSRAKKIDLSKADSSKVRTMKEMFFNCNNIKSLDL
SGLYTSNVTDMNDMFGCCFALESVDLSGLDTSKVIDMSGM
FRDTALKNIDLGKLNTSNVTDMSYMFDDCNKLETVVLKGLD
TSKVKDMSCMFNLCSALRTVDLSGSDTSSVINMSGMFGW
CESLEKLDLSGFDTSNAEDMTYMFTYCSELKTLDVSGFKT
EKVKNMSGMFSGCELLQSLDLSSFATPDVVSMSKMFEGC
SSLRSVDISKFNTSKVVDMSGMFDGCKNLEKLDLTGFDTS
KVRKMDWMFNECSSLTELDLSSFDTSGVGNIEYMFDGDLF
LETIWVNNFDLSKAENTTSMFGHCVNLTGGNGTKWDKTKN
DSVYARIDEEGKPGFFTKKAASAEPATN 

Rf 59 
[(1-168)JUNK][(169-189)SIGN][(190-
728)UNK][(729-794)DOC1] 

ADGNLQYKRTDELPDYVKNFARCVEECDLDLDFNGDGKF
DIFDDYAYYRCEYGSCPDYISGNVNACDEKMKAFSKETGIQ
ARLSDLPEYFIFTQPMELEYFDPDYYIDNCPDTYDEIVPLEYI
RHGDGKFGIKEYYDSMFYIQNEDGFVRIDYHTDNYAKVMS
QVHYFIEYRLKGYMCFTNASYKMMCDLMDEKLVDTDINSD
GEFNYDDIMLLYSFGDHFYDDYYEDIFGYWDENDDYHELD
PAPIHAKKRTYAGYTEDYDKYIAFLEEFPWYNKDTDYQTNH
KLTESEWNKATDFYDIASKYSLHCFKDIDQTLFIYYITHYNV
DAEIFDESIYQNNKDRYLGDNLWGYMYTYKDICETYGVNA
VRAPEDTPVDLRFARYDTEKMFPEYYSAVKNGELPEPDIN
GNGRIDIQDYAFFQDLFNEIEIPGAPSYMIYVTIDAPQAVRD
AFNNDYDFNGNGVSCDLGELECIELYIANELGAADYSDVG
DMLKKYYEDNPDLDPMVKLDEIIRSMSGETEEKIRVNSDGE
NMQGYMSSLE 

Rf 60 

[(1-28)SIGN][(29-99)UNK][(100-
120)X159][(121-195)UNK][(196-
216)X159][(219-239)X159][(242-
262)X159][(265-285)X159][(285-
500)UNK][(502-583)DOC1] 

HGAFENTGCIETVDGIDYVDNWAVDGDSNSLKDAAIREGT
RGVAEFAFLLCNKTEHLSFPDSIMYTLPLCYASSKGPAVTID
FSGHSIGERAFTGAKKLTDIYIYDRECDIFDDEKTIPETFKEP
TELDDDLIIDSGSSDNDKISGGNSHSKSIQGPSGSELVIDEE
LPEEMPYTASPVITADEETKDNRVTIHGYIGSTAEAYAKKYN
RKFQPID 

Rf 61 
[(1-23)SIGN][(24-253)UNK][(254-

336)X72_dist][(337-411)DOC1] 

DGTLTISGKGTMTNYDEMSIPFYPFQNNADIKKIIIGDSVTSI
GSGAFTNTNKSFIIKGYSGSYAETYAKRKLITFEAIGTTQQIT
TTATTTNKLTTTTTTEMPYSITTSYENRLEIVKLPDKTEFSIG
EMYDLSGGLVRYKVINHCYDNGGYVVVKESENIEMISEDLD



 

J 
 

LTTDYNPNIKGKYTINLQYKKPYYYNEYSMPKASFCVNVVS
SAVATIKTTTSASTAATTT 

Rf 62 
[(1-27)SIGN][(28-91)DOC1][(92-
482)UNK] 

SEAVNITSPACKAAAFACADDGELLYYDNINEHIAPASLTKL
LTASVALHYLSPDTVVTVGSEQNLVRSGSSLCLIRPGHKLK
LYDLLTGMLMASGNDAAYTVAVTTARAVKPDTAMTDAQAV
SYFTELMNSYASSIGMRDSHFTTPEGWDDASQYTTVSDLL
VLANHAFSIPEIKTITGTYQKKVYFVSGENITWTNTNALLDP
NSAYYCADAIGIKTGTTASAGNCLIAAFERNGKTYLSVVVG
CGTGNDRYELTLKMLSQFGVANEVKLSAAPNVTESVPSTS
AEETTPVTTETTTVAPIVADKSEIFNRLDSLEYIPISCDGLPT
HKLTAPDGTVYYLHLDENASYSYVWRRPSLIADADNEAPLT
QEVIDAIYANWDQLNIVKTEW 

Rf 63 
[(1-23)SIGN][(24-198)UNK][(199-
311)X142][(313-422)X142][(423-
879)UNK][(880-952)DOC1] 

IYSDDYVFDDLNAYVDLSKIKFRFADQEDMSEPTNVYSENL
KLSVLDYAEVVNDKWLASDTNILQIEVCYPDGKKEIYKAED
YDYYRKESGNFKEYNRILSNWNYSGHMEVFGEEAFNDEIL
WLFSSCYDIDRIPEYTDGSRLVVYYLGPWRQNIDVDELKFP
DNLKELYLEDSAFENVNINKLILPGCKLFYDDNTFAESNIKE
VIFEGDVSLKHKTFRDNPNLENVTFNGNANLELTAFWNCN
SLKNINISTDASINGIAFDHCNNFMTINGESPLGDDGSIKPEY
ESFLRKNFNSAEGVGFIEKYVQASIKKAVSEAVTDGMSDM
EKVKALHDKLCSMTRYDHGNTDDPKNHVDVSVFLNDSTVC
EGYARAMNLMLHEAGVESCYVDTDTHAWVIVKLGDHYFH
VDPTWDDNDEDITTYNWFMKADSEIKDDPSHSNWKMRCP
SIMHNFQWEKM 

Rf 64 
[(1-21)SIGN][(22-546)UNK][(547-

618)DOC1][(619-881)UNK] 

MPVPAVYSSYTDEPLKKGDMRITLVDYYTGNPIEFDGNAEP
YLWSDITYFTTHGKVSSGPIFYMHENSMIWENMADYFNAD
SFEFGLNWDGLPKGYSIPDESVDQAGYFNGKSVPDNFVTV
TKYDNGSADVEFRLINKNKSPAPKEAYESVIGTLPDWTPMD
FADAMHFYNEHGKCYLKDNFICMVKPIHKSEIDKYGTRVSG
SMTNVNTPAGTARKIYELEIKEKPDPSDEKSVHEYQDYLSR
LEIVPRDYSLFEEYAQEEDPYVFEFQMFRVIEGYDLTIESYE
KEGDEIKVLNTYTFENPDGDTIETDINKWLPDCKSECRFFA
SPEIYGNYIAYHSTEKYYPGTALTVEQKGEGAVEKAYESEC
SSFSLVPSDGDEPEYVRVYKPVADGRLNISFTVGKDGEEP
FDQAKFDCEIKNNCSEIINYKGHTVFTFIDKDTGELITEPKSG
ENFFFIGNYFREPLSGHIFNITSNPCAIKTFHTYNKNDNYTF
NMKTASGRYDMPEFEVTYESSDCMDITCKLKW 

Rf 65 
[(1-21)SIGN][(22-546)UNK][(547-
618)DOC1][(619-881)UNK] 

NSYGYPLVVEKDNLKMYLGPDENYPCVAELPKNTELYEIGY
NTDNDNWLFTEYKGKSGWVRTISENGEWNVRFLEMADKP
VIYLYPEKETDVHVELELTESELSTTYPKYNNGWDVTAYPD
GSLLNTADGTHHKYLFWDSKNCRTRFDLSQGFCVAGSDT
EAFFKEKLSYMRMTEEEMNEFIVYWLPRMEHNRYNLISFQ
GDVYTKSAKLNITPQPDSLCRIFMAYVPLENAVEIEPQQLDT
FERKGFAVLEWGGCEIKAGEK 

Rf 66 
[(1-28)SIGN][(29-498)UNK][(499-

562)DOC1][(563-713)UNK] 

AGAYDIEKDIWKFRNTSDSFGQNYKFTDSDVAPFKNNLTN
VDRRLASNLISGQFLGSCYGMAVTSILASYGLIDYNAYTEG
ADSLYAMSGVASPDDMPSDEIQSLINYYSSLQFTEEVRQYA
AYSMLEKTEKERLQQIIDAVEAGKPALVCYFGKINDSGDRY
GHAVVAYNVEYGPFEVNYTEEVEQLALLKTAEFDGRIAVYN
CNLDSQESSYIYFNNDGSWRTDKCSSDNEGNINLVISDIDL
LNNKGLLGGTEKYKNDRDFLAMLNIRSLLPERTVDKIKFDN
GKWDTISSNEDEIIELPPFLGDVPQIYANTYVLKDDTSGYML
STDGLCTMNLEMNYQNCVLIADVNAANQIVFEPSGYIEMN
GDTEYGFEIAMNDGYYNGSWYSFRIDQDHKTKHSALMRT
DKGYILKSDNLNNTIITTCDGENVFRREIDTEFDIDSVLIFEKT
DGNIGFAADLDNNGSYETE 

Rf 67 
[(1-29)SIGN][(30-502)UNK][(503-

568)DOC1] 

ESIETPAVMTNEESPVITTTSGPVEPVKTTVTESTTAVTTIES
VKRECSYSFNIKFTDEDDEPIENINAKLVQHQIEWTDDEHY
VCVGDAKTVAEWNTSEVNPFISEVLTANFTEYNYTVVTDEL
PDGYVYYSDNKVEQGISGYLDGEVNITIKLKKGEITENTTPL
SGTYSLKINVMDIVRNIPVEGLDCELFNIQTGDVAAKWNTS
ETAEMYIENLEYSFDKPDSYNGNITYAIRITNLPENYRFFYG
KTREQYGVSGFSLEEFKNGTDISCTVYLEDTSDDAPKYTYV
TTPQAGTSLTETTTTTAEIGTSTTPIVTENNENNEDLDIIFKD
NDLNIDNGTEKAFEYEITGTNDISFLSDSTGITVSNTFENGK
GTLTVKAKGALEGKNFIKCFLGTGENSITKTITITVNKLTTFH
CPECGRDVPIEDKVSGALRAVCKDCYEKGQSVGSTVPLET
SETVTTTSTTVTST 

Rf 68 
[(1-27)SIGN][(28-751)UNK][(752-

815)DOC1] 

LSSDLFYNFEEDEHDIYIPDFPQEVLDAFDIDWTGLGFNRH
VEPTEFTIDGAHHKFTYDGGYAMYNYQNELRTMCVLVNW
YDCNSFSASQTKDYPTPEFFSYNHPKLSCRLNCDITKEGEL
TAGTLLTLNGGKDELFIIEKHTDSTAFPEKEKIGSYSSEYSE
YDLYKEASGDDSVSRYYAVNSASYGPFTEYCVDINDHLSA
LSGNGVKVDTLDKYTSLVCGKEGRGDIFFESYIKTDPTPLP
SEKLVTDEEGHPYTYHHNIVKNLDGTYYSFRTSDSSAPITE
LENGRYEITPHEDNSWFTPHGNGGFTTQVTDGMTSTVLAG
KEYDDGTSLTDHNFRLNYEYSISDPDIIPSAYVWLTDPSRR



 

K 
 

YIFSDRKIPDYDSLNQYLGTISLPEGDFDLYGTGDSNLEISP
DGERPTFEYLFTRHTDDTAKPEPDAVVKGSYPIYALIQAAV
KFGVDSGNVKRITFGTACYSKGYKLDVIKNEIAEDAVSVLD
QYDPANSYADVPLFDTVNLPPYSYSMSGNQDSCTMTARD
NGCFTGKAMGKKSSFIANYNNKVTYDPYHDVIMKYKADIK
MNGEHNLVYSLYIPDKKDYNVTRNVHIIEENNELPISERTYN
FSGMGNTLTDDDFELIKTYEANGHKYDLYYNYSKYYGCFN
TNITESYICVRKDQPKGTETEGTINLSEHLKQIDALAEKSIDL
NLIELTITGTDGTAELLMNEVENPVRSEPQ 

Rf 69 

[(1-24)SIGN][(25-675)UNK][(676-

695)LNK][(696-766)DOC1][(767-
782)UNK] 

ADTASAPAVTEEAAEKNADKEGAAVEAMKNMNTIFSLTDG
SDSDLEDYSKVGDERFTDIESVKKFIAETCTGSLKDEFIEKC
EKSLVEKEDGLYKRNSGRFFFTFLTDEGVEIVDPAMDAFTA
VTKKRDEMNDYGQAVFKADGSTWKISSYSFKSSPAETDKN
ADLKELAGNWIYEDAEGGYTVDICSKYNGRVTVNEDGTFT
FKNAEGIVSNGKLTTAAETYSDGSSIPYLLFSTGDTRTDFG
GYHNEGSDIITLGNGGMARLVRDKNFDQDLNDLAVQRIEN
YLLIEKITSGGLESDTEEFFKKDDILYYKVTNKEYTSIAAVKK
LINDNTTGDMNKTLLEYCDERFIEKDGVLYESYAGRGSVGT
DTAYGVIITDKTDKSFNATTIALNGIKGSGHTRAIFAADGDT
WKISGIDYDTYTYNKSIDDYEICAESRVASMIYCMRYLEKGA
DTDAKEKIKIDGVEYAKDADQMYTIDELKSLVANACTDQPR
KMLFANIEKRLVEKDGTVYRIADEGQVSPDFNLNDGMKILGI
TDKGFKAATVGFSQRDGYGIFEFVKDGDRFVLSSYSYSRF
NEERLFGGYVDTQSGGLNLREKPDIKSAIIDEIPQGTQLDIY
MCDTNGWYKTEFKGNTGYVSAEFIKKIPDSDIPD 

Rf 70 

[(1-24)SIGN][(25-348)UNK][(349-

369)X159][(372-392)X159][(395-
414)X159][(417-436)X159][(439-
459)X159][(461-481)X159][(484-
504)X159][(505-547)UNK][(548-
615)DOC1] 

AEAQPSDVSEIDSTASDNNNELKKELTLEDVDNLSQKGYEL
TVKDFDNYNYHDTGEDVLSGINREYIIDEEYSLVVIDKDSDV
ETVPESIVLFSNKGFAADIRSSEYQDFFATPIMYLITEMPDA
EYTAYINVILDNGSLYWCQIEKAYADTIVDPSEYTDDRAKSP
RGFAKKDLKLNDDMLGSIKAVGKEIAENSNQNELVECTKYT
ITSERERLFLVNDGKSYAVADFGEKCKMINNENVQKLIAELI
ATGYSETVSAVDEKNGISGNYSENITWTLDTDGKLTLSGEG
EIPDRDGITPWFDQMVNIKTIVVGEGITKIGKG 

Rf 71 

[(1-22)SIGN][(23-399)UNK][(400-

420)LNK][(421-489)DOC1][(490-
624)UNK] 

APVTISAETVETAVTQTTTSAETVETAVTQTTTSTEAEGLAP
VIHDIDTAREKFEKYIEETDIDANIAEEGKYPQYDGKIVIECE
PDTDAYARIFKFADENMILHELFETVIKFDTSKTVNYTVSFR
FVDEQTGENIENIHAKLYRYNNKLEPNEDEPGSYFITRDRD
VEPVLIAEWNSTETPVFTSETITSYLAQYGYLVITDKLPEGY
NFYGKDHAESGCSGAIGNGNHSMDIRISKGEPTPETVDIPL
EGTFSLDVRVVDQNRNIPLKGMKCEVFEKYSGEVVAEWNT
SDTEVMHIEGLEYKFEGNKILEDFGKKIYQFRITNLPENYIYY
GYQEDSLTLCGVYIDEFAEGNELSATAYLIDQSPDAPEIKYT
T 

Rf 72 
[(1-21)SIGN][(22-244)UNK][(245-

322)DOC1][(323-557)UNK] 

VGTFTHAEDAETVTENYKGMTLEEAVLEMTGGDYLWLAGK
RPVLRPIRGFTGKISTVTADNKTHNLEAAKAITSIRMKAGKE
LPYDDIKAAVEAEGLTMPVIQKNGKDYEIISSISEKAYNFTLD
QIKACPDVTAIDMKYKLYEDRANKLSIYSLLFENVAEEEISEK
YPELTKNDTDANFPTEGTKLYYTFDNDKLYEIISKLTENGTP
FTPCWSQTELGMK 

Rf 73 
[(1-21)SIGN][(22-244)UNK][(245-
322)DOC1][(323-557)UNK] 

LGMGDIPIPPKDADIDLVSYDPIDFTEEHLFRSMTMNGIDYW
VSYVPVKKDLIGEELGEFTATGHKTDSISETETVEEPVTVYE
MKGYAVDAMVAFRFKDSNNYYVFRNPKYLPKTVGELIEGM
QLDEQLIFNRVYIKKFKPYETADYDPEKAFIWDALFGDKDIEI
MELNDTNRYNNITHVPRPDNDFQLSIGCDMPITGKYNFGFT
VYSTGFVTTNLVDYGLCFKISPEKAQA 

Rf 74 
[(1-25)SIGN][(26-96)DOC1][(97-
490)UNK] 

KYENSGTVNLCGGIESAHPDGKKVDESFTDAQTEFSLELFK
HTIKEDKNVLISPYSVSMALGMTANGAAGQTKADMEKALG
GLEIGELNKYLKTWRTGQPNKDNLKIKTANSIWVRDNEALIK
PQPTFIQDTVNYYGADIFKAAFDQSTVNDINNWINEHTDGM
IPEILKELKPTDMMALINAVTFDAKWSTPYDDYQVKPHKFTA
YDGSVKETDMLYGMESSYIQDEDAVGMIKYYEGGRYAFAA
ILPDEDITVTDFVNNLTAERLHKMFTEQHYADVTTILPKFKY
ESSSDLNDPLKDMGMESAFLGTADFSKMVTPDSIPLYISSV
KHKTFIDLNESGTTAAAATIVLMAGNGIAPERERKEVILDRP
FVYAIVDTETDLPLFMGTVMDIE 

Rf 75 
[(1-28)SIGN][(29-42)UNK][(43-
113)DOC1][(114-569)UNK] 

RLKVVDMMSGEPLESVDVELFGLCDDYCYDVGRWTYTPE
DDTYFTGLPTDGRYTYMVNLDNLPRGYGNGWGNWDQQL
FFSYDGVTDKEVTVRVLADKSERNVNMDMYNWSIGLHQT
YYGTVCITDKDGEVYYPQLRNEEFALPDGEYHAEFNGFDY
PVTLIDPESDFGKHMKEVYPDVEFTDKSNGFDFTVKDGKA
DKDLSFDFGPLPGKSNYITVNCIDISTGKPLPGVELSVIECP
DTYAKTIAKWTSDETGTVKFDGLTMTGSNAYKLQLDKVPE
GYVGGFDEYYHWGYVYEYEGEANLYFSPVTEEKNVSADV
LSIYDKSVMNDLCTYDVYKEAGENFKLDHIYTNVKPGEKIAL
QDGDYFAVLDLRKLREKGYDGILLYTERGKAVAGDIKPDEY
MMDTAMLKFTVKDGKPDRDLYFYIKEYDEHDYDPEEIEHD
DEIKFINDFIEAKDEE 
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Rf 76 
[(1-37)SIGN][(38-647)UNK][(648-

753)DOC1] 

VMKNQDGVYLNEALSSAGDGSFTESRDQWLMTLDKYSVT
DFYIGTPFSDWAYAASPYGDKWQFNEGYGWIMDKYGGDE
VNGSMNCTGFLWHILSKSISDYTGVSMSVASEAVPILNHFN
EQGFSCSSWNGGGNRWYDFISENNVHYYEFNTKAEMLSS
GVLQKGDIIWCVDSNCGTLMKGLKTPSDDHHVGIYMGDGG
DDLWWQSGPIYGNGDKRDQQNSINPIYGCSVSNTYIVLPW
SGSDGASTPAKPPHEPYMYNSDGWYMGEAINMASLNTCA
ADLGKWQNFIDDYTSNDYYKGTPYIDWVFASSPKGDRWQ
MNEWSVSEMLKVGGTYEEGGLNCMGFVWHAIAKGLSVES
GLDISQTGQYVPFSSYFNGLGLSRKCWATPGGSGGWTVF
VDYYNLHYYEFPTKEEMLSSGVLQKGDIIWCVDGSVGLGM
AGLRTIADNHHIGIYTGNGTSDSWWQSGPVKADGDLVNVG
TDVCPIYGAAAKNTYVVLPWAKKAEPVVTTTTSTTTSTTTT
TTTTSTTTTTAATTTSTAASETTTVSETVTSNTTVTETETTQ
PVETTTEVPVQTDPNVVLRSDAGEKIFSSGVKAEDIAESAKI
VDDNGFVSEFK 

Rf 77 
[(1-26)SIGN][(27-367)UNK][(368-

427)DOC1][(428-699)UNK] 

ESDLISDPATILEIPEQDPAPLQVKLRTDSNIVRSDSDLKIYV
DIKGDIPDDAWLTYVPSDVPHTEKDSDEFNGNWVYLKDIKN
GEVTLKAPKAVGNYDIRVFDSDNPDDAKEITYLPIILEYSPDL
EVTIDVDSRTVKAKAPLDIKVDIKGYVPDDAWITFVPTDVPH
TEKDGDEHNGNWKALKDIENGIATINTPATVGAYDIRVYNG
EIPELASEIACKTIYLSKAPDLSVVVSTDNTQVKPSEEMEIKV
NITGTIPDDAWITFVPSDIPHTEKDGDEHNGSWARLKDIEG
GSVALKAPSETGNYDIRVYNGEDSIAEEIACLPVLVTENPAI
VKGST 

Rf 78 
[(1-26)SIGN][(27-367)UNK][(368-
427)DOC1][(428-699)UNK] 

DVTYVEPDERFEWGVPFYVVKDGLKLYSGPDESYDVIASIP
ADTRLTESGVKKNNNTWLFTEYNGQCGWIDTLDKDGKMVI
HFEEGTKKPVIYLYPEKETDVHVELELTESELNTTYPKYNN
GWDVTAYPDGTLLNKADSTHHKYLFWDAVNCRTRFDFSK
GFCVAGSDTEAFLKEKLTYMGLTEQEMNEFIVYWLPLMEH
NAYNLISFQDEAYTNSAKLTITPTPDSECRIFMAYVPLENAV
DIEPQQLSAFERKGFSVVEWGGAEVRSRQ 

Rf 79 

[(1-25)SIGN][(26-100)UNK][(101-
121)X159][(124-143)X159][(146-
166)X159][(167-343)UNK][(344-
389)LNK][(390-616)UNK][(617-

686)DOC1][(687-701)UNK] 

PLITWTATPEYIFVEVASYPTKTAYSDGEKLDFSGLNITVYS
RTWHESYDFGEMVYGSDFDMGYEPSKDIVTVTSSDGRKY
EGSEFPKLPGGNYKIKIQGNDYDTHPSIHEVNIEYDVTKQG
ADPRFLGEWELYKLIDANGSEKYNDGSMYIKLTFNDDKTGT
AVGYMGSGREEEAFTWYADGNGVTVKDNSGGSFRLAYN
NGEIEAYVNGGTMTAYLKKSQASNDE 

Rf 80 
[(1-30)SIGN][(31-586)UNK][(587-

654)DOC1] 

AVVADSRSDEAETNGDQAKNGRYLTGTVTYSAPDKVIYKV
GEELDVTGGICEGSTSVMAYNGLSSYIEDGGDIIDPDRPYTI
DELDLSGFDNTKPGVYRIVPKVRCPEGVDENKIDYYGFSV
MVVDGNTSEDNYVTAVGEKSFEFSYSYGLAVKTGDKLDSL
GFKCMEKWHYEWHHDGEVEYLFGADNERYNSEGFIDTST
VDTNKPGVYKVTASKISQPNLDRDEIKYSSGYIMVTENKPT
DADEDEIWAINKNGGPITTTDVSDDPVTTTTVTTVSTGSTTS
IIYTADQAFECLSVNTYPTQTEFMEGEEINTNGLNLRIRRYIP
YEELGYDRSEMTIEPEFNSFKTFSPVNIDIVDKDNNVYNGT
QFSQLPPGKYVAVILGDYRVWHDVQLIKNVDIAYEVEIKAD
DRGLLPEKTELSDKPLWPDMSKYYQTFKGVAAYPDKKVYT
KGEELDLAGLIIKAQRRYGEKPSSREIDKYAENPVYLKTVLP
ETDIMKITDESGRIYNSNEFSMLPVGKYTVSNRKSSAEWG
GYDSIVSDISLSYDIEIRNKNDIGE 

Rf 81 

[(1-25)SIGN][(26-757)UNK][(758-

780)LNK][(781-
850)DOC1_dist][(851-
883)LNK][(884-999)UNK] 

IAPELALTVNAADAAETFYTSLPIVSHKNVGIYKDDKSATFK
MSGRIYNNGIVFREHTNTTSEITFDVSSAKSLSFTLGHIENA
NKYDSGIKVYVDDKLTDTIELKWTMNAYKYDMDVSKAKQV
SFIMENGYAANYALGDITTDTDKPAIPSTRTIYKDMSSVIGG
AYDGDKIKLYPGTDETKSFNMNGRTYHEGITFSHGYKGDV
ATIGFNVENCSKLNFTLGNIDGTESADGVFNFYIDGKLVDTK
KVSYGEPLKDCSIAIPKGSSYLRMEFAGEGNCAYGAGDIQL
DDLAVSKKAAVPEFKDSKSLLESAYDLNKATIYYGDEKGKS
FNVNGRSYYQGINFDTSSSNPTGAVSFNVENHDKISFSVG
RQDSQNAQGGSLGVFIDNKEIEKIPLSPDMLTTDYEFDVKD
AKNIRFVCSAYASHYAMMDVKVDDLSAGLDSTVAETKDTA
SLIKSAFNYEKDAFTIYSGESDKEAFNMNGRTYHDGFIVVG
DYNPIVHNISLNVEDFEKITWDTGSLDSWENDHEGYVNVYL
DNELKEKIDLTLNIPITETSLDVSKGKVLRFEFHLNSAYLKYG
IANIRADKLAPVNAPSIPEYKDENEFIKSGFKAVNVTKYTGG
SDEANSFTVGGKKYYSGFVFPRTGSVAPCTVSFNTENVDG
MKFSIGVANRVYDSDSVTLNIFKDNVLYKTFSIKGNSEPFPF
GLDTKDCKVVRFSVNSSPAVNPAIYDMELGEF 

Rf 82 
[(1-28)SIGN][(29-254)UNK][(255-

326)DOC1][(327-683)UNK] 

ANSLNSNDIAEVKITSSDLKECNLVTESKNDGCWINFDLVS
GAFAMSGNNHQSFSIIGSFERKDNDLYLYPENGSAEFYILH
REEDHFVSQSDEIGVQLKAGLVFYADNDAFWEILLDWTLS
GNEPSNTGETAEQNTSFIMGDVNDDDTFEDAECAMTVTVS
EINGETLLVKSSDGKGELLTLSTKYLDSSIQPKVGMKLEVVY
TGGILLTYPCQFGNVKKVSVVS 

Rf 83 [(1-28)SIGN][(29-254)UNK][(255- APPEPSTYGFYSYDKYAKYVAENNLQDKIVTYEQISQFGDF



 

M 
 

326)DOC1][(327-683)UNK] VQCFINCDWEYNHYFSLVYVLDDGSGKTFDLVIKALNCDKT
LVNTDFDRNAQDNHELVSLTQEEMNLTNLRTVETNAEYAY
FEFDDKQYNYYNGRLSQIVWYDNEHEYMLIGNPQLSDYPD
VDNTYLAKLLKVSAVNPCTPPTQPINYQNFDSLVKALNSND
LTSYPEEDRETYHQMFERFQNDGFIYQVTDNDLIKTNQER
GITLFPSASYEDVGIGCYVTFKGNNYHIMFYSANADVLAET
DGIAAYLKKRMGRSSDKEITVSDKTVSLLFHENGQCYANAF
VDENHYFDVIGAVSEEEMTEFLNAFAYEKIVF 

Rf 84 
[(1-212)JUNK][(213-232)SIGN][(233-
957)UNK][(958-1024)DOC1] 

VTNDSNANDIKVKESSPFIYSYYYNEGEMFEALPKLHENES
VLDVNKDGIFDIEDVYIMYSSWAYENFKTPEKYDFSGLRKT
EIDDEGNEVNVPLYDLIDVYRYFATYRTVKPEHISKEPFRQF
CMENLDLSSYRDEEEAVDAICKDFLDSFTTSISFTYQFYDM
FRDKIANNEIDIDLNSDGVIDFGDYCCYNDFQIPYTDPFRLN
KYLDSPDKISSNNPDADPETIEKCVQLIKALKFEDRYPMLSD
TGIYILQYYMEEHPYNPEWSDDLYYQYLDYYVDHPYSLDYI
LQPVQYNLGYGFHNMRYCYPDTSAENIAAEYETFKKSADS
GKRKVPDLNSDGLVDVGDFRLAFLFFDDYRYMPGIPFPEE
YRQSFLTDFDLNDNGMNGDINDLAVYQMYISDLIGGGEDE
FRDELIKYYREHPGFDAKHAAYYLEDSVPDEYQGNIYDTYN
KYLSDIKSGKKEKPDINMDGKVDMEDFIEGWLTMLSYRNN
YGGWRMSLVSEETQNRFLESFDPDGDGNPATWDDENLL
QLYVGDILGYDIMHVLDSEVLIDDAEYYISRYDDILPEDERTI
YWTLDPETTKNMTRLQKEAILNGDIDENDKIKRNLSEIISSLS
DEKKDALDINRNGQIDNEDFHLAHALKNLYFRDIPEDEALT
GEIKEFFFSRFDFNDNGLYGDFADYLIADKYYESNMVNILP
DEPAPLPDGHSSRQDIIDRANKLRESLA 

Rf 85 
[(1-27)SIGN][(28-542)UNK][(543-

615)DOC1] 

SQHEGGIPRSPEITEEYLQDKIPVQIYVWECCAEKEEDGTL
FVGRSPYFKFRADVSITITSPDGEDVIDTIELGEFYTGTEQS
LLFGIPTSIRDKYNDSSRYRIFVNIDPVDLPEDKVMVETITMT
ATDSVSFEYDNQNELKGDIDITIAEKISVKQKGVIHLKAPEKR
EYHIGEEFDITGGKISGFGEIFNENEQTSEDWRIEERELTID
DLDISNFDNTKAGEYLITAKPVDLNTTDCSVFSDMIVYDSFY
VTVVDDSAPETTEPSHEELKKGEQFRLTFNKFVSNDYDEE
LQNNVLRTEELKGMEFDLEFDVFRYSDDGSERVDHMDMG
HFTMGDASSITITIPDEILKKYSDTDIYQCDFTLTPTNLPDDK
VLSDFSCLNSSGYSYYAFSPSFGETVFDILVRDKKTCISEG
SISLEAPEKVIYRIGEELDLTGSKISGCGGCTLNGDTVLKWD
NFAHQPSIDELDVSGFDNTKAGEYTIRPLKMNTTIPCDETV
DKISYGSFTVTVVDDE 

Rf 86 
[(1-25)SIGN][(26-36)UNK][(37-
120)DOC1][(121-478)UNK] 

SNFKANVWDIYINTEENVKFTVDVTSDEKLAERAVALYDDS
DNLVAYMNDDGKNGDEKANDGVYSVEKLLSADAPVNIDYY
AAADNVKSDDYRIVFYRDLTKEDFEGFDAVSDDLVGLSFDE
VCDYLEHSDKIESYSIDNDAGTIKYRTVYCISGLWEKPSSDS
TKTWGGNGLTVPFNNEEKFDQAYKNAESAFTNGQLMPRD
LNGKGVLLLQPAASTMGDEFGKEAANCLAKVLDCNVTTFQ
DDKVDVELMTNLDGYDIVLVESHGIVHFGTEYIETGEKYNY
FIDGIIMLESFSSAPFSGEIIVPSKEDKNSTEYRISINAKKFFD
LVYGFQDEPFKDSLWFFSSCHGMEKGKMAQ 

Rf 87 
[(1-30)SIGN][(39-109)DOC1][(110-
549)UNK] 

NINVADMMTGELLEGADINLSGVIGQSSFPLGSFHFDPEDTI
SIHGLPTSDKYKYVLEIKGLPDNYGNRFGGWDRSMKIGFD
QDSDTKDLTVRLLSDDAELNIDAGCFDWTKGDSESSHGMF
TVTSKDGEIFYQNIRANDFALPDGEYHIDMRPETQAPLNLL
DPDSDFAKYIAEIYPDVSFTDKSDGIDITVKDGKPDKDVFFD
FGPINNFANKLEINCFDADTYELVEGAEMTIIEAPDTYAKKIA
DVVSNADDTIIIDSLYRAGENAYKVILNNIPEGYIGPDEVTINT
GYLTNALSEVTIPLIPQQKAEDVTVKVHNISDNKEVDGIGIKI
YDMDNKLFADVKSGEPFVLTDGIYTAEINAEDADSKHFKAL
SLIRNVNTADPKYTWWTENHGLIMFKVSGGIPDTSIDLYIAD
ADTSDEELESFVKELYPEANKD 

Rf 88 
[(1-25)SIGN][(26-497)X160][(498-

574)DOC1] 

TDIIDIKEIANSLGADTDYLNIPNFVYGEDNLRPYPMEVYEEF
ISKCSNYEASIYNFEEYKYNLSTGSCLGLSLIEILSHNGIISPS
DIKPGAKSLSEISYSSDLDRFILGYSATQLFYLNEYYLCSDIP
NFDQRTQINELIRVAERNMAQNKYFLISYYGTTAHAIVGIGIA
DGYWKYNEKDFDKCILTLDSNCVKDNNHASPFNENSCIYIN
SESMDYYIPKYNYGSSSDNYKTVIVASDDDDILNYRGVINPT
KQLKCDFSGTSDFVIPKNKFKNYVFTIKDKNGNIIDVSKNGK
KFDCPTQDVFFVNSRDFHIEIDNKSIIGEAQNDSFEMSNIRY
KFNGGTQKGHGIFDVNDLGCSVTAKNEKDMIYYVNIRYNE
GSYPYTPHFNWKFNGLTNKNFKATITANGMHLSSDSIIETVI
STADVKLNEDGTIADVNDNTNEVRITAVNDVLVSFGDNKKL
CFFIDPDGD 

Rf 89 
[(1-23)SIGN][(24-311)X128][(312-
340)LNK][(341-405)DOC1][(406-
819)UNK] 

SPAIEDGPQKQAEFITANLAKHGASLPTQGDAKLVVFYVDF
PDCRYDYEPTTEQLNRITFGEADEKNVCYPFESISAFYGRA
SKGSMNFSGQVFRYTTKEKQSAYDTDKVKIAEECYEAFKD
KVDFSQFDGNGDGRIDATLFTTPAKAGDTNWWPCSGAFG
DPKYRVDGVGVGHIITGNAQVESTENYVNYISTYCHELGHC
TGLPDYYLFTTNDSEGMHGTAGAELMDTDAGSDFGAFSKL



 

N 
 

VEGWYTKDQVQLWYPDQGTKTFTLSNAQTNAGNCLIIPNG
KLADDYFSEYFIVEYATKDGNNSGIGKNTAWWVKSGEGVR
IYHIDATTEYGWNNYFRYASGSEFTNKDKGRRLIRIIDDREI
DNLYHTGDIINGNISGFHWYDANGGQTVDTGFSIEIGENKN
GTYSVTVKK 

Rf 90 
[(1-20)SIGN][(21-33)UNK][(34-
118)DOC1][(119-894)UNK] 

GRFKANVWDIYINEKETVTFTIDVTSDEKLAEKALALYDDSD
TLVTYMNDDGKNGDVKADDGVYSAELTLSSAETKYTDYYA
AVGDNKSNTRRVSFYRLLTEDDFKGFAELNEAMKDLSFEE
VCEYVSNSDKIKTYEIYEKEQSVCFQTIYGFHSCWQPPIDE
NAEYPTCGTGQYAIPDSTIQGMIGQDFMYRDVPFQTSFTD
MASRLIDEYEFTPANHKHHNVAVLKQTKDPRFGDYCENLG
DCIVQATNQNSPMFSSKEEIREKQLKIIDPAECNTLEELKHL
DGYGTVIMDAHGAFYNKMPYITTGIKIPDSAVLAYMNEVLIY
LANNKYEMSEFSKDIFSGNISSNIIFSEYMVGPGFFDKYYED
NSLEDSLWLLGDCHSMQSDDLANVIRSKGATAVIGFSNSV
SFLYRDEMFFEILINSMLFSADSLKGGIAEAEELFGKYDPVN
DTEDSECYLRMIGDDYHYVTDVKARTTEGENVPDDDEPDD
TPGGDTPVTPPTERFPDEIISTPGPIGISFSPLDAGTSSDDT
TLKILEKLYNGLDDGNKATYTSYSGCTMFPFTPKYTKDGEE
YGNYSSLGEILNSAKSIDDSYSLYISGLKPKTDIRHLYCKRD
DFDTVTGKLIYPYGTTPAKKIYEHATTENETFNMYCAMNGG
SYDLFQGKNQTKITIVKDDYYFYKWSTKGPVETYSTRMWY
ENYGYNHKKNYFTSIHYIIDLRPTIDQRLNELCFESCGKYIQ
YSEENLDKLITLINERRAYIDEYFEEDYHPDIEDFAG 

Rf 91 
[(1-22)SIGN][(23-873)UNK][(874-

933)DOC1][(934-984)UNK] 

FAEDTTNAVTAESRVTDGLAVYERELEHMKSVRSISKADTI
NRWNAYIKEFNDRYLKELDADKQLKEYFIKRWKELSEKEKA
EKAAEAAANDPTLTTTAQTTAPVATTTVVSTEYDDYETRDP
DSISTEFVRQETIDAILKVMPPEKVDEMINNGFNLYYINGSVI
VISDMPFQAGDLDESAQFQIGLFYTDPLKVDWNYDKIDNFT
VTGKLQNVVLIEDERNRELAQIEYEMTEMGYWNVKEEEVAI
PYDPQKGPTEIYKLPPDPSLEDTKKWLDSLPHLFYDLTSGS
DTYHVYDVGDEPIYAIISERGVGFSGEDDTLFLDYDTAPDD
LEFIRMGKDLFINDPEHEIYLICSKYFSEPSKRIEHITFKDGT
DMSYADVCYITNSLVGTENDDTITGYPETNYIWGLGGNDYI
CGNKTDDYLFGGDGDDTLTLPDGCFGLLSHNSGNNYAYG
MDGNDTIRLGCGNDFIWGGKGDDIIKSGSGEDIIYYELGDG
NDYIDDTTGKGSYPSSGKDVLWLGEGILPDQVQVSFSDKY
YEYNLHIMKTGDTITIPGNMYSGITPVFPIEEIHFADGTTWG
RLDLLERTRYLYGTDGDDTLTAVVDVDAEFKKEYVPDAILK
GFGGNDVLTGAKGNDKIYGGKGDDVMRGGNGDDTFYYEL
GDGNDLIDMGTGKSSYPQGGYNVVVLGEGINPDEVTIERS
ADEYSYTLWFDKTGESLGMTGNVVSGLTNLFQIKEIQFADG
TVWDHDYLDSHYVTWIKGTDGDDSLMDSTADDIVYCGKG
NDYIRGRGGDDLYIYELGDGCDTIIDSTVWGNGYNTLKFGE
GIVMENIYTETSVYEGTKVDRFYIGSKNSYVEVS 

Rf 92 
[(1-29)SIGN][(30-244)UNK][(245-

316)DOC1] 

VHINAENTAKTLTKDELINDMSFLYDEEDSVYYLGVGLRNIY
FKVPTECNGRKIGKLDLGHVYFAEKYIPSDTDRVIIIVPDGVE
VVNKHWNCNDTGIPFIELVYASGEVEDIKADDYEKVAEYLR
SYYRSYHNEITDEELARKLIGYSINERNNIPYPITDKPAYEVK
NETEYIVYTGEDGLTYLKVFIGTNGEKLIIPEEYNGVKIDRLN
LKD 

Rf 93 
[(1-30)SIGN][(36-100)DOC1][(101-
122)LNK][(123-583)UNK] 

CCAATYVSPVTFDIEAYKQTHRATASAKPYRPSAQTYGPFL
TDEDFITPPIKDMEGSLPTQGEAKIVMIYVDFPNCHYQWAP
LSDTMYNITFGEEDPTNPNYPNESIRAFYQRSSKHSLDISG
QVYRYTTEHDKEYYENDTHKRLFVNEVLDAMDDIIDYSQFD
GNKDNVIDTVLISVPASAGDAEWWPCASNYYYDFDHLLDG
TYLSYVIIGNDEIKSASDYEDFTTSYIHELGHCMGLPDYYLY
DNRDSEGLHGSAGFDTMDELFSDFSCASKLMLGWYTGEQ
IQVYDGSDEQTFTLTNGQSDTGNCLIIPCGELDDNYRSEFLI
VEYTTLGGNNSKLREHYWWRNTGSGVRVLHVEATDEYTP
SGSNFLYRSGNDSATNFDLGKRFIRIVNDSNYDNLFRTGNT
IDHSSYGFGFYDDFGLEKIDPGVEISVGDLTDDTYTVTISKK
GLINGTNDIQYN 

Rf 94 

[(1-20)SIGN][(21-49)UNK][(50-
140)X142][(141-149)UNK][(150-
240)X142][(241-313)UNK][(314-
400)X142][(405-500)X142][(501-
881)UNK][(882-956)DOC1] 

DYDELVGYTKNEMMKNNYSSDIIEKVYPMYMRSHLTEHPD
HKNTCYPLENIDSQYSSGVKYDIEVNKEYADNYDITITGEQL
DEDPSRGIFEDKNIRDLNINISADEMFQDLFNPFCRVNNITIN
SENSGKVIVHQIGASIVKEFKELTIGENVELGEGAFAWCEEL
ADLNVDITKDICGQAFSDCPNLMKINNESPFNDDGSPKPGY
KEFIEKNFYDADDIGFLNKYTAFLVKQTVNETITDDMPDIVKL
KAIHDKVCSMVYYDLDNMPAQKNHVDQSVFLSDSTVCEGY
ARAMNLMLHEAGIESCYVEYNSEYDDGHAWVIAKIGDHYF
HVDTTWDDGDTVSYDWFMRSDSQIVDKDYHTKWEMRCP
SSLHSFQWNELP 

Rf 95 
[(1-179)JUNK][(180-198)SIGN][(199-
695)UNK][(696-763)DOC1] 

VLPSNAETNPCAFLDFLRNDSAFYLTINKSAVNNVADKEAD
LDLNEDGSFDMWDLYAFYRGMNDHNNHGEVIVHDDRTET
FIPPVFTAPENITENVVKYGDLNGDKEIDRDDFEILAYYYSIN
YNSTLTYDSVDPNNYYFNCPDDYDDTQYSYHFTTPDDKW



 

O 
 

TFTRFYDLDIYRNPDPIIQFVFDFVDCNSDAYGGYSIFCDMI
DKGLIDLDVNGDGQFTIDELYDHIEAAHLCYWESLPEYGVD
DSEEYETARNTYFTEEEWEKLRSNCNYARFSLNYAFEYDR
YFVNYFFNHNEFKRAYGEDHYFDNMRGGFFSISAHNHMF
DYMKYAMPGVYSARFDFTQEETKNDFISYFTRVKNGELPE
PDINMNGTIEFEDYIYADLMLMKDSFKNDPKYPEFDQAIIDN
FNKNCDFNGNEISGDLSDVISIQLYVVKELGIPEDGIKDEMA
RYFKKHPEIDLFDYAHYVLPEEEELPEFVDKDMAKTGLTSIR
VYMSNID 

Rf 96 

[(1-29)SIGN][(30-110)DOC1][(111-
549)UNK][(550-

880)pfam08757][(881-952)UNK] 

YLNGTEPGTTGRQTTTAMPETTSETTTVTTAAPQPEITVEA
NIKLGGGSVTSDSEYAKAQGSTLTITHSGTYNISGKLDNGQI
CVDIPDENADPGTVKLIFSGVDISGKNAPAILVKNADKTSITV
ADGTENTITDGDTAYSGDFLDNAVIEAKDDLTIKGGDAGTG
KLTITANTQPAVVCNNDLKFTGGDITIQTLNAADKTDAVKGK
TSVTVKGGRLTVDAEGDGIKSSKGSLAIEGGEVTVKSGKDA
VQAETDLTVSGGKVIACGDRGLTCPGTIGISGCELFATATD
NQCETLAATDAPALILNFTKEWAKNNPVAIVDGSGQTVFDV
NNLKKFRYAIVASDSLNTDTQYKVFAGGIRVNHAGGDTFKA
GFGAGNMTYNDVNNTDDAEVLYGKLFDQSMVHSVDVKMS
ESDWQTFLAHADEEAYYPCDVVIDGEE 

Rf 97 

[(1-22)SIGN][(23-40)UNK][(41-
318)GH43_C][(319-341)UNK][(342-
550)X19][(560-724)CBM22][(728-

795)DOC1][(796-813)UNK][(814-
1075)CE1] 

DFSYSSNDLKLEWQWNHNPDNKSWSVTERDGWLRLHNN
TKATNLLNARNTLTMRTEGPACTSYIKLDTKGMKVGDYAGL
SAFQFNYGNIGVYVNDSGQKKIYMARNGGSDIATSSNKIIA
ETNMSGDEVYLKIDFKFNDVKSDMSSSNNIDKATFYYSTNG
SDWKQLGEQLGMTYDLKLFTGYRSGIYSYATKNTGGYADI
DFFEYSKA 

Rf 98 

[(1-38)SIGN][(39-318)UNK][(319-

725)PL1_2][(726-773)X149][(788-
931)X157][(932-995)DOC1] 

ADTDSRIRVDINKNDGRKASYSKNANNWILEEGTAPTYKVG
NVTFKLSNGGSAGGNVTGANNKKLQLQSGIYPQLTMDGAK
IKDGDNGGVLKLEISGLSESEHSLQMWHCNTDGYTNSKLSI
YVNGKKVLTGVNCPTNVTNENDAGISYVTWTGSSVTILISP
EGGGKMDVAWLNGFELDGSDPFNGVSKMTPADKEDHLD
RSQGLSWTAGKNALSHDVYIGTSYDAVFNANHNSAEFKGN
QTATKYTIDDSYSSIPTYYWRVDEVSANGTVKGAVYSFM 

Rf 99 

[(1-28)SIGN][(29-99)UNK][(100-
120)X159][(121-195)UNK][(196-
216)X159][(219-239)X159][(242-
262)X159][(265-285)X159][(286-
501)UNK][(502-583)DOC1] 

EFTYSADYIAYKDETLPDLEADHREFVKDGLVFNIYDDFAYL
VSCEDTDITDAVIPEEADGVPVVGLTDTPFGYCRSLKSVTL
PDTMKYIDWLDLAASSGKVSTDKTDGEILPTLEKVTVSENN
PYFTSENGIIYSKDMKELIGCPPAMEMKELKISEKAEAIKDF
AFAACYKLEKAVIPENIKHIHNSAFVACKNLKSVEIPSGVTTI
SGDAFFGCSSLSEVKINSKLEKIGFGAFSGCTALKEFNIPET
VSVIGH 

Rf 100 
[(1-20)SIGN][(21-751)X141][(752-

888)CBM6][(889-952)DOC1] 

AVPCDLSAVVSAEGDGTAFYVSPDGSDTNDGSLAHPFATL
TAARDAVRKINGNMSSDITVYLRGGDYRITEPIVFDTRDSAT
NGCHINYTAYEDEIPVINGAQQVTGWTKFNDKLYSATLDRD
YKLRNLYVNDKRANMGSVTVGSKGGWGEYKVTAGQADW
AWDSGTAKDGISYNAGDIPRIPSNFDDLEIINGTTWNENIVC
TRDIKVDGNSLIMLLQQPYGAIAQTPGWGAGFNTGGTHTIY
NSLSFVDSPGEFYFDKTDKKLYYYPRNGEDMSSADVEAPV
AEQLIVVEGKDTSDRVENISFSGITFANTEYQLTNVAGSHG
KTTCQAAQTYTAYADSNWHKRKYEMADTLPAAVHITNSKD
ISVTGCVIKHTGADGLSMCNDVIDSEIKGNYITDITSSGITIGH
PQHIYIGDASWDNHEKFPKGVEGICKNDIVSDNMLYDISVV
HGFGGCAAITSYYVDTVKILNNTIRKTAYNGIHLGWGWCNF
KDSTTCRNNMICYNRVIDSLNRLHDSGGIYTIGQMEGTVIN
ENYIQGIPAAGSFQPTYGLHNDEGTAYIEENDNVLEISHNVT
YTINCEDYGQKHHLKIKRTYATVKKMGKNPPDSDIDDPIVV
SDNVWDLPQYKVCVNSGVSDEYRSLVPNYVISEADFVFPA
SCRTTCSSSLPIRKGDGIVWIAPDGTDTFKAGADMTRASAN
ATSIRTPSKEGEYRIYVTDKSGKILSKSGHILRLS 

Rf 101 

[(1-28)SIGN][(29-239)X148][(240-

279)LNK][(280-424)COH1_b][(425-
453)LNK][(454-598)COH1_b][(599-
631)LNK][(632-718)DOC1] 

DASKGFAIKAYAEAGSKYDAMGSKVTVSKDDIAAGDVVVP
VAVYLDEATNDSEAVSVSVKLVSDSADVKNVTFKRVIPTDD
YFTTAKEYTAGDKTFSSTRAVIFAGEVSRRGSFTPAGSWEI
AADTSQKEAGADNAYIGCSWTNNGSAYEFTGSKSTDHPFF
VFDVTLPKGTAAGDYKLEFCRYNTDTSGQHNNPTPMIETK
AGRFNEDLK 

Rf 102 

[(1-25)SIGN][(26-63)UNK][(64-
82)X159][(85-105)X159][(108-
128)X159][(131-150)X159][(153-
173)X159][(176-196)X159][(199-
218)X159][(221-241)X159][(242-
280)UNK][(281-301)X159][(302-
326)UNK][(327-347)X159][(350-
370)X159][(371-393)UNK][(394-

479)DOC1] 

ENVNSGKCGDNASWKYDGNGKLTISGSGKMYDAIDSWNS
FSNNITEIEVKSGITYIGVHEFDRLENLKIVSLPNTINQIGDCA
FSMCINLEEIKLPDSITSIGSYTFEGCNLKEIVLPQKLSSISDG
LFSSCFDLSNIIIPDTITEIGHDAFGGCTSLKTIQLPSNLTSIG
EFAFDSSGLTQIVLPESLQDIENCAFVECNNIKSITIPKNVRII
GDIEGGKIFSQNTKIDVSHDNSYFVSENGILFDKNRTTLIHY
PIDNSVKEYIIPDSVKKIYPCAFLGATNLEKVQIPNKISVINDS
TFANCTNLVELDFPESVTEIKTAVFYGCSNLNSIIIRNPQCVI
SDPYWESTFKDFQGTIYGYPNSIV 

Rf 103 [(26-493)X160][(494-574)DOC1] 
KETDLSSIASSLGADTDYLDIPNYKHSSELPFPKSVYKDFFS
KCTNYEASSQSEEVFCLELASGTCYGISAIEVLSHNGIISPS
DIMLNAQTLSEIQLSQEADHFISGYHASQLHYENDYYNRYL



 

P 
 

VTQLNHQSQCNELIRIAEKNMADGKYFIITYYGDTAHAVCGI
GITDGNWNYNGVDFDRCILTLDSNAFDDDTNKGPFSERSCI
YVNSQTCDYYIPKYNFGSIPTAQQVQILANDNINIINYKGVFE
PTKELDFDFTDTARIFFTQSRFKKYDAIVKDKNGMYTDVIKE
GRKYEFGNDVGYYIIGNEFHIETDNKLLLGESQNDKFNIMN
QRYYFEGETENNHGIFDISDTEFSVATKNDKALVYDMKIKY
NEGYYSCSPHFNWTFNGETDHNFKSILVDKGMILQSDGTIK
TSISTSDVLLDGQDNITDININPNETTITAVNDVFVTFNENNK
LCFFIDPDD 

Rf 104 

[(1-27)SIGN][(90-
331)pfam00112][(332-

988)UNK][(989-1001)LNK][(1002-
1075)DOC1] 

SAYDMREHGAVTSVKNQSGHGTCWAHSSAAAAETDIVRR
MPDVDLSELHTAYYSYGGLGQIEPPSDDIDEILDYGGNSSIV
VNLWSQWIGPEFESVMPYDSLDSLKDPFDVVVGNGSGVF
HLENAVLLDYDTDRTNMDQVNAVIKQSVMDGKGVDVTFCS
DSEKYFNGVYGTTNCNKKPRFANHAVMIAGWDDNYPAEN
FNVRPEGNGAWLAKNSWGSAYGNDGYIWISYYDKSLSEF
TTYE 

Rf 105 

[(1-29)SIGN][(30-165)X140][(166-
177)UNK][(178-244)X135][(245-
399)UNK][(400-
750)pfam08757][(751-

849)UNK][(850-911)DOC1] 

KVVDQNVGIRIKGAYSRNSVQKSFNILARMDYGKAELEYDF
FNGTATKAKNGKKIKAFDSVTIRNGGNDVGAAYFRDTINQS
LVTDRAFTHQAMSECVLFIDGEFWGVYQLTEKVSDDFISSH
YGIKKSDAVIVKNDELEEGTEADFNEWNSLVSQFASADMT
NASNYSQFCEKFDLRSFVDYFAAQIYWSNSDWPQNNLAA
WKTNALDETNPYADGKWRMALFDTESGQGLYNSANNNVN
SNPFSRISMNNDNMSRLFNNLLKNDDFRKEFELTMMDLAN
YNFAPEKVTPVIEHYKNTYKQQILDTYERFFSNNLSGQRGE
EKLNNEYNTITNFYKGREQYITQNMKQAL 

Rf 106 
[(1-30)SIGN][(31-251)UNK][(252-

309)UNK][(308-496)DOC1] 

DNDNGFVSSEGAETAFDSVRNESNVTTTLQTQITTTSTTGV
STTTVTTTANPRGYDFDGTIFRKDYEWQYYLNDELDLSKLT
LAVAVIDPKGDYSTEIVESTFSYESGKYSDLYTLDTSEVDM
STPGKYKIYIRSKKDAIGDFETFPSRFLSAGHYKVRMDGHE
SYFTITVRDIERPVEVEDTDFRFVNHQGSNDCVSITKGMSA
AVALYGYKLKEIMENY 

Rf 107 

[(1-25)SIGN][(26-48)UNK][(49-
149)X142][(150-200)UNK][(201-
310)X142][(311-759)UNK][(760-

831)DOC1] 

DLSFIEDAANNYYCVAVGMHGVECTVPSEYNGKKVGQIDL
NHVYIADYDFPSDIKSDTVTIHIPDGMKVGGDFWLAEQTGV
PCIRLVYESGKTEVYKSADYDDLLADVKTQTGSHMELTEEE
YRDMMLQIVPFSPGRENVEYPILEIDPRYNCGLSTYKDEKG
YTYLKVETLAMTGEIHLPAEFNGEKIDRLKLGDIHASEDGTM
GWGNWGLTVYLPDSIWVSDLHWVDTDTGFSDIILVDEAGN
EELFEAELQNAPYIDVN 

Rf 108 

[(1-47)JUNK][(48-74)SIGN][(75-
150)UNK][(151-171)X159][(174-
194)X159][(195-217)UNK][(241-
261)X159][(264-284)X159][(287-
307)X159][(308-333)UNK][(334-

352)LNK][(353-373)X159][(376-
396)X159][(399-419)X159][(445-
465)X159][(468-488)X159][(491-
511)X159][(514-534)X159][(569-
646)DOC1][(649-710)LNK][(711-
764)UNK] 

GIDITDGRITDSAETDNNETSGMCGNQLRWNFDSEGTLTIS
GEGEMYPFGTDLAPWANLEVKKVVLESGVTYIATNAFYDC
YMVTSIDIPDTVTEIDMYAFRGCTSLSEINFPEHLDYICWNA
FEDTPWYKNNADDMIIVDNILMRYKGTATDVIIPDTVDEIAD
YAFKDCTSLSSISIPDSVVEIGRSAFQKCTSLKSISVPEKIVSI
GDYAFEDCSSLSEISIPDGILKIGIDAFSGTPWYTKCDDMIIIG
GIFYQY 

Rf 109 

[(1-27)SIGN][(28-75)UNK][(76-
96)X159][(97-133)UNK][(134-
154)X159][(157-177)X159][(179-
201)X159][(204-224)X159][(227-
247)X159][(248-384)UNK][(385-

445)DOC1] 

ETIIVDNGLEYTAVSDSVLMLTGVRDKTATSVTIPASVDGKN
VIVENGIFSDCPNLKSISTDENSSDIKSIDGVLFDEGGSRLLA
FPRGLKGEYTIPEGTVGIAENAFENSAGLTMINIPDSLTTIGS
YAFKNCTTLTGFSKPIPLTLTGEALYGCTALKSIELARSSELK
YIGAFKFENCPNLETLIIPNNYILTSSFNINNCPKLKNVVLPD
RSNDLLLTVTNCAQLDSLILPTSGDNGKGFYSHATISKCPSI
TELNISNAQKVSVKDMDSLEVIKLTISPYGSIDEINNNIDYAT
CPKLKDIYIYNADIQPNAKEIELMAANDITLHCRKTEKWSSY
LDSHKVKYVFIDDEII 

Rf 110 

[(1-21)SIGN][(22-95)UNK][(96-
116)X159][(117-222)UNK][(223-
243)X159][(246-266)X159][(269-
289)X159][(292-312)X159][(313-
384)UNK][(385-405)X159][(408-
428)X159][(431-451)X159][(452-
476)UNK][(477-497)X159][(500-
520)X159][(523-543)X159][(546-
566)X159][(569-589)X159][(592-
612)X159][(613-658)UNK][(659-
679)X159][(682-701)X159][(704-
724)X159][(727-747)X159][(750-
770)X159][(771-826)UNK][(827-

918)DOC1] 

SMPVNGNNGYVTACADGETAPVSGELKTEYGIICYTIENGE
VKIDNYYFDKSDIPEVSLPTEIEGYPVTTVAKDAFFNETNVT
GIILPESIKRVEDYAFSSDSSSSLRWVRVENAELEIPQDSRP
FSGDITLYGKKDSTAELYSYRENLSFIDYETKVKYGDITGEIV
NGEIAIISCDKAAAEVTIPEEINGIPVTSINYLAFGGCQDLKSV
YIPDSVKSIGESAFINCISLTDIRLSETITEIPAYCFSRCKVLM
DITIPESVVSIGDSAFESCGYMERITIPESVTKIGSYAFRNCL
CLDEVELLNHNISYGLAPFENTDFIEKFDNSDGIVVIDHCLV
DGRNYKGDSFTVPCFVFEISPRAFEGNTNLTRVIIDPNVKKI
GDSCFSGCTSLELAKISGDVQEIGSNCFSGCTALEWVKLP
DTVKEIRDGTFDGCISLSEIFLPAKLEKIGKQAFGSCGKLEK
MELPETVTEINSEAFKGCAGLKEITIPSAVTELSPYCFNGCS
GLTEVTIPANITEISSNSFSGCTSLEKVTLHDNIKKIGFFAFS
NCQSLKEIDIPDSVKEIEMAAFSNCKSLESIKIPEGCKLGIDV
FMNCTSLAEVKLPENIDISNAMFKGTPWLDSIRKGSELIIFN
NKVFDGTQCKGEVVIPEGVTEICGHAFDGSEITSVKFPDSL
KTIGNYAFSNCDKLEEFTIPDGIGKISGGMFCGCENLKKVNI
PDSVTVIESGAFEFCTGLTEFTVPASVKSVGMVFEYADRLK



 

Q 
 

TITFLNPECFIAPDGENFLT 

Rf 111 

[(1-13)SIGN][(14-148)X140][(156-
222)X135][(223-361)UNK][(362-

703)pfam08757][(704-
792)UNK][(793-860)DOC1] 

VLMASSMHCGVLPAVAAQSADGLCINEVCTQNKNCYADSL
GRASDWIELYNGGDSDISLDGFGLSDDAASPMKFSFPSGT
VIRKGEYLLVIANKDTAAADELNTGFSLSKSGETVVLTSPEG
ETIQSLNVPAMGEDETFGRTRDGGYAVMRPTPSEANSESA
AEPVFSLESGFYSVNDVKELTISSSDTVYYTLDGSDPTTSD
TAQVYSGAIPMYDRSIDDNVYSKYQHEENSPYSITLQSRFS
ANPAKFDKATVVRAASRSTDGTFSKVATKTYFVMSDDKLA
YYKNIPVVSLVTDPDNLFDKDKGIYVVGQQYVDWKKSPQY
NPRKSEWDTDNVANFFSKGKDWER 

Rf 112 

[(1-13)SIGN][(14-148)X140][(156-
222)X135][(223-361)UNK][(362-
703)pfam08757][(704-

792)UNK][(793-860)DOC1] 

EASITYFDGGEMGFSQNMGIRIKGASTRNSQTKSFNVYAR
SQYGDSKLDYKLIDDNYSAVDGDKIKRYDSFSLRSVSWVD
RLRERVVHSSLRDLPALATYDSDRCMLFIDGELWGMYEIIE
KSSDYFIQSNYGVPSENVAMVKNGELETGAEADYDDLEAL
CDYCLAHDLSVQSNYDYVASKVDVESLIDCYCAGLYLGTW
DWPNHNYLMWRNNGAAIEGNPYSDGKWRFGSFDFDYSV
GLTYQSFGGVEGYQYDSFRKMDGEKEDMPTAIFTGMLKN
EGFRQQFADKFYSYAYSVFEPSKMTAELDDEENRYMDYLT
MTGWRWNNGQPNSDFNTYCSQQKA 

Rf 113 

[(1-24)SIGN][(25-72)UNK][(73-
93)X159][(96-116)X159][(119-
172)UNK][(173-193)X159][(196-
216)X159][(219-239)X159][(242-
262)X159][(265-285)X159][(286-
327)UNK][(328-401)DOC1] 

ADGTNNGYELIFTIDSGSVTITGVSGSGSTLEIPGTIAGLNVT
SIADNFFTGSNELRTVILPDTLRSIGTRAFSACQKLNSVYIGS
DTSYIGDYAFTACPSLSNISVSTANTVYRSENSSLYKGDAL
VLYAGSDDAVISSSTRVIGKRAFFGRTALTSVDIPDSVEVIG
DYAFSGCLALNDITIPDSVTSIGNYCFFSCSGLESAKLSNSL
KAIPESCFSGCSALRDINIPVSVSYIGANAFYSCESLKSIYIP
PTVETIGTNALGRTYSLRSGSEDNISDFRILGSPGSTAEKYA
SALSMVF 

Rf 114 
[(1-24)SIGN][(25-253)UNK][(254-

324)DOC1] 

DDNYGTEVPELLELYESYCDTDYEALYFEEATSEYSSYCAI
KNLADMGYVQFYGEADDEVDLNKLRQICGYSENELQLRCS
YSKRAGNWSLNMTFLTFDHDANYEAALKITDAIAESYKIKSA
YIEVDGKIIIRNNRTCWDRIRRIDEFGIESPLTEELTSKQIADL
NSDIAGNGYKASIDENTGSIIFAEGVTEKEKLEFAIWFKGNY
GFYAFTFSAALMGEEIPYER 

Rf 115 

[(1-21)SIGN][(22-207)UNK][(208-
228)X159][(229-307)UNK][(308-
328)X159][(329-411)UNK][(412-
432)X159][(433-556)UNK][(557-
577)X159][(578-747)UNK][(748-
768)X159][(769-838)UNK][(839-
858)X159][(859-973)UNK][(974-

1020)LNK][(1021-1105)DOC1] 

TGFDFIGDSALKDCKYITEVTIPKEIKYIGTGAFENSGLKKLY
VNNEMPVVPEKFCSGTNLTEIKFAHPDYIRTIGKEAFKSTPL
SDAVVTNADYKGDANYEFVEIGDSAFENCANIKTLAFPANVI
TLGKSTFKNNTALTTLKFGENLIAADNSCFYGCTSLNSITWN
NVLETLAGSCFTGCTSLKTVSGMPTTLMDWVPEDETLGW
GVGDGVFSGCTSLEHVILPSSLKRIPGSMFEGDVKLKSVQF
GDAKKEIDSKLTVASGDNIVKIKKNAFANCELLQKVDFGKTT
YIEEKAFLNCKGMTSFNVGECSVVGTSALEGCSALKEITLL
SDQYGGTAPNVKSPKDPNKTNSSEGYVFKGCTSAKKITIKT
DDKVKLSSGMFQNCTSLTDIGGDLSKIEIIGKDCFSGCTALT
HLNMPILKIIESSAFANCTALKQITDDPTLPIKATDYGDKAFQ
NCSELKFTLTGDISTIGASAFQNSGVTSLSLNGMVGGTVVI
GNSAFADCANLKSAVINSQDAKKFSVGTGVFANCPILEKAS
YDGPLVTASMFKNCPKLNDIKLLADVINANAFEGCSSIQSLI
NKNDGTLLIAKEIDGAAFKGCSALINSSADANTIFKGSQQYS
GCAALKSANVSTLTSGMFENCTSLNSVKTNNVTSVPAGAF
QNCTSLDTFVFTNIESIGANAFANTGFKTIELPANVASIGNN
AFINCAKATSATIANKNAAITGRAFGYNANKQIPNFIISGIAG
STAETYAKNNKLNFMDE 

Rf 116 

[(1-21)SIGN][(22-86)UNK][(87-
107)X159][(110-129)X159][(132-
152)X159][(155-175)X159][(178-
198)X159][(201-221)X159][(227-
247)X159][(250-269)X159][(270-
294)UNK][(295-315)X159][(318-
338)X159][(341-360)X159][(361-
432)UNK][(433-465)LNK][(466-

537)DOC1][(538-550)UNK][(551-
620)DOC1][(621-666)UNK] 

FISDIAPDTVITASAADYEKVTEGDFTFNVYADHAELIEYSNN
AETDVTIPSKVNGQAVTVIGDRVFNEKKEISSIAIPDSVTQIG
NSAFYGTGIRKIVLPSKLKKIGGFAFQSNKKLASVSIPDGVE
EIAKNAFAYCEVITSLSLPNSLKVLGENAFSGCVALEEVTYP
SSIEEAGDNIFFNCIAIKKVTFEKGVTEIPNGIFYMDNSNSVL
DEITIPDGVKKIGDKAFYGTAIKKINIPSSVETIGDGAFWSCL
KLGAVKIPAGISRIGKNTFRNCQVLVSVDLPSSIKYIDDSAFY
VCNALEEITLPEGIVEINDSAFNGTGLKNVVLPKSLELLGKA
FGGCKQLTGITILNPDCSITQDENTICNTTWAPLIGRKYEGVI
YGYENSSAQKYAERAGYDFNLIGSAPE 

Rf 117 

[(1-24)SIGN][(25-348)UNK][(349-
369)X159][(372-392)X159][(395-
414)X159][(417-436)X159][(439-
459)X159][(461-481)X159][(482-
547)UNK][(548-614)DOC1] 

GIPESVSVIKALYNMNFDEVNELTIPKNIKIFGAYREPKGVIV
AEWGKIPASVPLKDNFTIKGYKGTEAEIYAKELNIPFIALDDL
ETPLSGNYSENIKWTLDADGVLTLSGEGEIPDLTESAPWSS
RRADIQTIIVEDGITSIGKDVFIGLEDLTSVSLPKGIKSISDNA
FYKCINLKTINFPDGLERIGSDAFFGCQ 

Rf 118 

[(1-26)SIGN][(27-40)UNK][(41-
61)X159][(64-83)X159][(86-
105)X159][(108-127)X159][(130-
149)X159][(152-171)X159][(172-
198)UNK][(199-219)X159][(220-
242)X159][(243-514)UNK][(515-

578)DOC1] 

VDTDAPEFDIENGVLVRYNGADSDVEIPDGVTAIGEYAFYD
KKVQRVSLPDSVTKIGDSAFSRSTLTDINFPEGLQSIGNGAF
QNTWITEANIPYGVTEIPSAVFFNSRLTKVTIPDTVTQIGESA
FGNTPLQNVDIPDSLTYAASSSFSGTPFLRSLIETNGGWLIL
SNGLLVVYAGDDINVVIPDSVKRIGTKSFTLRSRMQSLTIPD
TVKSIE 



 

R 
 

Rf 119 

[(1-30)SIGN][(31-78)UNK][(79-
99)X159][(102-122)X159][(123-
244)UNK][(245-264)X159][(267-
286)X159][(287-357)UNK][(358-

431)DOC1] 

DVQLQDSPLSYENNGYEIKITACDTSYSGEVKVPSEIDGLP
VTVIGEGAFKNCFRVKKLELPETLVRAEHEAFFNMIGLDELT
IPKNVSTLGNYAIGDNSDFPLKVTFESADTNFSTACFDCVK
ESGNEKRKELTLIGTEDSYAIKFAKGWKMKYKVVGEETASN
GKKEVTADGMAYNVYSDHAELISSDKDITGKVVIPSEVEGV
PVRKIGENAFTGRHIDEVIIPVSVREIGQAAFASTDLKKAVVP
YSVTKIAKEAFISDQLESVVILNERCEIADDDSTIANKYPLSE
GRYVYGGVITAPENSTAETYAKAWGYEFKELGLVE 

Rf 120 

[(1-28)SIGN][(28-99)UNK][(100-
120)X159][(121-195)UNK][(196-
216)X159][(219-239)X159][(242-
262)X159][(265-284)X159][(286-

501)UNK][(502-583)DOC1] 

TEFTYSADYIAYKDETLPDLEADHREFVKDGLVFNIYDDFAY
LVSCEDTDITDAVIPEEADGVPVVGLTDTPFGYCRSLKSVTL
PDTMKYIDWLDLAASSGKVSTDKTDGEILPTLEKVTVSENN
PYFTSENGIIYSKDMKELIGCPPAMEMKELKISEKAEAIKDF
AFAACYKLEKAVIPENIKHIHNSAFVACKNLKSVEIPSGVTTI
SGDAFFGCSSLSEVKINSKLEKIGFGAFSGCTALKEFNIPET
VSVIG 

Rf 121 

[(1-23)SIGN][(24-198)UNK][(199-
311)X142][(313-422)X142][(423-

879)UNK][(880-952)DOC1] 

VTGSAQITTDMNITQTAVKDESEDSDLSFMEDDESDGYYIAI
GVKYAETDVPAQFEDFNVRKLCLDHVYVSDDCPIGSVGED
FFTLNIPDGVEVVKKNWKCAITGIPCIKLVYASGETEVIKADD
YDEMAEQTTEDLKNDGFDITEDLLFNAMVFSLRRNPQHQI
MAYPIKRYNATKYYTYTGEDSLTYLRVNVSREDKNLLISIPD
EYDGKKIDRIKLGDVVCQDNIDSGGFDSVELYISEGVELDP
DVKWNAYETGFHTIIVYNSDAERKAYYAMVTEMGDDTDTY
DTNYYAYTGEDSLTYLGVNVGMADINQSVNIPDEYDGKKID
RIKLSDVVCPESIYAERLDAIELYLPEGVELDPDVKWNAEGS
GLHTIVVYDSDLERKEYHVWPSEMADLY 

Rf 122 

[(1-24)SIGN][(25-348)UNK][(349-
369)X159][(372-392)X159][(395-
414)X159][(417-436)X159][(439-
459)X159][(461-481)X159][(484-
504)X159][(505-547)UNK][(548-

615)DOC1] 

VFLGLESVTSASLPDGLKSIDDSAFEECVNLKNVNIPEGVES
IGNESFYKCALESLELPDSIKTIGEKAFVSGNFESIELPSGIT
RLENGALGSCEYLNEVTIPDTVTYIGGTFGYCKSLTSITIPES
VEEISYRAFSYCENLETIIFKNPDTVIIDEEGDVHDSFFYAW
GGDDFKGVVKGYKGSKAEEYAIKYNTGFE 

Rf 123 

[(1-28)SIGN][(29-92)UNK][(93-
113)X159][(116-136)X159][(139-
159)X159][(160-207)UNK][(208-
228)X159][(231-250)X159][(253-
273)X159][(274-324)UNK][(325-

382)DOC1] 

SNVMPITAHALYSPTDTNYTTGQSGGLQYAKYSDHIEILGC
DSNTTTIDIPETIDGLPVTAIARYGFECSSLTSVTLPESIKTIG
YWAFAMCSDLTTVKLPDSLEVIEMHAFELCPKLDTIEFPDH
MVEIHARVFDETPWLEAQRKIDPLVVVNGALIDGRTATGDV
VVPSGVKYVSASTFWWNTKVTSVVFPSSVTTLIDNTFFQC
EGLTSIELKGVTEIESMAFCGCTKLNDLKLSGKLTKIADDAF
ADTSSSSTITFYGSRDTWERVEKPNDSAFLQRATMVFDES
GGPADEV 

Rf 124 

[(1-29)SIGN][(30-79)LNK][(80-
149)UNK][(150-170)X159][(173-
193)X159][(196-215)X159][(218-
238)X159][(247-267)X159][(270-
290)X159][(293-312)X159][(315-
334)X159][(335-390)UNK][(391-

451)LNK][(452-532)DOC1] 

AVAEEEEKPVVAETDEPATEEDKKTDEKEEYKLPEKGISGD
TSHGDKHPEYRLTKDGLMSFDGEGQLDKWEPAYCYHVKD
IRDKAVVWSSNITLGDGAFSWAPYTTVDLMLTTIDTVPMDT
FYNDINLKEVMLPDTVENIGEYAFYNCQALETLEWPRSIKRI
ENVAFENCGLKVLELPKTVEYVGDNAFRNCDNLTEVYINSE
FKYSDEEKKDIGYIFTLCDNLEKVELSDDVETIWSSEFCQCS
SLKDVKLSKNLKVIKDHAFQSTPLEKIDLPDGLEIIEESVFINT
KLKEVIIPKSVTFIGNSAFSSPTLKKITILNPECDLNISSIYGSA
DTVIYGYKGSTAEKYAAKNSIKFVAL 

Rf 125 

[(1-28)SIGN][(29-128)UNK][(129-
149)X159][(152-171)X159][(172-
192)X159][(193-212)X159][(213-
233)X159][(236-256)X159][(259-
279)X159][(282-302)X159][(305-
325)X159][(328-348)X159][(349-
364)UNK][(365-433)DOC1][(434-

452)LNK][(453-526)UNK] 

ADDITTTPAVTVYETTTEIVTTHPPYYTEIGPDVRKGTCSSG
ENIVWELSDDGTLTISGKGVLCDSPWQNHLKDDIKKVVIGE
GITKVSLSSFALPSQVSMFRGCSNLESVVLPKSLVNFDGQA
FADCEKLSSIDFPEGLEYLTLMSCPAIKSVTIPDTVTYLHISC
CDSITELDIPDSVTTINSLAGNTSLKTVSLPSELTELNTNLFD
GDISLENIILPEKLTVLPKCTFYNCTSLTSIKLPENLTKIGDNA
FTSCSSLRSVVIPDNVTEIGREAFKNCEQLETITIPKSVRTIG
MYAFENCPSLKAIRGYRGSAGFIKANSLDVKFIDLEKIN 

Rf 126 
[(1-24)SIGN][(25-199)UNK][(200-

265)DOC1] 

EDNLLNYTELVKLTDEEMAEKYDLLPYHYGDDSVSDDIKFK
EYLNQPIDGFIGDNYESVSYSAYLKFINGQNIPYIAFSVDRY
TKLDTSLTAEDFGYPKEWKITAYDGVFNTDTGYPRQFHEY
RIEIPVDIIADFEEYVRLEKSFIFNEYNYQEDNPYAIKTFFDID
HQFVSYGG 

Rf 127 
[(1-25)SIGN][(26-268)UNK][(269-

335)DOC1] 

QTVCAYDQLIASVTKVSIAKDVLAIGESAKLELTWSSGKQN
EVTFSSSDESVATVDKDGVVTGIADGKATITVSYLEGKGVK
TIDISVSHEAVKSEVYNTSEVSLGDKFRKYDTLHYDGKSKG
SCANVVNTKGNYDLVYINIDDYVLPFDAELVGIDGLVIYIAPD
IEGITYLDGRKLNAGDVIDRNTHLLCYDYKIKSADKSSRMIF
PVFLPEYYGEYIGDGEIKVKSIDHDAKVIELESVD 

Rf 128 
[(1-24)SIGN][(25-509)X160][(510-

582)DOC1] 

EGNPDLQALASSLGADTDHFSFKNYRGASISDEMLSAFKQ
KITPTEAMLNRPENAVVSSKGGECNAMAILEILVHNGIISAS
DIQEGADFLCDITFDDKINDILTYYQMTQVFQKQYLAIRNYW
CNHDVSDAISDLVKYGNRAVEEGKYFYISFSWDKGAHAVV
GIGETDGSWEFNGRKYNKCILTLDSSFDSFTEKACIYVNTE
ENTFYFPAYDYTENDAQITMITGDETLLNYKGLLSPSYSSDT
NTDDLTEIEIGNYKFVNGKSVGSDIEFYITDDNGTRTYTSKG
FEPLDITKNYFINMIETNKQYTFPAAKNTKYKLKINETSDDPE
VDSVEADLFQITENCFRYCYSIGFDKNTEIEFGEHYMSRYV



 

S 
 

PNYSGFSFHLLSEDTPYKNDEFNMYMVLGNNIGTIAMHDR
NDGILLTTDQKFDAFVSFEGLIKNDDGSIEAFKKSADQHIIYC
TLSSVNNIMLRYNETDDRIAIFIDNNNDD 

Rf 129 

[(1-23)SIGN][(24-311)X128][(312-

340)LNK][(341-405)DOC1][(406-
819)UNK] 

QSAVHFHMNNTITASAESISDMPADFQYAADWIWQNRIDR
EKSTVRRNTIFDQIVAGKGTINYVVKWQSYRTVTYEQRQKF
EKMLSDCINAWNDWLAGYENWPYDHIDVKIVGWAVINKNC
LLDLHDDEVVYTDTKYYDAQYDTSNGRDTIPDKEPFAPSEL
SRFDHFTEKNYQYPGGLDSRFDMYMWATQGFPDIGGCG
GDWGQRLSDTAYLGMIQHGSLHVLEHEIGHGFGMTDFYG
GEGESDGFPPGGFPRGENSIMMAGSSAKITDFDGWMLRY
MWTKIKDDKD 

Rf 130 

[(1-39)SIGN][(40-88)UNK][(89-
108)X159][(111-131)X159][(134-
154)X159][(155-202)UNK][(203-
223)X159][(226-245)X159][(248-
268)X159][(269-317)UNK][(318-

381)DOC1] 

QAEEEYKDGNLTFMLYDDHAEVINFDFTATTAEIPATVKGL
PVTSIGIYAFNGSSVTSVTIPDSVTYIGQWAFAMCGSLKEVT
IPDSMEHIDINAFQLCSSLSEVSFPDKFVKISGGAFDSTPWL
DAERKKDPLVIVNGALVDGRTCKGDVEIPSTVKYIASGAFQ
RNSDLTSVVVPSSVKEINDSTFFYCDNLVSATLPNVELIDSM
AFDGCTKLSEVKLSGKLKSIASYAFDDISASGTITFYGSKET
WDKVEKPDDCEYLNKAKYIFDENAQPPE 

Rf 131 

[(1-40)SIGN][(41-89)UNK][(90-
109)X159][(112-132)X159][(135-
155)X159][(158-178)X159][(181-
201)X159][(204-224)X159][(227-
247)X159][(250-270)X159][(271-
440)UNK][(441-485)LNK][(486-

580)UNK][(581-599)LNK][(600-
669)DOC1][(670-873)UNK] 

EETYGDYSYTINEDSEGEYVTITGYSGNDTTVVIPSKIKGLP
VKDIGGSSFKNTRISSIKIPEGVTSIGGWAFLGCWNLESVSI
PDTVKNIGSLCFYNCSKLKEIVIPGSVNTITEQSFYGCTSLK
SIEFKSGVKEIGKDVFDGCTVLTDVSIPDTVTKIDEKAFNNC
TSLESITIPDSVEEIGASIFYGCTSLAKVKLSNNINTIPVNAFF
NCVSLKEITIPYYVESIGGSAFIYKNKSGYYYSIDIEKINIGAK
LKSLKNLPVNSETLQEINVDTQNGFFSSEDGVLYNKDKSQL
IKYPSAKADTEFTVPDTVEQISENAFANNTVLKTVYISENTK
AIEPKAFYNCTHLDEVYFYNKDCEIYMSKDTINSSAVINGYK
DSTAEEYANTYGFAFNEIQ 

Rf 132 

[(1-20)SIGN][(21-49)UNK][(50-
140)X142][(141-149)UNK][(150-
240)X142][(241-313)UNK][(314-
400)X142][(405-500)X142][(501-

881)UNK][(882-956)DOC1] 

VPFVISYAEDQYTEESWNNEDHGVLKWNYDYGFEYINLKID
PNSNEVVIPSEVNGEEITGLSLDCFQCPDSYCMNNTIKLIVP
ECVEDIWTNWTYEKTHIKKMTLEYSSGESETLMAADLNNS
TFSYLYDEEDDDYYLGINLAGEFDALPTEYKGKKVDKLDLE
HIHYTDNFDPYTGYELEIPEGIRIVNKHWKGAVTGIPEITLKY
PSGETEVLRSDDYDELVEYTKNILRNNEFDENYIEENLQNE
MSFLLMSHPDHRCKDYISEDIEAPVNNEEIPQKDEDGIIRWF
YNSDNEYIDLKIDKESYEVILPTEANGKKIEKLCLKDLDFSNN
TILNKAPVIIIPEGMKVVDKNWNNNDTSIRAMYLSYPSGEKE
ALLASDIHNTPFSYLYDPEDDDYYLSVNISCMSGDVLPTEY
NGKKVSKIDLEHVYYSEAYENADISLNIPDGISIANKHWKGA
VTGIAEITLKYPSGETEVLRSD 

Rf 133 
[(1-26)SIGN][(27-288)UNK][(289-

355)DOC1] 

EDNADTAAAAATEAAETVEPVTADDIKGTWSGTYTGSTGS
TTIEREISLNIDECDADGKFSGVATITSSENQSYCFSGTCDL
ATGEIRFKGDEWIKNANKWSFLDFKGNLVSGKITGLTDNKK
DRPFSLEKKSDSFVRYSVDPAAVKREWYGEYDGHSGSVV
VRRNIKFSITDISDDGKITGSAVFSPSNKAEAKYALDGSYYF
TGTLDERYGRLRIQGNEWIEHPAMENFTFIEFIGSVQGDIID
GTTENGIWKMEATSIL 

Rf 134 
[(1-25)SIGN][(26-257)UNK][(258-

334)DOC1][(335-454)UNK] 

GGDMTKTPIDLQDYYDSVENFSKEEIPKYKCLTVDDVLDDI
NGGEYVSLSTGLGSTMDEKGKLHKIDKRFSAAVAKIKAGTE
SKPAFEELAKSPLVVIDGQYIIIRHGAAENIDKYVDTLKNDPD
VLSIDLDYGIYEDTANYVSIEGFFYDGEKLTDEFLAEFPALAL
KHSDNWSTEAHVYFVVFGGRDSDPVDIYRDIVKFKEKVPSI
DVCAISTCLAMMKPEMYFCHESV 

Rf 135 

[(1-12)SIGN][(13-49)UNK][(50-
70)X159][(74-94)X159][(96-
116)X159][(117-226)UNK][(227-

297)DOC1][(298-400)UNK] 

TISMTSFAFLPPAAAAAPQTDLSDVQVAPEFDFTGQKIAELP
AVDKLTVAANLKFENNQDLEKVVIPENYVLSGSLKFSKCPN
LKEIVMPELATELWVTVTECDKLASFTMPVSPQTDLTQFSY
VTVSNCKSMTELEVSNARRMSVKDMPALETLKLTASPHAT
SDEEYYNIDYASCPKLKDIYLYNADVQPTPKEAALMAENGIT
IHCPAADG 

Rf 136 
[(1-29)SIGN][(30-110)DOC1][(111-
549)UNK][(550-
880)pfam08757][(881-952)UNK] 

FDNVAIRTKGNSSRQFVSQAGKDKFSFRIKLNKYDKLQNYH
GLTDICLNNMYSDPSCMRDILCYNACYEVGSYAPLCSYTD
MKLNGQLYSFYFMAEQPAETLAERLAVTDDSVFYKAADKM
LAGSSYDCSFKPSMALENFEVKFGEDEQLQHIAEVKDAINK
VSSSNYKFIEDIIDVPSFLQGFAVNAVMCNYDSYNGMMPH
NYYLEYTNGKMYYVSWDFNLSLGNFMDNGASVNSDIKTAT
YQTTVADRPLLKLLEVPEYYDMYVGYVKQIVNMYSQPEQT
VDGIATLIRSHVKADPRFFFTGDQFETNIAKSANGLQVNDG
GGWNMWGN 

Rf 137 

[(1-26)SIGN][(27-38)UNK][(39-
181)CBM13][(183-249)DOC1][(251-
564)UNK][(565-620)UNK][(621-

945)GH43_G][(946-964)UNK] 

LSKFLLGEKINADSYCEISCEKPDVAYLFAYFLGNAPEQER
LSYAVSTDGYHFKALNGGKAVWNSSVGTKCLRDPYIFKG
EDGLYHLLATDMKSSLGWNSNRDILSAKSTDLVHWFDET
SIPIANKYPNMMSADRAWAPQAIYDPEKDSYMIYFAARVP
DIDNRTIMYYAYSKDLKKLDTAPQLLFAPKNGNDAIDSDIIF
ENGRYYMYYKNETNKRIYLAESDHASGPYSEIKQVSEGSL
GVEGPNIYKKIGSDKWLMMSDAYGDGYYVMQETSDLENF
TSVSRNSYSFDFTPRHGYVIPINADQYTALVNAY 

Rf 138 [(1-30)SIGN][(31-93)UNK][(94- EEEREASYTQQDMRQFIRIGPMFFRCDLEHAVLVNFDKTY



 

T 
 

112)X159][(115-135)X159][(136-
263)UNK][(264-284)X159][(288-
308)X159][(309-384)UNK][(385-

457)DOC1] 

EGEVEIPAYVQGVPVTALGERCLAFADGITKLTIPETVRTISA
AALCDLYNIKELIIPASVETISGNAMYGMSGLEKVTFRCPYP
YIIGENINFMCHLGCEGPQVPNDMKICGYKGSDVEKIAKELF
CDFCDETTEEGSDVIAADGTWKDGFCFEINSEKNEAKLIGC
DIVKANKSGVIPSEVEGVPVTEIAEYALTGAHFQKIVIPDTVR
YIGDCGLGNYMYGNPEIVIPESVEYVGRDFIVAAYSSIETITF
MSPDTKIDSCNFRVFDFDPTGGTYFRGPDAFGTECTIRGF
EGSDAEKVAKEYGLKFEALT 

Rf 139 
[(22-47)SIGN][(48-341)UNK][(342-

425)DOC1] 

SFAGIMPPVSSVDEAAAYMRQCMKERQAEFTVTVPYNGYI
DEDDAVKKMLAEAMKETSSGTEGDYLRFGMKGYKYGTAV
RGGNITIIYQMFYYTTAEQEKAAEIKINAMVDHFSIYGRTPYE
TIRAVYDYIAENVTYAEVDPNEEEHDDLSIFSAYGAAVNGV
AVCQGYSQLCYRLLKDAGISCRIISGTSRGVRHTWNIVELD
GKYYYLDPTWDTELGGSDGAFFMKGTSDFDEFSSKITHIPT
YDYEIIFPDYESAEFKSAYPIANSKYIPPRYNKGDVDANGIID
GRDATA 

Rf 140 

[(1-34)SIGN][(35-113)UNK][(114-
134)X159][(137-157)X159][(160-
179)X159][(181-201)X159][(202-
216)UNK][(217-237)X159][(240-
260)X159][(263-283)X159][(286-
305)X159][(307-327)X159][(328-
338)UNK][(339-359)X159][(362-
382)X159][(385-405)X159][(408-
427)X159][(428-464)UNK][(465-
485)X159][(488-508)X159][(511-
531)X159][(534-553)X159][(555-
575)X159][(576-585)UNK][(586-
606)X159][(609-629)X159][(632-
652)X159][(655-675)X159][(678-
697)X159][(699-719)X159][(720-
737)UNK][(738-758)X159][(761-
781)X159][(784-804)X159][(807-
826)X159][(828-848)X159][(849-

866)LNK][(867-887)X159][(888-
912)UNK][(913-933)X159][(934-
960)UNK][(961-981)X159][(982-
1714)UNK][(1715-1791)LNK][(1792-
1878)DOC1] 

AFKGNTEITSVKFPETIIQIRDAAFRGASSLASIDLPEGLQTL
SPYCFAETALTYVKLPTTLTNASCPFSKCLSLEKVEIAEGAT
AVPHGSMNLDTYGDTSYGCFENCTALKEVILPEGIVQIGSY
AFYRCSSLEDIKLPSTLKTIGEKAFADCSSMKNIDMPEGVET
LNFGVFSGTAIESVTIPSGLKKASRPFAGCETLKKVTFGPD
MVKIPSGTTHLLEDIGIFEGCENLEEAVLPEGIEEIGYGAFSH
CPSLKKINFPSTLKSIDALAFEDTPSLTSVELNEGLKSLNGS
CFKNSGLTYVKIPSTVTYARRPFTQSQNLKKVEFAEGMVTT
PSEHDIKSFAYTSEHGIFEDCPVLEEIVFPSTLEYIGHYAFAD
CPSLKEVKIPDTVKGIGSYAFNNDLGITSIEIPENLESLYIGSF
GNTGIESVTIPSTLKFAAAPFTHCEKLKKVVFEGDVTEVISG
TKGSDTFGIMQSCYGLEEVVIPEGVEKIGTYAFYECSSLRK
VTLPDSVKTISQDGFSSCPMLEEINIPSSVTEIGNRAFANDK
ALKNIALPEGLETMGTEVFDGAGIRTITIPSTVKKADRPFSG
CTALEKAVFADGTEVIPEGTVLSGKGFSAYDVPVGILENCA
SLKEVVLPEGVTEIGRCAFSSCPKLNKVNFPSTLKKIGECAF
KGDSRLTSVELPEGLEDIGVRSFAESGLTSVKIPSTVTSGS
RSFEKCPGLKEAEIADGMTSIP 

Rf 141 

[(1-20)SIGN][(21-94)UNK][(95-
115)X159][(118-138)X159][(139-
206)UNK][(207-227)X159][(230-
250)X159][(253-273)X159][(276-
296)X159][(299-319)X159][(322-
342)X159][(343-389)UNK][(411-
420)UNK][(421-441)X159][(444-
464)X159][(467-487)X159][(511-
613)UNK][(637-657)X159][(660-
680)X159][(683-703)X159][(704-
798)UNK][(822-842)X159][(845-
865)X159][(868-888)X159][(889-

1000)UNK][(1001-1069)DOC1] 

TTATVNDKDRLTAVAAEADEIIEPDEDGIVTKDGVKYEIYNG
DTWVVGYTKDLKGDLVIPEKINGVPVTIIDDEVFANCAEITS
VTIPASILSIGEYAFKNCEKLTSVDIRSNCTGNGAFTFCPNIE
KLTLSSEDNDFEYALFHTNKLSAADYDADKYIYDEARSFLIP
KSLKTVEITEGTSIGTDEFKGMSSLETVILPDSIEDIGWSAFE
GCTALKSINLPKNLTVIGSYAFSGCESLEEIVLPDSLEEICEG
AFNGCTSLKTIDLPKNLKTIGKEAFENCAGITSVTIPASVKTV
GQFAFKNCEKLKSADIKNPDIFNASISVSDWSGLFVFCPNL
EKVTYAADGNSNFKATLFYTGKLRAGDYDADKYTYESFYG
MLIPKSLKTIEITEGTTINEEEFKDIASLETVRLPKNLETIGEE
AFSGCENIKELVLPDSLKTIEDFAFYGLTNIKSVTVPASVEHI
GQGAFACCDSLTSADFAGDIIQEKSDGIYTVVIGFNENGAT
SVSYGSGYGIFCFCHKLEKVSFNNADVESLASFLFETTESA
VKDNNMEEFVVTAVDESYAGKTHLFAIPKSFKTIEMREGKT
VKEKAFKDLSTVENIIIPDTIEVIDAYAFSGCSSIKSFDMPKDL
KIIGDYAFSGMKGITSVKVPASVVYVGEGSFSECDNLTSAE
FEGSYFNDSYESLYKSELHLSFYDWKGIFLYCPKLERVSCP
AENDVGMARYFFQTDRDDIKERKLDDYVLTSSDDYYKEPE
YPYVIPKSFKTVTITKGEILAEASMANLKTLETVTLPDSLKEI
GVSSFSGCSGLKSIDIPENVTLISDWAFAGCNNIEELVLPEK
LETIGNEAFGDMDSLTSAVLPASVKKVG 

Rf 142 

[(1-240)UNK][(241-261)X159][(264-
284)X159][(285-337)UNK][(338-

426)DOC1] 

MKFSSWQDAYWYFLNISNEGKEPDEDRNLGPMYETRDIT
GDGIPELFISESAYPLSKVYVYTYHNGTAEYLMSGGGNGIIG
YNTDKSHEGIYLITSFMNQGITTYKVDIYNNKTVSPLAVFTS
EDMYADEKNPAKYTFNDKEVTKEEFDKEFSKYKDLEISYVG
RKDYFDERYPIIDDVVYYYYFDHFEVAGADNDIKNMKIADE
VRGIKVTGIHEYAAEKHRKLESVTFGKNIEFIGRNSFEGCSA
LKSVIIPENVKDIGEQAFLDCGSLEDVTILNPECSIWDFWEG
GQPLTFCNTVDKDGNTVFNGVIKGQKNSTAEKYAGIFKLDF
EEIESKS 

Ct 143 
[(1-38)SIGN][(39-757)X141][(758-

901)CBM6_2][(902-965)DOC1] 

AAEPITYYVSPTGSDSNTGTIDAPFKTIAKARDVVRTVNGN
MKSDIYVYLRGGTYNITETITFGPQDSGTNGYRIYYMAYPG
ETPVLSGATKVTGWTRHNGNIYKAKLNRSTKLRNLYVNDQ
RASMTSKRVTARGGHGTYTVTAGQAPWAWTSGSKSDGV
RYDMSEVPEITRNKDDLEIVNGTTWNENIVCTRDVITANGY
RVLLLQQPYGAIAQTPGWGAAFTTSGTHTIYNAFEFLNSPG



 

U 
 

QFYFDKTEQMLYYYLRPGENIETIDVQAPMVEKLIEIAGTST
SNRVKNITFQGITFAYTDYNLVEVGGSRGKSTCQAAQGFIA
FFNDNWHYTKYDLVDTLPGMINLRNCDSIDFIENVIKHSGA
DGISMVNDVINCKIIGNYITDITSSGITVGHPQHVYIGDGGSR
AKFPSGVEGVCKNNTISNNVLYDISMVPGFGGCAGITAYFV
EGLEITHNHVQKTAYNGIHLGWGWCNFKDSTTCKNNTISY
NRVVDTLSRLHDSGAIYTIGQMPGTNINENYVKGIPPATYG
PTYGLHNDEGTAYIIENDNVLNIDPGVKYTINCEDFGEKHDL
TILRTYATVSKMGKNPPNSRIDPPVAVPDNVWPLRQYNVC
LNSGIQDEYRKIMPESLLSTPDYVFPASCAAEAASIINIRSSG
DPSNTVWFAPPGTTTFVEGATMTKAAGDATSIIAPYTAGTY
KLYIVNSQGVKIGESESILRVS 

Ct 144 [(1-256)UNK][(257-760)GH10] 

IVGKVLDMDEKTAIIMTDDFAFLNVVRTSEMAVGKKVKVLD
SDIIKPKNSLRRYLPVAAVAACFVIVLSFVLMFINGNTARKNI
YAYVGIDINPSIELWINYNNKIAEAKALNGDAETVLEGLELKE
KTVAEAVNEIVQKSMELGFISREKENIILISTACDLKAGEGSE
NKDVQNKIGQLFDDVNKAVSDLKNSGITTRILNLTLEERESS
KEENISMGRYAVYLKAKEQNVNLTIDEIKDADLLELIAKVGID
NENVPEDIVTEDKDNLDAINTGPAESAVPEVTETLPATSTP
GRTEGNTATGSVDSTPALSKNETPGKTETPGRTFNTPAKS
SLGQSSTPKPVSPVQTATATKGIGTLTPRN 

Ct 145 
[(1-29)SIGN][(30-103)DOC1][(104-
469)UNK] 

ASNNPDAVIQFESGFAHSVLLKKDGTVWVLGNNGKGQLGL
PEVSAVNEPVMINGLSGIKSVAAGREHTLALQEDGTLWAW
GNNYSLQLIEYMERDPDTKERFTSIPIKVETHSDIKYVAAKF
SRTLIVKNDGTVWLYSLPPINTSSDAEYMPWEIKGFGDIKM
ADIGTGHIVALREDGTVWTWGENVWGQLGNGWQQHHNIH
TYIYFEPNQAKNLSDIVSIAAGDAHSVALKSDGTVWTWGSN
FNGELGNGTTTYILEPKKVEGLEDIVAIDAGIGHTVALKADG
TVWVWGKNSYGQLGNGTTMRSTVPIQVEGLEGIVAIQAGM
ECTIAYKNDGTVWAWGKNDFGQLGDGTFENILRPVKVFER
K 

Ct 146 
[(1-23)SIGN][(24-477)UNK][(478-

512)LNK][(513-580)DOC1] 

AYNAEINGEVIVWNPGIKGGIPTKPVVANVKDFGAKGDGLT
DDSNAFKKAVESVKDGGAVLIPSGEYLIKSKITLDKPVVLRG
EGPGKTILLIDHSSDAFEVITYKRGNWVSLVGGYTRGSTEL
VVSDPTGFEAGKYVEIQQDNDPDVMYTLPEWNQGWAAGS
VGQITKVVSIWGNKITIEEPLRITYRSELNPVIRTQGFAEYIG
FEDFTVKRIDTSDTNMFFFKNAANCWIKNIHSIKPAKAHVSV
TTGYRIEVRDSFFDDATNWGGGGHGYGVELGFHVSDCLIE
NNIFKHLRHSMMVHLGANGNVFGYNYSTQPYQSEGGNWT
PADISVHGHYAYSNLFEGNIVQEITVSDYWGPSGPYNTFLR
NRIESESVCLEDSSNYQNFIGNEIVNGNILWDTDNRYPHKID
PSTLFLHGNLINGSIQWNQQTQDRTIPNSYYLDSKPAFFGG
INW 

Ct 147 
[(1-26)SIGN][(27-97)DOC1][(98-
537)UNK] 

NQYPTTPEPSPTPTPAVDEEAWKNNTGTIELGDTIKVSGEG
ISVNGSVVTITAGGDHLVTGTLNNGMIFVNTTERVKLRLSG
VNIKNPNGPAIYFYNVDKGFITIEKGTVNYLSDGSTYTDQDA
KAALFSNDDLELKGKGTLYVTGNYKHGIASDDDLIIENGDIY
VTAVTDGLHANSGIEIKGGNITVTAKSDAIESEKDFEMTGGT
LNLTADDDAIHSEKDLVIDDGEINILKCYEGIESKTTITINGGK
ININSNEDGLNAASGLYINGGELYITSGYDGIDSNGPIYINGG
YIFSFGGNIPEGGIDCDWNPLIINGGTLIAAGGSNSTPSTSS
TQCSVLLGSGTANSVISIQRNGSEIISFTAPKNYQNMVFSSP
DLVLNATYVVYRNGVQSVTFTTNSIVTNAGGSSGGWFPGG
GFPGGGFPGGGGGWFPGGPGW 

Ct 148 

[(1-28)SIGN][(29-79)UNK][(80-
204)cd05379][(205-328)UNK][(329-

411)DOC1] 

ESVLQDRTIDDIVKRYQNNPFRINVSVSDIYEIEPKAEPPYV
AGKLKSDYLKEALNCVNFMRYLVGLPNDLVLDDNYNNYAQ
HGTVLLARLRGIAHYPQKPGDMPDEFYNLAYKGTSSSSIAY
GFSSLMDSIMAFMKDNNSELNLSTVGHRRWLLNPGMEKT
GFGQCGRYYCTYILDSVMGASVKFDFIAWPARNYMPVEYF
NDASVPWSVNLGSDYFSPSLNEVEVTLKRRSDNKVWIFNK
DNIEEYGLFNVNNDYYGMTKCIIFRPKGIGSYNKNDVFDVNI
KGIRLSTDGPTEINYT 

Ct 149 
[(1-25)SIGN][(26-94)DOC1][(95-
710)UNK] 

IEPTPTLEVSPTPTETSEEVFAFKIKLFSDGDTYRFPIQEISE
NNNIVVDWGDGTTSTITDYSTLRHKYEKAGVYTIKVLWFDH
IPIRFTGDKYVIEILTPLPDIGLTDFSSFFKNCSNLERIPDRLF
SNNINATDFNFCFSGCTSLTEIPESLFAGNVNATTFVRCFY
RCSNLIKVPEGLFENNVNATNFLGCFDECSSLKEIPEGLFS
NNVNAANFSWCFSECVSLAKIPEGLFRNNTNATDFSYCFY
GCTSITKIPGGLFENNINAEDFGNCFSGCSSITEIPGGLFEN
NINAANFGSCFSGCSSITEIPEGLFENNINAEDFRGCFSGCS
SIMEIPEGLFKNNINAEDFRGCFSGCSSITEIPGGLFENNINA
EDFGGCFSGCSSITEIPGGLFENNINASDFSSCFSGCSSITE
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Supplemental information – Chapter 4 

Figure S4.1| Schematic representation of the CEL synthesized gene. 

 

 

 

 

The cohesins cassette was cloned between two His6 tags. Dockerin was cloned downstream to a T7 

promoter, after the cohesins cassette. The CEL gene was cloned downstream to the T7 promoter of 

the pHTP plasmid. Coh, cohesin; CBM, carbohydrate-binding module; Dock, dockerin. 

 

 

Table S4.1| Molecular weights (kDa) of the His6-tagged proteins (A, B, C, D, E, F, G, and H) 

fused with Trx, GST, MBP, NusA, SUMO, DsbA, DsbC, Fh8, CEL, Rf1 and Rf47 system tags.   

 

 
Proteins in test 

Vectors A B C D E F G H 

pHTP 30.25 63.73 25.35 12.37 18.32 70.10 28.51 38.02 

pHTP-TRX  42.68 76.16 37.78 24.80 30.75 82.53 40.94 50.45 

pHTP-GST 56.57 90.05 51.67 38.69 44.64 96.42 54.83 64.34 

pHTP-MBP 73.11 106.59 68.21 55.23 61.18 112.96 71.37 80.88 

pHTP-NusA 85.67 119.15 80.77 67.79 73.74 125.52 83.93 93.44 

pHTP-SUMO 42.25 75.73 37.35 24.37 30.32 82.10 40.51 50.02 

pHTP-DsbA  53.97 87.45 49.07 36.09 42.04 93.82 52.23 61.74 

pHTP-DsbC 56.51 89.99 51.61 38.63 44.58 96.36 54.77 64.28 

pHTP-Fh8  38.39 71.87 33.49 20.51 26.46 78.24 36.65 46.16 

pHTP-CEL 38.92 72.40 34.02 21.04 26.99 78.77 37.18 46.69 

pHTP-Rf1 60.44 93.92 55.54 42.56 48.51 100.29 58.70 68.21 

pHTP-Rf47 58.74 92.22 53.84 40.86 46.81 98.59 57.00 66.51 
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Table S4.2| Molecular weight ratio (%) between recombinant proteins alone and total fusion 

proteins. Levels of relative recombinant protein were estimated by dividing the molecular mass of the 

recombinant protein by the molecular mass of the fusion, full-length protein. 

 

 Proteins in test 

 Vectors  A B C D E F G H 

pHTP:   94.2 97.3 93.1 85.8 90.4 97.5 93.9 95.4 

pHTP-TRX  66.8 81.4 62.5 42.8 53.9 82.8 65.4 71.9 

pHTP-GST 50.4 68.8 45.7 27.4 37.1 70.9 48.8 56.4 

pHTP-MBP 39.0 58.1 34.6 19.2 27.1 60.5 37.5 44.8 

pHTP-NusA 33.3 52.0 29.2 15.7 22.5 54.5 31.9 38.8 

pHTP-SUMO 67.4 81.8 63.2 43.6 54.6 83.2 66.1 72.5 

pHTP-DsbA  52.8 70.9 48.1 29.4 39.4 72.8 51.2 58.7 

pHTP-DsbC 50.4 68.9 45.7 27.5 37.2 70.9 48.9 56.4 

pHTP-Fh8  74.2 86.2 70.5 51.8 62.6 87.4 73.0 78.6 

pHTP-CEL 73.2 85.6 69.4 50.5 61.4 86.8 72.0 77.7 

pHTP-Rf1 47.2 66.0 42.5 25.0 34.2 68.2 45.6 53.2 

pHTP-Rf47 48.5 67.2 43.8 26.0 35.4 69.3 46.9 54.5 
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