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ABSTRACT, KEYWORDS AND JEL CODES 

In response to concerns over capital calculation variability among banks, the Basel 

Committee revised the Basel III framework in 2017, leading to substantial changes 

known as Basel IV. This paper explores Loss Given Default (LGD) within the context 

of Basel IV, focusing on its definition, impact, mathematical measurement, and 

Moody's LGD model. Additionally, it compares different machine learning models 

relevant to LGD. Utilizing Moody's Ultimate Recovery Database, which contains 

detailed recovery information for over 4,600 bonds and loans, this study aims to provide 

readers with a foundational understanding of LGD under Basel IV and conduct a 

comparative analysis of machine learning techniques for LGD estimation. 

KEYWORDS: Loss given default; Basel IV; Production Function. 

JEL CODES: C02; C10; C25; F65; F68; G21 
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1. INTRODUCTION 

Credit risk is the oldest risk faced by modern banks, as well as the biggest risk that 

exists in almost all banks around the world. It has been making enormous economic cost 

to financial intuitions every year. For example, back to 2008 financial crisis, UBS was 

one of the banks that suffered significant losses during the subprime mortgage crisis due 

to investments related to U.S. subprime mortgages. The crisis led UBS to announce 

billions of dollars in losses and eventually required government assistance. More 

recently, Credit Suisse, Switzerland’s second-largest bank, came to a head when it was 

announced that it was to be taken over by UBS. The downfall of this banking giant can 

be attributed to a sequence of events and scandals that are intricately linked to deficient 

and ineffective risk management practices within the realm of credit risk control.1 

Banks are regulated at the national and regional levels, and since 1973, bank 

regulations have been coordinated globally by the Basel committee for the bank of 

international settlements. The organization is jointly owned by 63 central banks from 

countries that account for 95% of global GDP. Basel III is an international regulatory 

framework for banks, developed by the Basel Committee on Banking Supervision 

(BCBS) in response to the financial crisis of 2008. It includes several rules about capital 

requirement for banks to make sure the exposure of credit risk is under control. Basel 

III, also referred to as Basel III Endgame, Basel 3.1, or Basel IV, represents the 

finalization of post-crisis reforms in the banking sector. These reforms entail significant 

changes to international standards for bank capital requirements, which were agreed 

upon by the Basel Committee on Banking Supervision (BCBS) in 2017. The 

forthcoming changes are so comprehensive that they are widely regarded as constituting 

an entirely new regulatory framework. These reforms are expected to come into effect 

under transition rules starting from 2025.2 

Basel III internal rating-based approach (IRB) for banks to calculate capital 

requirement which can effectively prevent banks corrupts from counterparties default. It 

consists of three key parameters, Probability of Default (PD), Loss Given Default 

(LGD), and Exposure at Default (EAD). From bank’s perspective, PD refers to the 

 
1 News: https://www.piranirisk.com/blog/credit-suisse-causes-of-the-recent-fall-of-the-swiss-bank 
2 BCBS: https://www.bis.org/basel_framework/ 
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probability of default of a borrower in the future, usually over a one-year horizon; LGD 

is the credit loss occurred if a counterparty of the bank indeed defaults. 

In 2017, the Basel Committee took a decisive step to revise the existing Basel III 

framework in response to concerns raised by academic studies indicating a growing 

unease regarding the variability in banks' calculations of their capital. This prompted the 

committee to institute substantial changes, primarily concentrating on global capital 

requirements. These modifications are so extensive that they are sometimes colloquially 

referred to as a new iteration, termed Basel IV. Notably, the European Union (EU) is set 

to enforce Basel IV before 2025, with prominent institutions such as BNP PARIBAS, a 

leading French bank, slated to adopt Basel IV from January 2024. 

By doing reach on academic and literature review, with public data sources released 

by Moody’s, this paper goes through Loss Given Default (LGD) within the perspective 

of Basel IV, and have discussion on several key points – which are: 

1. Definition and Impact of LGD in Basel IV: Exploring the concept of LGD and 

explaining alterations introduced by Basel IV. 

2. Mathematical Definition and Measurement of LGD: A comprehensive 

examination of how LGD is mathematically defined and measured under Basel 

IV. 

3. What is the approach in Moody’s model of LGD? 

4. Comparison of Machine Learning Models: Investigating and comparing 

different machine learning models relevant to LGD. 

The primary objective of this study is to investigate the impact of the new changes 

in Loss Given Default (LGD) associated with Basel IV, attempting to provide readers 

with a foundational understanding of the financial data provider model, along with a 

brief comparative analysis of three distinct machine learning models. The dataset 

employed in this investigation is derived from Moody's Ultimate Recovery Database, 

released by Moody’s. This comprehensive dataset encompasses detailed recovery 

information on nominal and discounted ultimate recoveries for over 4,600 bonds and 

loans, spanning more than 900 default events involving non-financial corporations in 

the United States. Through a rigorous analysis of this dataset, various machine learning 

techniques will be applied to discern the optimal model within the context of machine 

learning methodologies for estimating LGD. 
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Much of the prevailing literature in the field has primarily focused on Basel III in its 

examination of Loss Given Default (LGD), emphasizing various models and parameters 

within the confines of this regulatory framework. However, this research introduces an 

innovative perspective by diverging from the conventional emphasis on Basel III to 

thoroughly investigate LGD. This departure from the prevailing focus on Basel III 

represents a distinctive contribution, as the study aims to explore LGD considerations 

within the context of the impending Basel IV regulations. 

In the forthcoming chapter 2, this study will conduct a comprehensive analysis of 

the literature pertaining to Loss Given Default and Basel III over the last two decades. 

Chapter 3 will provide an in-depth overview of the methods and procedures employed 

in this research, encompassing three distinct machine learning models and detailing the 

analytical approach applied to the dataset. The ensuing Chapter 4 will encapsulate the 

study's findings, presenting all observed outcomes and addressing the questions posited 

throughout the research. Finally, Chapter 5 conclusion will present a succinct synthesis 

of the study's responses to the research questions, highlighting the achievement of the 

stated aims, and acknowledging specific limitations encountered during the course of 

this investigation. 

 

2. LITERATURE REVIEW 

The year 2008 marked an unprecedented global financial crisis, profoundly 

impacting nearly every major country and resulting in significant losses for individuals 

and institutions alike. In response to this crisis, Basel III was introduced with the 

primary objective of imposing enhanced regulatory measures on financial institutions 

worldwide to mitigate the likelihood of a recurrence of such a severe economic 

downturn. It is crucial to recognize that the genesis of Basel III did not emerge from 

zero, but rather can be traced back to the evolutionary trajectory of Basel I and Basel II. 

Given the inherent deficiencies identified in the frameworks of Basel I and Basel II, 

particularly in addressing the global capital requirements for banks, the imperative for 

Basel III became apparent. Consequently, Basel III was conceived as a necessary 

evolution to address the prevailing issues within the global banking system stemming 

from its predecessors. 
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The Basel Committee on Banking Supervision (the BCBS or the Basel Committee) 

was established in 1974. King & Tarbert (2011) mentioned that throughout the 1980s 

and 1990s, many countries tried to deregulate bank and financial systems in their 

counter in order to allow banks to compete for larger market shares. However, this led 

to a rapid expansion of both domestic and foreign exposures by banks, as the regulatory 

landscape governing capital requirements was perceived to be inadequately stringent 

during this period. Consequently, these exposures were not adequately covered by 

corresponding capital bases. To address this challenge, the result was Basel I. 

Nonetheless, Basel I exhibited a significant flaw: its categorical risk weights were not 

only crudely calibrated but also permitted and, in fact, encouraged regulatory arbitrage.  

Eventually Basel Committee decided to overhaul the framework, giving rise to the 

introduction of Basel II in 2004. This new framework of risk management introduced 

the risk in financial markets and business operations and brought the key concept of 

three pillars. The first pillar emphasized Minimum Capital Requirements, the second 

pillar focused on the Supervisory Review and Response to the First Pillar, and the third 

pillar underscored Market Discipline (or Market Constraints Mechanism), all with the 

overarching goal of promoting the stability of the financial system. Lall (2009) stated 

the failure of Basel II can be succinctly attributed to regulatory capture. A limited 

cohort of international banks succeeded in exerting influence over the Basel process, 

manipulating the rules of international capital regulation to maximize their profits at the 

expense of those entities lacking representation in the decision-making apparatus. 

Regarding Basel III, also recognized as measures implemented in response to the 

2007-8 financial crisis, the framework was unveiled in 2010. Basel III aimed to fortify 

regulations pertaining to capital adequacy, liquidity risk management, and systemic risk 

monitoring. The primary focus was on attaining higher and superior-quality capital, 

coupled with the imposition of more stringent requirements for the measurement and 

monitoring of liquidity risk. The implementation of these novel rules sought to augment 

proactive provisions for credit losses. On the other hand, Allen, CHAN, and Milne 

(2012) highlighted an ongoing debate over whether the new Basel III regulations 

concerning capital and liquidity would substantially escalate the cost of bank 

intermediation and curtail economic activity or if their impact on output growth would 
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be more limited. This issue remains a subject of contentious discussion in the academic 

and financial sectors.  

Loss Given Default (LGD) plays a critical role in Basel III when companies seek to 

quantify the extent of loss or determine the collateral required to offset expected losses. 

While the calculation of LGD is a complex process, contemporary financial solution 

providers offer LGD models that facilitate a direct computation of LGD. Moody's and 

S&P are among the prominent institutions that furnish widely used LGD models in the 

financial landscape. These models contribute significantly to enhancing the precision 

and efficiency of LGD calculations for businesses navigating the regulatory landscape 

defined by Basel III. 

Moody’s has developed a sophisticated method knows as LossCalc. Gupton and 

Stein (2002) did research on this model 20 years ago. Their report concluded that 

LossCalc represents a multi-factor statistical model meticulously crafted using a 

database encompassing over 1900 defaulted instruments. This model provides estimated 

Loss Given Default (LGD) values for three distinct types of financial products: bonds, 

syndicated loans, and preferred stock. The analytical framework of LossCalc operates 

on four hierarchical levels, incorporating economic factors, industry factors, instrument-

specific considerations, and capital structure. The authors of the study conducted a 

comparative analysis between LossCalc and alternative methods to discern the model's 

performance. Their findings revealed that LossCalc outperformed alternative methods in 

terms of LGD expectations, demonstrating superior accuracy, particularly in identifying 

instances of low recoveries when compared to historical average methods. 

Expanding on the framework for Loss Given Default (LGD) analysis, Zheng & 

Huang (2014) indicated that the LossCalc LGD model includes factor transformation, 

modelling, and mapping. Factor transformation involves converting relevant influencing 

factors into model variables. From their study, it shows that Moody’s believes that using 

a composite index for forecasting macroeconomic variables will yield better predictive 

results of Loss Given Default (LGD) than using individual macroeconomic indicators 

alone. In terms of debt type and repayment order, using the average historical default 

loss rate is deemed to achieve better predictive results. As to the modelling phase, the 

LossCalc model primary applied regression methods. Regarding the last part of 
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composite index forecasting method which is called as mapping, comparison between 

the output of LossCalc model and the statistical results of historical default rates will be 

used. 

Regarding the last topic of this study, the application of machine learning techniques 

in risk management is addressed. Bastos and Matos (2022) discussed three specific 

machine learning techniques employed for predicting Loss Given Default (LGD). These 

techniques include fractional regression models, decision trees, and gradient boosting 

machine models. Bastos (2010) in his earlier paper mainly focused on regression tree 

models application for forecasting bank loan credit losses. Through extensive data 

analysis, Bastos concluded that regression tree models have a statistically significant 

predictive advantage over regression models in the dataset he used in terms of RMSE 

and MAE. 

In addition to fractional regression models, decision trees, and gradient boosting 

machine models, other popular methods for predicting Loss Given Default (LGD) 

include random forest and Ordinary Least Squares (OLS). Töws (2016) raised a 

question whether normal methods, such as ordinary least squares (OLS) linear 

regression can be thought as an appropriate way for estimating LGD. To address this, a 

comparative analysis was undertaken between OLS and more complex methods, such as 

regression trees and multi-step models. The results indicated that the regression trees 

model exhibited a significantly better performance than OLS linear regression, 

particularly when dealing with large datasets. 

Contrary to the perception that linear models are not considered the most suitable for 

predicting LGD, Yashkir (2013) focused on mainly on linear models. They compared 

several most popular LGD models including Tobit, LSM, Three-Tiered Tobit, Beta 

Regression, Inflated Beta Regression, Censored Gamma Regression. Besides, after 

comparison of these models, they concluded that the performance quality of the model 

depends mainly on the proper choice of model factors, but not on the fitting model. In 

summary, this means the performance quality of the model depends more on the choice 

of factors (variables) used to construct the model, rather than on the specific fitting 

model chosen. Even a simple linear model can perform well if the appropriate factors 

are selected. 
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3. METHODOLOGY 

In this chapter, our focus will be primarily directed towards exploring the implications 

of the new Basel IV framework and its impact on LGD. We will begin by examining the 

latest changes introduced under Basel IV and how they influence LGD. Subsequently, 

we shall delve into the mathematical aspects concerning the definition and measurement 

of LGD. Finally, our attention will shift towards the mechanics behind Moody's model 

for LGD prediction, as well as the performance evaluation of machine learning models 

in this context. Through a comprehensive exploration of these topics, readers will 

develop a foundational understanding of LGD and the various methodologies employed 

in its prediction, catering to both novice and advanced learners alike. 

 

3.1. New Changes and Impact of LGD in Basel IV 

"Why are banks so important in our lives?" Some may ponder this question. Simply 

put, modern banks provide the financial means for ordinary people to make significant 

purchases such as homes and university tuition. They also finance companies, enabling 

business expansion and increased profitability. Furthermore, with the advancement of 

digital payment systems, banks have become increasingly vital to a country's financial 

infrastructure. Within the banking system, the Basel Accords, established by the Basel 

Committee on Banking Supervision (BCBS), serve as internationally agreed-upon rules. 

Initially supported by G10 Governors and central banks, the Basel Accords now involve 

28 jurisdictions and 45 institutions. 

 

3.2.1.  Overview of Basel IV 

Basel IV aims to strengthen risk management practices, impose higher capital 

requirements on banks, and address inconsistencies in measuring and reporting risk 

exposures, building upon the shortcomings identified in Basel III. The new accords 

strive for greater consistency, comparability, and transparency in risk measurement and 

capital adequacy assessment. Six key changes under Basel IV include enhanced 

standardized approaches, restricted use of Internal Ratings-Based (IRB) approaches, a 
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leverage ratio buffer, a shift in operational risk calculation, a risk-sensitive floor, and 

minimum capital standards. 

Compared to Basel III, some argue that moving away from IRB may not fully 

satisfy global financial institutions. This shift could be viewed as a reversal of the 

principles laid out in Basel II. Exiting IRB could potentially reintroduce ambiguity in 

bank risk management and capital allocation processes. 

 

 

Figure 1 - The effects and implication of Basel IV 

 

3.3.2.  LGD in Basel IV 

In the context of LGD changes under Basel IV, Loss Given Default (LGD) input 

floors have been introduced. But first, what exactly are input floors? When banks 

employ internal models to estimate parameters such as the probability of default, they 

typically require enough observations for accurate estimation. If the number of input 

observations is too low, it indicates a significant risk of underestimation by the bank. 

The 2008 financial crisis revealed that banks often lacked adequate data for 

analysing default probabilities, contributing to the crisis. Consequently, Basel III and 

Basel IV emphasize the importance of input floors to enhance the robustness and risk 

sensitivity of Internal Ratings-Based Approaches (IRBA) models used in Risk-

Weighted Asset (RWA) calculations. As a result, input floors for LGD and Probability 

of Default (PD) were introduced. 

Under the Basel IV framework, LGD input floors are set at values ranging from 

25% to 50% for the unsecured portion of credit exposure, and from 0% to 15% for the 

secured portion. As a result, European Banking Authority (2019) indicated the increased 



XIXIAN CHEN 

   

16 

 

significance of LGD input floors, particularly for positions subject to Internal Rating-

Based Approaches Notably, these proposed LGD input floors are expected to have a 

substantial impact on Risk-Weighted Asset, especially in exposures to specialized 

banks, corporate Small and Medium-sized Enterprises (SMEs), and various retail 

categories. Chalpka, R., & Kopecsni, J. (2008) mentiond that this impact is particularly 

evident given the typically lower quality of data associated with LGD modelling 

compared to PD modelling. 

 

 

Figure 2 - Percentage change in IRBA SHE per exposure class without LGD floor. 

 

3.2. Mathematical Definition and Measurement of LGD 

Loss Given Default (LGD) represents the percentage of economic loss suffered by a 

bank in the event of a borrower's default. To fully grasp this concept, it's essential to 

define default, loss, and default risk exposure accurately. In the context of bank loans, 

default occurs when a borrower fails to meet contractual obligations, resulting in 

economic loss for the bank. Loss encompasses all relevant factors, including significant 

discount effects and direct and indirect costs incurred during the loan recovery process. 

Default risk exposure refers to the anticipated exposure to losses due to the potential 
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default of a borrower. In summary, LGD can be defined as the ratio of the economic 

loss incurred by a creditor (bank) following a debtor's (borrower's) default on a specific 

transaction (obligation) to the risk exposure of that transaction. 

 

3.2.1.  Mathematical Definition 

In mathematical terms, Loss Given Default (LGD) can be defined as the loss 

conditioned on the event of default, and its value is contingent upon the definition of 

default. In the following formula, we denote D as the event of default, L as the loss. 

LGD is represented as the random variable: 

𝐿𝐺𝐷 = 𝑃(𝐿|𝐷 = 1),                                             (3.1) 

Where D = 1 in the event of default and D = 0 otherwise. 

 

3.2.2.  Measurement 

There are several methods to measure LGD, and one prominent approach is Market 

LGD. This method involves measuring LGD by examining the market price of publicly 

traded bonds or loans that have defaulted. The market price inherently reflects investors' 

expectations regarding the recovery of bonds, including factors such as discounted 

principal, interest losses, and expenses associated with debt restructuring. The formula 

for Market LGD can be expressed as follows: 

𝐿𝐺𝐷 = 1 −
𝐵𝑃

𝐸𝐴𝐷
,                                                     (3.2) 

Where BP represents the bond price and EAD stands for exposure at default. Since they 

result from a market transaction, they are considered less susceptible to improper 

valuation. 

The second method, known as workout LGD or the recovery discounting method, 

mentioned in Schuermann (2004)’s study, involves calculating LGD by discounting 

expected cash flows during the default settlement process, while accounting for various 

expenditures including fees. These cash flows are discounted to the point of default to 

ascertain the LGD value. The formula is as follows: 
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𝐿𝐺𝐷 = 1 −
𝑃𝑉1 + 𝑃𝑉2

𝐸𝐴𝐷
,                                              (3.3) 

Where PV1 refers to the "recovered principal and interest amount," and PV2 signifies 

"the realized recovery amount from the liquidation of pledged assets after default."  

The critical concept in this method is the discount rate, yet determining the 

appropriate rate can be challenging. Debt restructuring may involve the issuance of 

different assets, ranging from risky ones like equity or warrants to less risky options like 

notes, bonds, or cash. The correct valuation rate should ideally align with the risk level 

of the asset. Following default, the bank, now an investor in a defaulted asset, should 

value it accordingly, potentially employing the bank's hurdle rate. Unsuitable rates 

include the coupon rate (predetermined before default, often too low) and the risk-free 

(or Treasury) rate. 

The last method is Implied Market LGD, also known as the spread estimation 

method in the study of Md (2023). This approach draws insights from the credit spreads 

of bonds that are still publicly traded in the market and have defaulted. It operates under 

the assumption that the market pricing of bonds is efficient and promptly reflects 

changes in the credit risk of the issuing company. The yield spread between corporate 

bonds and risk-free rates represents the risk spread of the bonds. This risk premium 

encapsulates both the Probability of Default (PD) and Loss Given Default (LGD), but 

its application is less common due to the requirement for substantial data support and 

the utilization of complex asset pricing models. 

 

3.2.3.  Single Influencing Factors of LGD 

The technique for analysing the influencing factors of Loss Given Default (LGD) 

involves a statistical analysis method used to determine the various directions and 

degrees of influence within LGD affected by multiple factors. In simpler terms, the 

LGD amount is influenced by both idiosyncratic risk factors and systematic risk factors. 

This theory has evolved through three versions. 
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The first version was raised by Frye (2002) who believed that recovery rate (equal to 

1-LGD) is affected by systematic factor and idiosyncratic risk factor, so the estimation 

of recovery rate is 𝑅𝑗. 

𝑅𝑗 = 𝜇𝑗 + 𝜎𝑝𝑋 + 𝜎√1 − 𝑝2𝑍𝑗 ,                                           (3.4) 

Where 𝑅𝑗 is referred to the recovery rate, X represents the systematic risk factor, 𝑍𝑗 is 

the idiosyncratic risk factor. 𝑝 represents the correlation coefficient between systematic 

risk factor and idiosyncratic risk factor 𝑝 = 𝐶𝑜𝑟𝑟(𝑅𝑗 , 𝑋).  

In addition, this model assumed that same seniority class bonds have the same 

average default recovery rate and assumed that bond holders’ idiosyncratic risk factors 

𝑍𝑗  are independent and follows a normal distribution. Therefore, the recovery rate 

follows a normal distribution with mean 𝜇𝑗, and the variance 𝜎. 

However, this model has a significant flaw which is that the value of 𝜇𝑗  is not 

limited within [0,1], it further caused the value range of  𝑅𝑗  is between (-∞, +∞). 

Obiviouly this outcome didn’t have any explainable economic meaning from Marc & 

Zöllner (2023). 

Considering the fat tail in empirical research, Pikhtin (2003) assumed the default 

recovery rate follows Log-normal distribution, in this second version of theory. 

𝑅𝑗 = exp (𝜇𝑗  +  𝜎𝑝𝑋 +  𝜎√1 − 𝑝2𝑍𝑗) ,                              (3.5) 

Although the assumption of a log-normal distribution is an improvement over the 

normal distribution assumption, it still does not address the issue of the range of values 

for recovery rates upon default. Afterwards, Schonbucher (2003) made a logit change 

on normal distribution, in the end third version of model was created out. The respective 

𝑅𝑗 can be represented as: 

𝑅𝑗 =  
exp(𝑅𝑗

′)

1 + exp  (𝑅𝑗
′)

,                                                     (3.6) 
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Where  𝑅𝑗
′ =  𝜇𝑗 +  𝜎𝑝𝑋 +  𝜎√1 − 𝑝2𝑍𝑗 , and apparently this function satisfy the 

requirement of the value range of default recovery rate has to be fall within [0, 1], 

eventually it will make the LGD falls between the same value range. 

In this section, we discussed a single influencing factor, which was simplified from 

the complex external world. While this simplification makes the model highly 

explainable, it fails to address the essence of the problem because describing the 

characteristics of only one external factor can be challenging. Therefore, further 

investigation into external factors is necessary. In the next section, we will delve into a 

multiple factors analysis model, using Moody's model as an example. 

3.3. Moody’s Model for Predicting LGD 

To identify factors that best describe LGD and accurately estimate outcomes, we 

will explore one of the most renowned multiple factors models for predicting LGD, 

known as LossCalc. Initially developed by Gupton and Stein (2002), LossCalc was later 

adopted for practical use by Moody’s. The accuracy of LossCalc estimation 

significantly surpasses traditional methods such as the Historical Moving Average 

Method. This improvement can be attributed to the extensive dataset maintained by 

Moody’s, containing over 4000 records spanning loans, bonds, and preferred stock 

recovery data over a period of 20 years. 

The LossCalc model incorporates nine explanatory factors to estimate LGD, 

encompassing aspects such as debt type and seniority, firm-specific capital structure, 

industry, and macroeconomic variables. LossCalc's forecasts for both immediate and 

one-year horizons are well-suited for various investor and risk management 

applications, offering enhanced insights into LGD prediction and risk assessment. 

 

 

Debt Type and Seniority      

 

Historical average LGD by debt-type (loan, bond, 

and preferred Historical Averages 

 

stock) and seniority (secured senior unsecured, 

subordinate, etc.).   

 

Firm-Specific Capital Structure     
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Seniority standing of debt in the firm's overall 

capital structure; this Seniority Standing 

 

is the relative seniority of a claim. Note that this is 

different from  

 

the absolute seniority stated in Debt Type and 

Seniority above. The  

 

most senior obligation of a firm might be, for 

example, a subordinate note  

 Firm leverage (Total Assets / Total Liabilities)   Leverage 

 

Industry       

 

Moving average of normalized industry recoveries. 

We have here Industry Experience 

 controlled for seniority class.     

 Banking industry indicator    Banking Indicator 

 

Macro Economic      

 

One-year median RiskCalc default probability 

across time. RiskCalc 

 

Moody's Bankrupt Bond Index, an index of prices 

of bankrupt bonds MBBI 

 

Trailing 12-month speculative grade average 

default rate  Speculative-Grade 

       Default Rate 

 

Changes in index of Leading Economic 

Indicators  LEAD 

  

Table 1: Explanatory factors in the LossCalc models. 

 

3.3.1.  Analytical Framework 

When utilizing the LossCalc model to calculate LGD, the process can be divided 

into four distinct steps. Let's begin with Factor Transformation which refers to 

converting influencing factors (i.e., predictors) into variables that can be used in the 

model. This step aims to transform or process the raw data or influencing factors in a 

way that makes them suitable for model construction and analysis. For instance, 
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Moody's suggests that using a composite index for macroeconomic variables yields 

better predictive performance compared to individual indicators. Similarly, when 

considering debt types and repayment order, employing the average historical default 

loss rate enhances predictive accuracy. 

The defaulted debt prices used in the LossCalc model do not statistically follow a 

normal distribution. Therefore, to achieve better predictive accuracy, Moody's uses the 

Beta distribution instead of assuming a normal distribution. The Beta distribution, 

ranging from 0 to 1, is not constrained by symmetry assumptions and offers greater 

flexibility in describing data distribution. Specifically, it excels in characterizing data 

with higher probability distribution near the boundaries of 1 or 0, which is particularly 

useful for describing certain value ratios such as recovery rates. 

In practice, due to substantial differences in the average recovery distributions 

among debt types, the LossCalc model initially groups variables based on different 

debts (e.g., loans, bonds, and preferred stocks). These variables are then transformed 

from Beta distribution to normal distribution. This transformation only requires 

observation of the mean (µ), standard deviation (σ), and bounding values of the 

recovery rates. The probability values of the transformed variables align with the 

probability values associated with the Beta distribution. 

Once the transformation is complete and normal distribution and significance 

characteristics of explanatory variables are confirmed, the LossCalc model interprets the 

impact of independent variables and sub-models on the dependent variable through 

Linear Weighted Regression. The model can be represented as follows: 

𝑅′ = 𝑎 + 𝑏𝑇𝑌𝑃𝐸 + 𝑐𝐿𝐸𝑉𝐺 + 𝑑𝐼𝑁𝐷𝑌 + 𝑒𝑀𝐴𝐶𝑅𝑂 + 𝜀,                 (3.7) 

Where 𝑅′  is the recovery rate transformed form a Beta distribution to a Normal 

distribution, 𝑇𝑌𝑃𝐸  represents Debt Type and Seniority, 𝐿𝐸𝑉𝐺  is Capital Structure, 

𝐼𝑁𝐷𝑌 is Industry, and 𝑀𝐴𝐶𝑅𝑂 is referred to macroeconomic variables. 𝑎, 𝑏 , 𝑐 , 𝑑 , 𝑒 

are all model parameters, 𝜀 is error.  

In the next step, we focus on determining the parameters of the Beta distribution. It's 

important to note that 𝑅′ is expressed through a normal distribution. When obtaining the 

mean value μ and variance value σ, an inverse action is necessary to transform it back 
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into the original Beta distribution. We can derive the two parameters of the Beta 

distribution using the following formulas: 

𝜇 =  
𝛼

𝛼 + 𝛽
,                                                                 (3.8) 

𝜎 = √
𝛼𝛽

(𝛼 + 𝛽)2 + 1 + 𝛼 + 𝛽
,                                                  (3.9) 

Therefore, we can get the result of 𝑅 (recovery rate) by addressing the following 

formula: 

𝐵𝑒𝑡𝑎(𝑅, 𝛼, 𝛽) =
𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)
(𝑅)𝛼−1(1 − 𝑅)𝛽−1,                        (3.10) 

The final step involves calculating LGD. Once the value of R (recovery rate) is 

obtained, we can apply the relationship between LGD and RR, which states that LGD = 

1 – R, to derive the value of LGD. 

In summary: calculate R' using the linear regression model, assuming R' follows a 

normal distribution; compute the mean 𝜇 and variance 𝜎² of R'; use these mean and 

variance values to solve for the parameters 𝛼 and 𝛽 of the Beta distribution; represent 

the default recovery rate R as following the Beta distribution with the solved parameters. 

In evaluating the performance of the LossCalc model, two fundamental measures 

are commonly employed. The first measure assesses accuracy, gauging how effectively 

LossCalc predicts outcomes compared to actual data. The second measure evaluates 

efficiency, examining the width of confidence intervals around the model's predictions. 

It's important to note that these measures are interdependent and correlated to some 

extent. For instance, an increase in the confidence interval from 95% to 99% may 

positively impact accuracy. 

 

3.3.2.  Effective Validation 

In the validation of the LossCalc model, Moody's employs the method of Walk 

Forward Validation. This involves using a period of data for model fitting and then 

testing the fitted model against subsequent data periods. This process is iterated 

continuously until testing reaches the current point in time. By doing so, the LossCalc 
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model avoids the pitfall of fitting models to specific types of sample data and testing 

against homogeneous data, thus mitigating the risk of overfitting results. Moreover, 

Moody's selects data periods spanning multiple economic cycles for model validation to 

ensure robustness. 

Moody's emphasizes that model validation is critical for establishing model 

credibility. Therefore, validation must be conducted rigorously and meticulously, with 

adjustments made for any unforeseen errors. For example, maintaining consistency in 

data sources is essential for comparative model testing. However, variations in 

predictive performance may arise for the same model across different sample tests. To 

minimize such differences and prevent misleading results, Moody's ensures the use of 

identical data sources and testing scopes when comparing the LossCalc model with 

other benchmark models, such as historical average recovery rate estimation methods. 

3.4. Machine Learning Methods for Predicting LGD 

In today's world, in addition to historical methods and external model approaches, 

Machine Learning methods are increasingly utilized across various industries 

worldwide. This trend is attributed to the flexibility of Machine Learning methods, 

which can adapt to different situations and be adjusted as needed to meet specific 

requirements. In this section, we will explore several popular Machine Learning 

methods for predicting LGD using datasets sourced from Moody's. Subsequently, we 

will conduct testing to identify the method with the best performance and compare their 

advantages and disadvantages. This section aims to provide readers with a fundamental 

understanding of the application of Machine Learning techniques in LGD prediction. 

 

3.4.1.  Overview of the Database 

The dataset utilized in our research is known as Moody’s Ultimate Recovery Dataset 

(URD), comprising 2,784 bonds and 1,846 loans defaulted data spanning from 1987 to 

2010 in the United States. The term "ultimate recovery rate" refers to the recovery 

values that creditors receive upon resolution of default. The coverage of default entities 

in the dataset includes US non-financial corporates with over $50 million in debt at the 

time of default. The dataset information is detailed in the following table, indicating that 

we have 27 columns or features. Some of these features are of data types "INT" or 
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"FLOAT," facilitating data analysis. However, some are of data type "OBJECT," 

necessitating conversion into dummy variables for analysis. 

Column Dtype   Column Dtype 

AD_ID int64  totamount float64 

AC_ID int64  debt float64 

name object  instdebt float64 

industry object  priabove float64 

date_default datetime64[ns] above float64 

type_default object  pribelow int64 

instrument object  cushion float64 

collateral object  irindex object 

AIID int64  spread float64 

datedefault datetime64[ns] effir float64 

ranking int64  NRR float64 

origin int64  FRR float64 

priamount float64  DRR float64 

accamount int64  RR float64 

Table 2: Data frame and data dype of URD dataset used in this paper. 

In our research, we will segregate bonds and loans for analysis. Treating them 

similarly would implicitly assume that both financial products possess identical features 

and are impacted simultaneously by the same factors. Therefore, it is imperative to 

separate them during data analysis. Additionally, studies by Acharya, Bharath, and 

Srinivasan (2007) and Varma & Cantor (2005) have indicated that, generally, loans 

issued by banks have a higher probability of non-default compared to bonds. 

Furthermore, from a collateral perspective, secured lenders tend to recover more than 

unsecured creditors, aligning with common sense. Hence, it is essential to conduct 

separate analyses for bonds and loans to draw objective and meaningful conclusions. 

 

3.4.2.  Explanatory Data Analysis 

In this section, we will conduct Exploratory Data Analysis (EDA) on our dataset 

before applying machine learning techniques. Jacobs & Karagozoglu (2018) indicated 

that EDA involves using numerical summaries and visualizations to explore the data 

and identify potential relationships between variables. The primary objectives of EDA 

include discovering anomalies in the data (such as outliers or unusual observations), 

identifying patterns, and proposing interesting questions or hypotheses. 
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By performing EDA, we can gain insights into the underlying structure of the data, 

understand its distribution, and uncover any potential issues or biases. This process 

allows us to make informed decisions about which machine learning techniques or 

statistical methods to apply and how to proceed with further analysis. 

 

Figure 3 - Distribution of default for bonds and loans from 1989 to 2010. 

From the histogram in Figure 3 above, depicting defaults data from 1987 to 2010, 

we observe distinct trends for loans and bonds. Notably, there are three prominent peaks 

within this period: 226 defaults in 1991, 783 defaults in 2002, and 370 defaults in 2009. 

The year 2002 stands out as the one with the highest number of default cases. 

Upon closer examination and contextualizing with economic history, we can 

propose potential reasons for these default peaks. The brief recession experienced in the 

United States in 1991 resulted from a combination of factors, including war, financial 

crisis, manufacturing downturn, and debt issues. While the scale of this recession was 

relatively modest and its duration short, it nonetheless exerted a significant impact on 

the economy. 

The year 2002 followed the bursting of the dot-com bubble, leading to global 

economic instability and numerous bankruptcies, particularly within the technology 

sector. Additionally, the September 11, 2001, terrorist attacks further exacerbated 

economic uncertainty, potentially contributing to the repercussions witnessed in 2002. 
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The peak of the global financial crisis occurred in 2008, with its effects intensifying 

in 2009. This crisis precipitated the collapse of financial markets, economic recession, 

and widespread corporate bankruptcies on a global scale. The ramifications of the 

financial crisis persisted for several years, with 2009 representing one of its peak 

periods. 

 

Figure 4 - The distribution of default for bonds and loans across various industries. 

This plot provides distinct insights into the count numbers of defaults attributed to 

each industry in the total dataset. For loans, Distribution, Consumer Products, and 

Manufacturing accounted for the top three industries. Conversely, for bonds, the top 

three industries differed significantly from loans. The Energy sector occupied the first 

position, followed by Telecommunications, and Distribution. 

This discrepancy in industry distribution between bonds and loans underscores the 

diverse default patterns across sectors. For instance, while Energy emerges as the 

leading industry for bond defaults, it does not hold the same position for loans. Such 
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variations indicate differences in risk exposure and financial stability across different 

sectors. For investors, diversifying investments across various industries becomes 

crucial for effective risk management. Understanding the default distribution across 

different sectors empowers investors to make informed decisions regarding portfolio 

allocation, thereby mitigating risks associated with any single industry concentration. 

 

Figure 5 - Discounted recovery rate for bonds and loans across various industries. 

Figure 5 presents the discounted recovery rate (DRR is the result of discounting the 

recovery amount of defaulted debt after default at a certain discount rate to its present 

value.) for bonds and loans across various industries using boxplots, which offer 

valuable insights into the variability across industries. The width of the boxes and the 

length of the whiskers depict the variability of DRR within each industry. Industries 

with longer whiskers or wider boxes tend to exhibit higher variability in DRR, 

indicating potential differences in recovery rates among entities within those industries. 

Additionally, any points lying outside the whiskers represent potential outliers in the 

data, signifying extreme values or unusual cases where the recovery rate significantly 

deviates from the norm within a particular industry. 

Moreover, the line inside each box represents the median DRR for each industry. 

Comparing the positions of these lines across industries provides insights into the 
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typical recovery rate within each sector. From this plot, we observe that for bonds, the 

services industry exhibits the greatest variability, while for loans, it is the 

telecommunications sector. In terms of median values, bonds in the natural products 

industry boast the highest median DRR at 83.9%. 

 

Figure 6 - Average discounted recovery rate by instrument. 

Moving on to another influential variable affecting the recovery rate, namely the 

instrument type, we observe distinct categories for loans and bonds. For loans, we 

typically categorize them into two parts: Revolver and Term loan. A revolver allows a 

borrower to access funds up to a predetermined credit limit over a specified period, 

while a term loan provides a fixed amount of funds upfront, with repayment occurring 

over a specified period through regular instalments. In the case of bonds, they 

commonly exhibit five levels of instruments ranging from highest quality to lowest 

quality: senior secured bonds, senior unsecured bonds, subordinated bonds, senior 

subordinated bonds, and junior subordinated bonds. The tree map reveals that the DRR 

of each instrument aligns precisely with its level of quality. In other words, for bonds, 

senior secured bonds boast the highest DRR at 64% (indicating the lowest LGD), while 

junior subordinated bonds exhibit the lowest DRR at 18% (signifying the highest LGD). 

Conversely, loans demonstrate relatively higher DRR values compared to bonds. 

Both term loans and revolvers exhibit DRR exceeding 75%. This suggests that loans 

generally exhibit lower LGD compared to bonds across various instrument types. 
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Figure 7 - Average discounted recovery rate by collateral for bonds and loans. 

Let's delve into the analysis of the DRR by collateral, considering that banks often 

require collateral in the form of cash or equity, known as margin, to mitigate the risk of 

default. Examining Figure 8, we observe that collateral has a varied influence on DRR, 

depending on whether it pertains to bonds or loans. For bonds, collateral appears to 

exert a limited impact on DRR. However, specific types of collateral, such as second 

lien, third lien, and unsecured bonds, exhibit relatively low DRR, indicating higher 

LGD. 

Conversely, for loans, collateral plays a more significant role in determining DRR. 

Accounts receivable, cash, and inventory secured loans emerge as the top three 

collateral types with the highest DRR, indicating lower LGD. Conversely, collateral 

types such as intellectual property and intercompany debt secured loans exhibit notably 

lower average DRR values. This analysis underscores the importance of collateral in 

determining DRR, particularly for loans, where certain collateral types significantly 

impact the recovery rate and, consequently, the LGD. 
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Figure 8 - Loan and bond recovery rate distribution. 

Let's take a general look at the distribution of DRR in our dataset. It's evident that 

both bonds and loans exhibit strong skewness in their DRR distributions. For bonds, we 

observe a bimodal distribution with peaks at both ends. Approximately 17% of the 

distribution falls within the interval from 0 to 0.1, while 21% falls within the interval 

from 0.9 to 1. This suggests that bond default rates are notably high at both very low 

and very high values, indicating the presence of two distinct default scenarios or market 

behaviours. On the other hand, the DRR distribution for loans is unimodal, with the 

majority of defaults concentrated between 0.9 and 1, accounting for 63% of the 

distribution. This indicates that loan default rates are relatively concentrated, with most 

borrowers demonstrating high repayment ability. However, there are also a few cases of 

defaults in extreme situations. 

Overall, significant differences exist in the default rate distribution between bonds 

and loans, reflecting different risk characteristics and market behaviours for the two 

asset classes. The bond market demonstrates a more diverse bimodal distribution, 

reflecting the diversity of default rates for different types of bonds. Conversely, the loan 

market exhibits a more concentrated unimodal distribution, possibly influenced by more 

consistent market factors. 
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3.4.3.  Correlation Analysis 

To assess the relationships between the explanatory variables and the LGD outcome, 

we will conduct a correlation analysis. We have identified six main factors as 

explanatory variables: 

• Debt Cushion (cushion): This represents the portion of a company's total 

debt that ranks lower in priority for repayment in the event of default. It 

quantifies the amount of debt subordinate to other obligations and is often 

expressed as a percentage of the total debt. 

• Ranking: This variable defines the rank of the debt in the capital structure, 

where lower numbers indicate higher priority for repayment. 

• Spread: The spread refers to the difference between the loan interest rate and 

the interest rate index. It serves as an indicator of the loan's risk level and 

reflects market conditions, with higher spreads suggesting greater risk or 

market scepticism about the borrower's creditworthiness. 

• Effective Interest Rate (effir): This is the actual annualized interest rate of a 

loan, accounting for the interest rate index, spread, and any additional fees or 

adjustments. It represents the interest rate paid by the borrower, considering 

all relevant factors. 

• Principal Below (pribelow): This refers to the portion of debt that remains 

unpaid at default and is lower than the original principal amount. 

• Principal Above (priabove): This denotes the portion of debt instruments that 

remain unpaid at default and exceeds the original principal amount. 
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Figure 9 - Correlation heatmap between DRR, ranking, cushion, spread, effir, priabove, 

pribelow. 

The correlation heatmap analysis has revealed several insights regarding the 

relationships between DRR and the selected variables: 

1. Negative correlation with Ranking: The correlation coefficient of -0.43 indicates 

an inverse relationship between recovery rates and ranking. Here, "ranking" pertains to 

the hierarchical position of a debt within the corporate debt structure. A debt with a rank 

of 1 holds the highest priority for repayment, followed by subsequent ranks. 

Consequently, the observed negative correlation implies that higher recovery rates tend 

to align with lower-ranking debts within the debt structure of the firm. 

2. Positive correlation with Debt Cushion: With a correlation coefficient of 0.52, 

there is a moderate positive correlation between DRR and Debt Cushion. This indicates 

that higher recovery rates may coincide with greater levels of debt cushion, suggesting 

that debt instruments with higher DRR may possess more substantial debt cushion. 
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3. Negative correlation with Interest Rate Spread: The correlation coefficient of -

0.44 indicates that higher recovery rates may correspond to lower interest rate spreads. 

This suggests that debt instruments with higher recovery rates may have lower effective 

interest rates, reflecting lower perceived risk or market scepticism. 

4. Negative correlation with Effective Interest Rate: With a correlation coefficient of 

-0.42, there appears to be a potential relationship between recovery rates and lower 

overall borrowing costs. This implies that debt instruments with higher recovery rates 

may have lower effective interest rates, contributing to lower borrowing costs for 

borrowers. 

In summary, the correlation analysis has provided valuable insights into the 

associations between DRR and various variables. These associations offer valuable 

information for risk assessment and debt management strategies, highlighting the 

potential impact of DRR on debt instrument characteristics and borrowing costs. These 

factors will be instrumental in our subsequent machine learning analysis. 

 

3.4.4.  Linear Regression Model 

In a linear regression model, we seek to uncover the relationship between a single 

dependent variable (Y) and multiple independent variables (X). In this section, we will 

employ multiple linear regression to conduct a straightforward prediction using a set of 

six numerical variables and some categorical variables, with the objective of exploring 

the predictive capability of these variables for Loss Given Default (LGD), represented 

as (1 - recovery rate). Multiple linear regression is a statistical technique designed to 

establish a linear relationship between independent variables and a dependent variable, 

thereby leveraging this relationship to predict the dependent variable. The model can be 

expressed as follows which are from the study of Svedberg, M., & Ljung, C. (2020): 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀,                               (3.11) 

where y represents the dependent variable DRR (1-LGD), 𝑥1, 𝑥2, … , 𝑥𝑝  represent the 

independent variables, 𝛽0, 𝛽1, … , 𝛽𝑝 is the regression coefficients, ε represents the error 

term. By minimizing the sum of squared errors, optimal estimates of the regression 
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coefficients can be obtained, thus establishing a linear relationship model between the 

independent and dependent variables. 

3.4.5.  KNN Regression Model 

KNN (K-Nearest Neighbours) regression is a supervised learning technique 

employed for regression tasks. In KNN regression, when forecasting the target value of 

a new data point, the method considers the closest neighbours from the training data and 

calculates the average (or weighted average) of their target values to make the 

prediction. The key steps involved in KNN regression are as follows: 

• Compute the distances between the new data point and all data points in the 

training set (typically using Euclidean distance or other distance metrics). 

𝑑 = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + (𝑥3 − 𝑦3)2 + ⋯,                   (3.12) 

• Find the K nearest training data points based on distance, known as the nearest 

neighbours. 

• For regression problems, take the average (or weighted average) of the target 

values of these K nearest neighbours as the prediction for the new data point. 

Feature scaling is also crucial in KNN regression. Since the KNN algorithm relies 

on distance metrics to determine nearest neighbours, the scale of features affects 

distance calculations. To ensure that each feature contributes roughly equally to 

distances, it's common practice to scale features to have similar magnitudes. Two 

commonly used methods for feature scaling are: 

• Standardization: Transforming feature values to follow a standard normal 

distribution with a mean of 0 and a standard deviation of 1. This can be achieved by 

subtracting the mean and dividing by the standard deviation. 

𝑥𝑛𝑒𝑤 =
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑(𝑥)
,                                               (3.13) 

• Normalization: Scaling feature values to a fixed range, typically [0, 1] or [-1, 1]. 

This involves subtracting the minimum value and dividing by the range (the difference 

between the maximum and minimum values). 
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𝑥𝑛𝑒𝑤 =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
,                                           (3.14) 

The advantages of KNN regression are its simplicity and ease of understanding. It 

does not require a training process, but it does require storing all training data points. 

Additionally, during prediction, it needs to compute the distances between the new data 

point and all training data points, which can be computationally expensive for large 

datasets. 

 

3.4.6.  Decision Tree 

Decision tree is a classic machine learning method widely used for addressing 

classification and regression problems due to its simplicity and interpretability. The 

methodology involves progressively dividing features during tree construction, where 

decision conditions are represented as internal nodes, and each leaf node represents an 

output category or value. Feature selection is crucial in this process, often employing 

metrics like information gain and Gini coefficient to evaluate feature importance and 

select the best splitting feature. 

In the coding aspect, we initially segmented the database into Bonds and Loans as 

discussed in the previous chapter. Subsequently, we executed several essential 

preprocessing steps, including one-hot encoding for categorical variables and 

standardization for numerical variables to ensure data availability and accuracy. 

Following this, we integrated the preprocessing and decision tree model into a pipeline, 

training the model using training data and making predictions on test data. 

Nath & Kumar Mohapatra (2017) discussed in their study that the advantages of 

decision tree models lie in their simplicity, intuitiveness, and ease of understanding and 

explanation, rendering them suitable for handling data with complex features and 

nonlinear relationships. However, decision trees also have some drawbacks, such as 

being prone to overfitting and sensitivity to data noise. 
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Figure 10 - Importance of regressors based on the sum of squares reduction in splits 

(Bonds). 

 

Figure 11 - Importance of regressors based on the sum of squares reduction in splits 

(Loans). 

 

3.4.7.  Random Forest 

Before talking about random forest, let us have a look on Bagging (bootstrap 

aggregation) first. Bagging, also known as bootstrap aggregating, is an ensemble 

technique that operates on the original dataset by repeatedly selecting k new datasets 

with replacement for training classifiers. It utilizes a collection of trained classifiers to 
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classify new samples, then aggregates the classification results of all classifiers using 

either majority voting or averaging their outputs. In detail, Bagging uses a set of trained 

classifiers to classify new samples. The process is as follows: 

1. Create sub-datasets: Generate multiple sub-datasets from the original dataset 

using bootstrap sampling. 

2. Train classifiers: Train an independent classifier on each sub-dataset. 

3. Classify new samples: Input the new sample into all classifiers to obtain multiple 

predictions. 

4. Aggregate results: Aggregate the predictions of all classifiers using majority 

voting (for classification) or averaging (for regression) to get the final prediction. 

This method reduces bias and variance by combining the decisions of multiple 

classifiers, thereby improving the model's stability and accuracy. The highest-voted 

class or the average output is considered as the final label. Such algorithms are effective 

in reducing bias and can also lower variance. 

Firstly, Random Forest employs CART decision trees as weak learners. In other 

words, Random Forest is essentially Bagging with CART decision trees as weak 

learners. Additionally, during the construction of each tree, only a random subset of 

features is considered, typically chosen as the square root of the total number of features, 

denoted as √𝑚. In contrast, conventional CART trees utilize all features for modelling. 

Consequently, not only are the features randomized, but the randomness of features is 

also ensured. 

The core idea of random forest is to construct a more powerful model by combining 

multiple decision trees. Each decision tree is built based on random sampling of the 

training data and random feature selection, ensuring that each tree has a certain level of 

diversity. During prediction, random forest integrates the predictions from all decision 

trees (For a given input sample, each decision tree predicts independently and obtains 

its own prediction result. These prediction results from all decision trees are collected to 

form a set.) and determines the final prediction result through voting (for classification 

problems) or averaging (for regression problems). 
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4. RESULTS 

In this chapter, we will begin with a brief introduction to several error metrics 

commonly used for evaluating machine learning models. Subsequently, we will analyse 

the performance of the three models listed in the previous chapter. Finally, we will 

conduct a comparative analysis between each model. 

 

4.4. Error Metrics 

Regarding the predictive accuracy of models, the most common methods for 

assessment are Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-

squared (R2) from Reis & Quintino (2023). 

Mean Squared Error (MSE) measures the average squared differences between the 

predicted values and the actual values. 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

,                                                  (4.1) 

Where: n is the number of observations, 𝑦𝑖 is the actual value of the target variable for 

observation i, 𝑦̂𝑖 is the predicted value of the target variable for observation i. 

Root Mean Squared Error (RMSE) is the square root of the MSE. It is in the same 

unit as the target variable and provides a more interpretable measure of error compared 

to MSE. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

,                                              (4.2) 

Where n, 𝑦𝑖, 𝑦̂𝑖, have the same meaning with above. 

R-squared (R²) measures the proportion of the variance in the target variable that is 

explained by the model. It ranges from 0 to 1, with higher values indicating better 

model fit. R-squared is a commonly used metric in regression analysis to evaluate the 

goodness of fit of a model. It represents the proportion of the variance in the dependent 

variable that is predictable from the independent variables. 
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𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

,                                            (4.3) 

Where 𝑦̅ is the mean of the actual values of the target variable. 

 

4.2. Model Performance 

In this section, we will present three error metrics for each model, allowing for a 

comparative analysis to discern their respective advantages. All of them were being 

used k-fold cross-validation for performance measures. 

 

4.2.1.  Multiple Linear Regression Model 

For this model, in addition to the six numerical variables discussed in the correlation 

analysis section, we introduced an additional categorical variable: Instrument. In the 

bond market, instruments denote the different priority levels or tiers of debt obligations 

issued by companies or governments. These tiers encompass senior secured bonds, 

subordinated bonds, and convertible bonds, each offering varying levels of risk and 

potential returns to investors based on their position in the capital structure. Since the 

instrument determines the order of repayment, it significantly impacts the DRR. As it is 

a categorical variable, we applied one-hot encoding to represent. Moreover, as 

previously discussed, loans and bonds possess different features, hence we will 

construct the model separately for each. 

 (RIGHT) 

Metric Value  Metric Value 

MSE 0.094  MSE 0.062 

RMSE 0.307  RMSE 0.248 

R² 0.329  R² 0.304 

     

Table 3: Multiple linear regression for bonds (left) and loans (right). 

For the bond market model, both MSE (Mean Squared Error) and RMSE (Root 

Mean Squared Error) are relatively low, indicating minimal error between predicted and 
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actual values. Conversely, for the loan market model, MSE and RMSE are slightly 

elevated, accompanied by a marginally lower R² (Coefficient of Determination) 

compared to the bond market model. This implies a somewhat reduced explanatory 

power for the actual data in the loan market model. 

 

4.2.2.  KNN Regression Model 

We implemented KNN regression with instrument as a categorical variable and six 

numerical variables. Initially, we encoded the categorical variable and standardized the 

numerical variables. We opted for 5 as the number of neighbours for the model. 

Metric Value  Metric Value 

MSE 0.149  MSE 0.145 

RMSE 0.386  RMSE 0.381 

R² 0.439  R² 0.341 

Table 4: KNN regression performance of bonds (left) and loans (right) 

The error metrics provide insights into the performance of the model: Mean Squared 

Error (MSE): is 0.086, indicating a relatively low level of prediction error on average. 

Root Mean Squared Error (RMSE): With an RMSE of 0.293. R-squared (R²): An R² of 

0.389 suggests that the model can explain approximately 38.86% of the variance in the 

target variable, indicating moderate predictive performance. 

Overall, the KNN regression model with the specified features and parameters 

performs reasonably well in predicting the target variable, as evidenced by the relatively 

low MSE and RMSE and the moderate R² value. 

 

4.2.3.  Decision Tree 

The most important features for bonds are effective interest rate, collateral accounts 

receivable and industry healthcare. the most important features for loans are collateral 

capital stock, industry manufacturing and instrument revolver. We opted for 10 as the 

depth for bonds and 5 for loans. 

Metric Value  Metric Value 

MSE 0.145  MSE 0.091 
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RMSE 0.381  RMSE 0.302 

R² 0.458  R² 0.336 

Table 5: Decision tree regression performance of bonds (left) and loans (right) 

From the performance score, we can see that decision tree model has a better 

performance for Loans which has all metrics lower than Bonds. 

 

4.2.3.  Random Forest 

By utilizing the same set of variables as employed in the decision tree model 

previously discussed and specifying the number of estimators as 50 and the maximum 

depth as 20 for the random forest model, we obtained the subsequent outcomes. 

Metric Value  Metric Value 

MSE 0.051  MSE 0.031 

RMSE 0.226  RMSE 0.177 

R² 0.635  R² 0.643 

Table 6: Random forest performance of bonds (left) and loans (right) 

In general, in comparison with the results of the decision tree model, the random 

forest model exhibits reduced MSE and RMSE, indicative of enhanced predictive 

performance. Furthermore, it is noteworthy that the R-squared value of the random 

forest model surpasses that of the decision tree model, registering at 0.635. This 

suggests that the random forest model is capable of elucidating approximately 63.5% of 

the variance present in the dataset. 

 

5. CONCLUSION 

In conclusion, this study has provided a comprehensive overview of the concept of 

Loss Given Default (LGD) within the context of the Basel accords, with a focus on the 

changes introduced in Basel III and Basel IV. The discussion underscored the critical 

importance of LGD in the banking sector and examined the implications of LGD-related 

updates, particularly those outlined in Basel IV. 
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Furthermore, the research delved into the mathematical definition and measurement 

of LGD, tracing the evolution of LGD calculation formulas across different iterations of 

the Basel framework. This analysis illuminated the complexities involved in quantifying 

LGD and adapting measurement methodologies to meet regulatory requirements. 

The study also explored Moody’s LossCalc model, a prominent tool for LGD 

prediction, elucidating its operational mechanisms and highlighting key factors 

influencing LGD estimates. By examining the model's architecture and underlying 

principles, valuable insights were gained into its predictive capabilities. 

Additionally, empirical analysis was conducted using data from Moody’s Ultimate 

Recovery Database, employing various machine learning techniques such as linear 

regression, KNN regression, decision tree and random forest models. Through these 

analyses, the study evaluated the performance of each model using metrics such as R-

squared, Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).  

In addition to the analytical aspects discussed, this study employed exploratory data 

analysis techniques, including multiple data visualizations, to enhance understanding of 

the Moody’s Ultimate Recovery Database. These visualizations provided valuable 

insights into the distribution and relationships within the dataset, thereby facilitating a 

deeper comprehension of the underlying data patterns. 

Overall, this research contributes to a deeper understanding of LGD within the Basel 

framework and provides practical insights into LGD prediction methodologies 

employed in real-world scenarios. By integrating theoretical discussions with empirical 

analyses, the study offers valuable insights for risk management practitioners, regulators, 

and researchers in the field of banking and finance. 
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