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Abstract: 

In this paper we develop a solvency model to estimate the necessary economic capital of 

a real insurance undertaking operating solely in the Automobile branch, applying the Tail 

Conditional Expectation risk measure. The model assumes a one year time horizon static 

approach with an unchanged asset and liability structure for the company. 

After discussing the main factors affecting the whole of the insurance activity and their 

influence on the assets and liabilities on that real insurance undertaking used in the study, 

we calculate its necessary economic capital, by using the Monte Carlo simulation 

technique to generate the probability distribution of the possible future profit and losses 

with impact on the company’s fair value. 

This paper introduces an application of a set of techniques that are usually applied to 

manage asset and liability risks to capital requirements. With a simulated exercise applied 

to a real insurance undertaking we show its feasibility, its advantages and how useful it 

may be for investors, regulators and remaining stakeholders when the technique is 

explored in depth. 
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1. Introduction 

The determination of the economic capital requirement to ensure, with high probability, 

the development of operations, even in adverse environments, is a primer question, due to 

the role of insurance undertakings in the economy.  

In this article we develop a solvency model to estimate the necessary economic capital 

for a real portfolio of a particular insurer, using a set of specific risk analysis tools that 

have been widely used for different purposes and aims. It allows us to calculate the 

economic capital requirement for an insurance undertaking, in order to face adverse 

situations with a chosen high probability, given his current asset and liabilities structure 

and considering a one year time horizon.  

We limit our study to the automobile branch, identifying the main assets, liabilities and 

operations that cause uncertainty on the economic value of the insurer under study. We 

measure the causes of uncertainty by the impact on the economic results and enhance the 

interest and practical applications of the model to the insurance industry. 

Here we only consider stocks and bonds as manageable assets, while for liabilities we 

will account for premium and claims reserves. The stocks and bonds considered are those 

that the insurance undertaking actually shows in the balance sheet and the simulations are 

based on the assumption that they are kept constant within the time interval under study. 

As far as the reserves are concerned, they relate to the underwriting of insurance contracts 

and respective claims settling. 

There are several types of risks in the insurance activity that affect assets, liabilities or 

both. In this paper we model the equity risk, interest rate risk, credit risk, reserve risk and 
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the premium risk, determining the exposure of the assets and liabilities to the different 

types of risks.  

We suggest the capital requirement to be determined based upon the Tail Conditional 

Expectation (simply, TCE) risk measure, assuming a (future) simulated profit and loss 

distribution for the company, which in turn, is estimated by means of Monte Carlo 

simulation.  

We assume that in the case of ruin before the end of the period, the insurance undertaking 

has the ability to provide additional capital to ensure the continuity of its activities. We 

consider a static approach, stressing the need for a periodical re-evaluation, since it is not 

expectable that, within a reasonable time horizon, neither the asset and liabilities structure 

nor the future profit and loss distribution remains unchanged. Furthermore, for the sake of 

simplicity, we assume that the fair value of the insurer’s liabilities equals the best 

estimate, i.e., the market value risk margin is null.   

Thus, we present VaR and TCE risk measures, define the risk factors affecting the whole 

of the insurance industry and the particular insurance undertaking studied, model their 

individual and aggregate behaviour and detail the simulation procedures. Finally, these 

procedures are applied to a non life insurer operating in the motor branch, and are used to 

calculate his economic capital requirement. The importance of these sort of risk measures 

to compute capital requirement is enhanced by the newly proposed regulations for the 

insurance industry in the European market, under the programme Solvency II. For more 

details, please see Linder and Ronkainen (2004). 
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The body of this article is divided into five sections. In the next section we formulate the 

solvency model, introducing the individual risk factors involved, their modelling and 

simulation procedures.
 
 

In Section 3 we develop our application under the assumptions considered. In Section 4 

we show the results of our application and calculate the capital requirement for the 

period, risk by risk and for the aggregate. Finally, in the last section we present the main 

conclusions. 

2. The model 

2.1. VaR and TCE 

The Value-at-Risk (simply, ( )XVaRα  or αVaR ) is defined as the quantile of order α  of 

the probability distribution of the random variable X  that represents the future results, 

profit and losses, of the insurer. That is, ( )inf | XVaR x F xα α = ∈ℜ ≥  , where ( )xFX  is 

the distribution function of X. The Tail Conditional Expectation, denoted as ( )XTCEα  or 

simply TCEα , is defined as ( ) ( )[ ]XVaRXXEXTCE αα <= | . That is, while with the 

VaR we are interested in knowing how much can a firm lose within a certain time 

horizon, under certain set of considerations, the TCE allow us to estimate the expected 

loss whenever the occurred loss is greater than the VaR (assuming that the VaR is 

negative). Therefore, it seems that TCE is a more conservative but safer risk measure to 

adequately protect the insurance undertaking industry, their shareholders and remaining 

stakeholders.   
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Considering the advantages of the TCE over the VaR as presented by Artzner (1999) and 

Lynn Wirch and Hardy (1999), this will be the chosen risk measure to determine the 

necessary economic capital. Nevertheless, since VaR is nowadays the most commonly 

used risk measure and that we need the VaR for the computation of the TCE, we will 

present both risk measures for comparative purposes.  

2.2. Modelling the individual risks 

As far as equity risk is concerned, it is defined as the risk associated with stock price 

returns fluctuation, assuming a well diversified insurer’s portfolio. If this is the case, we 

may then consider the Sharpe (1964) and Lintner’s (1965) Capital Asset Pricing Model 

(CAPM). Assuming a capital market in equilibrium, and that a set of assumptions is 

fulfilled (see for instance in Elton et al, 2007), the expected rate of return of the portfolio 

will then be given by  

 ( ) ( )( )fmpfp RRERRE −+= β  ,      (Eq.  1) 

where fR  stands for the risk free rate of return, mR  is the market rate of return, and pβ  

represents the N assets portfolio beta that equals ∑ =
=

N

i iip w
1

ββ , with each individual 

beta component determined by 2/ mimi σσβ =  , denoting mi,σ  the covariance between the 

rate of return of stock i and the market rate of return; 2

mσ  stands for the equity market 

variance and iw  is  the weight of stock i in the portfolio.  

Considering a portfolio with a large number of assets we can assume, without loss of 

accuracy that mpp σβσ ≅  (see for instance in Elton et al, 2007). In order to estimate the 

parameters iβ  we use the Market Model. 
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For simulation purposes we assumed that the simulated instantaneous market rate of 

return follows a Geometric Brownian motion, whose dynamics are given by the equation 

2ln ( / 2)t td S dt dWµ σ σ= − +  where tS  is the stock market price level at time t, Wt a 

standard Brownian motion, µ is the drift constant, σ is the volatility, and ( ) 2/1
dtZdWt =  

is the increment of Wt , (0; )tW Normal dt∼ ; Z is a standard normal random variable. 

For practical purposes the above stochastic process is discretized in short time intervals, 

say pkt /=∆ , where p is the number of increments and k the chosen time horizon. Thus, 

the simulated stock price level at tt ∆+  will be given by 

 
2exp{( / 2) }t t tS S t z tµ σ σ+∆ = ⋅ − ∆ + ∆ .   (Eq.  2) 

In order to model the pricing behaviour of the debt instruments that are significant for the 

assets side of the balance sheet of the insurance undertaking, we need to consider both the 

credit risk and the interest rate risk.  

Starting with the credit risk, we use the J.P. Morgan’s (1997) CreditMetrics to model the 

credit risk of the debt instruments under consideration.  

The credit spreads are extracted from the companies rating scores. The better the issuer’s 

rating, the lesser the credit spread required and, consequently, the larger the discounted 

value of the debt. The model assumes that if the market value of the issuer’s debt follows 

beyond a given threshold, the entity will enter in default. This reasoning is extended in a 

way that will allow us to determine a relationship between the assets value and the 

issuer’s rating. We assume that the rate of return of the issuer’s asset follows a Normal 

distribution in the case of a single credit, or a Multivariate Normal distribution for a 

portfolio of credits. For the simulation procedure of the assets rate of returns we generate 
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a set of correlated (pseudo-) Normal random values and a new rating and its respective 

credit spread is assigned, if necessary.  

The analysis is even refined considering scenarios for default. The credit rates of 

recovery are highly volatile, which means that, for each scenario of default, we simulate a 

value for the credit recovery rate assuming a Beta distribution with parameters in 

accordance with the credit’s level of the subordination. If the debt is simulated to default, 

then the credit value will equal the simulated rate of recovery times the nominal value of 

the credit. Otherwise, the issuer’s credit risk considering the simulated rating is added up 

to the respective risk free discount rate in order to estimate the value of the debt 

instrument. 

In order to model the debt interest rate risk we use simulated zero coupon bonds with 

maturity equal to the duration of each bond portfolio, as suggested by J.P. Morgan and 

Reuters (1996). 

We assume that the daily short term interest rate behaviour follows a modified one period 

one factor, short term interest rate model of Cox, Ingersol and Ross (1985) (CIR model) 

suggested by Fisher, May and Walther (2002), and whose parameter estimation method is 

easier to implement. The notation, the parameter estimation and the simulation procedure 

is according to those proposed by these authors.  

The short term interest rate behaviour is assumed to follow the stochastic dynamics given 

by 

  ( )( ) ( ) ( ) ( )dr t b a r t dt r t dW tσ= − ⋅ +  ,     (Eq.  3) 
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where b, a and σ  are positive constants and W(t) is a standard Brownian motion process. 

As far as bond prices for the several maturities are concerned, these are assumed to value 

( ){ }Ttrtp ),(,  defined by 

 ( ) ( ) ( ) ( )trTtBeTtATtrtp ,,),(, −=  ,     (Eq.  4) 

where ( )
( )( )
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t is the time moment when the value is determined and T is the maturity. 

The implicit yield curve of the CIR model is estimated from 

 ( ) ( )( )( )
tT

Ttrtp
Ttr

−
−=

,,log
, .       (Eq.  5) 

If equation (3) holds, it means that the process is not directly observed, since it is 

developed under the risk neutral probability measure. However, as we need to simulate 

the stochastic interest rate process under the real world probability measure, an 

acceptable market estimate for a can be ã (see Fisher, May and Walther, 2002). The 

parameters b, ã and σ  can be empirically determined using market data. The estimation 

method for the parameters b, ã and σ  is based upon the Martigales Estimation Functions 

as presented in Fisher, May and Walther (2002). The actual short term interest rate, r(0), 

and the estimates of b̂  and σ̂  are then used to estimate a, assuming that market prices 

( )i
Mp  equal the theoretical prices ( )ip  for i, ni ,...,1=  zero coupon bonds, with maturity 

iT  at time zero (t = 0). The estimate for a is then obtained by  

( )∑
=

−
n

i

M

ii
a

ppMin
1

2
. 



 9

Short term interest rates have to be simulated using the estimate ã, instead of a, since we 

are interested in generating real world scenarios for r(t), as in Fisher, May and Walther 

(2002). Given a time discretization into equally time spaced instants we split the time 

interval [ ]T,0  into N equal time intervals: NT=∆ . Then, we simulate the future values 

of the short term interest rate, nr , using the recursion method, for Nn ,...,1=  with the 

starting point r(0) according to 

 ( ) nnnnn Wrrabrr
~

ˆ~̂ˆ
111 ∆+∆−+= −−− σ      (Eq.  6)  

With the yield curve, considering the credit risk, and using the inverted version of 

equation (5) it is then possible to determine a simulated future value of each bond, given 

both credit and interest rate risks. The difference between the simulated future value of 

each bond and its present (discounted) value corresponds to the simulated result (gain or 

loss) of holding each bond for the one year time period. 

The reserve risk is related to the risk of adverse development of the claims reserve. It 

corresponds to an estimate of the total cost that the insurer will have to bear in order to 

settle all claims occurred until the end of the year, whether they have been reported or 

not. This is a net value, after the deduction of all payments already done concerning those 

claims.  

 Define Iij as the incremental payments made in the development year j regarding claims 

occurred in the year i and ,( , ) i ji j
R I

∈∆
= ∑  is the total reserve. Here, ∆  represents the 

set of indexes associated to the total future incremental payments displayed in the usual 

development matrix, i.e., {( , ) : 0 ; 1 1}i j i N N i j N∆ = ≤ ≤ − + ≤ ≤ + , N is the 

observed development period, we assume the claims development stops at N+1. For more 

details please see Taylor (2000). We will use a Generalised Linear Model (simply, GLM) 
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where the variables Iij are considered to be independent and identically distributed (iid), 

whose distribution belong to the Exponential family, described in McCullagh and Nelder 

(1989).  

A GLM is characterized by a random component and a systematic component. Regarding 

the first component, consider a set of independent r.v.’s Yi, i = 1, 2,...,n with density 

),|( φθ iiyf , where θj is the canonical shape of a location parameter and φ  is a scale 

parameter. As for the random component, consider a matriz X(n × p), whose elements, xij, 

are the n observations of p explanatory variables Xj, j=1,…p. The i-th observation of these 

variables generates a linear predictor (linear combinations of the explanatory variables) 

iη , given by 
1

p

i ij jj
xη β

=
= ∑ , ni ,...,1= , where the βj, j=1,…,p, are unknown 

parameters, to be estimated from the data.  

The two components relate each other through )()( βηµ T

iii zhh ==  and )( ii g µη = , 

where h is a monotonous and differentiable function; g = h 
–1

 is the link function; zi is a 

vector of dimension p, function of the vector of explanatory variables, say, xi; 

( )i iE Yµ =  and ( )( ) /i i iVar Y V wφ µ= , where wi is a constant and )( iV µ  the variance 

function. 

Then, consider a triangle of development of incremental payments Iij, with 0 ≤ i ≤ N, 0 ≤ j 

≤ N+1. Suppose wij = 1, ,i j∀ , thus we have ( ) ( )jiji VIV ,, µφ ⋅= . The variance function has 

the following shape ( ) ζµµ jijiV ,, = , 0≥ζ . The link function and the linear predictor are 

given by 

 jiijji βαµµη ++== ln,  ,      (Eq.  7)  
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where iα  denotes the effect caused by the occurrence period i, jβ  the effect caused by the 

development period j and µ  the global average. 

The estimates for the future incremental payments ( )1,, +−≥ injI ji  are given by 

{ }jiji βαµµ ˆˆˆexpˆ
, ++= , where µ̂ , iα̂ , jβ̂  are estimates of the maximum 

quasi-likelihood. In order to avoid the over parameterisation the constraints 000 == βα  

are introduced. Estimate R̂  is obtained through ( ),
ˆ

îji j
R µ

∈∆
= ∑ . The standard error 

(SE) of R̂  will be, 

( ) ( ){ } ( ) ( ){ }
( )
( )
( ) ( )

( )
∑ ∑

∆∈

≠

∆∈



+=−=
ji

yxji
yx
ji

yxjiyxjiji CovEQARRERSE
,

,,
,
,

,,,,,

2
ˆ,ˆˆˆˆˆˆˆ ηηµµµ  , 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }{ } 2

,,,
ˆˆ,ˆˆ,ˆˆ,ˆ2ˆˆˆˆˆˆˆ

jijijijijiji CovCovCovVVVEQA µβαβµαµβαµµφµ ζ ⋅++++++⋅= . 

Renshaw and Verrall (1998) proposed a stochastic version of the Chain Ladder method, 

which assumes that the incremental payments follow an over-dispersed Poisson 

distribution, and a linear predictor with shape as in Equation (7) and a logarithmic link 

function. (In this GLM the parameter ζ  of the variance function assumes the value 1, but 

the scale parameter φ  is estimated instead of being pre-determined. The model has the 

following assumption: ( ) jijiIE ,, µ= , ( ) ( )ij ij ijV I Vϕ µ ϕµ= = , 1=ζ , 0>φ , i = 0,...,n ; 

0
0

N j

iji
I

−

=
≥∑   and  0 ≤ j ≤ N. 

In the model the scale parameter is estimated using the approximation of the Generalised 

Pearson’s statistic proposed by McCullagh and Nelder (1989). The model fit is done with 

two tests: (1)  Wald’s nullity test of the linear predictor parameter and (2) the global 
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significance test using the scale quasi-deviance statistic. In addition, we will analyse the 

graphical representation of Person residuals using a Normal probability plot and the 

graphical representation of the residuals against the adjusted values iµ̂  and against each 

of explanatory variables of the linear predictor. 

We will simulate the possible values of R, using a bootstrap method in association with 

the over-dispersed Poisson GLM. The Bootstrap method requires the existence of a set of 

observations of iid random variables. However, the jiI , ’s do not satisfy this assumption 

since they depend on the parameters, therefore we will use the Pearson’s residuals of the 

model, ri,j, Ni ≤≤0 , iNj −≤≤0 , since they can be considered as observations of the 

random variables. The residuals Nr ,0 , 0,Nr  and 1,0 +Nr  will be dropped since by definition 

they are equal to zero, as exposed by Pinheiro, Andrade e Silva and Centeno (2003). The 

new triangle of residuals will be converted in a pseudo-data triangle bs

jiI ,  using 

jiji

bs

ji

bs

ji rI ,,,,
ˆˆ µµ +=  with bs

jir , , satisfying 

( ){ } ( ){ }, : 0 ,0 ( , ) 0, 1i j i N j N i i j N≤ ≤ ≤ ≤ − ∪ = +  and ji,µ̂  as the estimated values. 

We will apply the over-dispersed Poisson GLM to the pseudo-data triangle in order to 

obtain the reserve estimate, called pseudo-reserve. We use the notation ( )
bs

bR̂ , Bb ≤≤1 , 

for the pseudo-reserves and R̂  for the original estimate. This process is repeated a large 

number of B times. As far as the computation of the SE is concerned, we’ll have to add to 

the standard deviation of the Bootstrap results, say ( )Rbs
ˆσ̂ , a volatility measure of the 

stochastic process inherent to the over-dispersed Poisson GLM. According to England 
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and Verral (1999) this is R̂ˆ ⋅φ , where φ̂  is an estimate of the scale parameter. Finally, 

we obtain the SE of the bootstrap estimates for R̂ , ( ) ( )R
pn

n
RRES bsbs

ˆˆˆˆˆˆ 2σφ
+

+⋅= .  

Given that the total reserve is a sum of the random future payments, its estimate should 

equal the discounted value of the incremental future payments, discounted with an 

appropriate rate, therefore the claims reserve is also subject to interest rate risk. In this 

paper we will use the risk-free interest rate as an approximation to the appropriate 

discount rate for liabilities. We will simulate the risk-free interest rate term structure in 

one year’s time using the CIR model as explained in the previous section. The difference 

between the expected value of the discounted reserve today and the discounted value of 

the simulated reserve within one year will be the result associated of the development of 

the claims reserve (including the corresponding interest rate risk). 

Premium Risk is associated with the premium reserves. In motor insurance contracts are 

usually done on a annual basis and premiums are received upfront. Insurers are required 

to build premium reserves to cover future claims of the set of policies in force. Premium 

risk is the risk that those reserves are not sufficient to face these future payments. 

To calculate the risk it is necessary to model the future annual claim payments. To find 

the distribution of the aggregate claims cost in the time interval, say (0, t], we use the 

well known Collective Risk Model, for details please see, for instance, Bowers et al. 

(1997). Under this model the aggregate claims cost is written as a random sum of 

individual claims, denoted S(t): 

( )
( )

∑
=

=
tN

i

iXtS
0

 ,  where 00 ≡X ,    (Eq.  8) 
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where iX  is  the i-th individual random claim and N(t) is the number of claims in (0, t]. 

{ }( ), 0N t t ≥  is a stochastic counting process, { }, 1,2,...iX i =  is a sequence of iid 

random variables, with common distribution function G(x), and independent of N(t), 

therefore { }( ), 0S t t ≥  is a compound process. 

In the classical model ( )tN  follows a Poisson distribution. In the application we test both 

a Poisson and a negative binomial distributions using the classical 2χ  test. For the claim 

amount distribution we use both the 2χ and the Kolmogorov tests, for Gama, Pareto and 

Lognormal distributions. For details see Klugman, Panjer and Wilmot (1998), 

Once the distributions chosen, we simulate the process given by (8). For each simulated 

path we first generate a number ( ) ntN = , then generate the n values 

, 1,...,i iX x i n= = . The premium risk for the set of policies in force, considering its 

remaining time, is calculated from the difference between the aggregate claims cost and 

the expected premium reserve. For the sake of simplicity, and since the duration of the 

premium reserves in the automobile insurance is usually less than six months, we will 

neglect the interest rate risk of premium reserve.   

For the Aggregation of Risks we assume that the joint distribution of risks follows a 

multivariate distribution belonging to the Elliptic Distribution Family, as in Embrechts, 

McNeil and Straumann (1999) and Embrechts, Lindskog and McNeil (2003). Thus, the 

dependence between risk factors is measured by their linear correlation coefficients and it 

will be so in the simulation procedures, whenever applicable. 
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3. Application 

3.1 General considerations 

Based on the statistical and financial information of an insurance undertaking at 

December 31, 2002, we modelled the five risk factors earlier explained. All the necessary 

technical information, the prospectus related to the insurer bond portfolio, the historical 

bond and stock prices, stock index figures and interest rates were collected from 

Bloomberg delivery information system. Given the lack of information to study the joint 

behaviour of the major risk factors we assumed that all risks were independent, with the 

exception of the equity and interest rate risks for which we studied their correlation. For 

confidential issues all monetary values related to the real insurance undertaking used in 

this study are masked.  

3.2 Equity risk 

The stock portfolio held by the insurer under study is composed by 11 listed companies 

from a single Euro Zone country. Therefore, we chose the main representative stock 

index for that country as a proxy of its relevant market portfolio with impact on the 

stocks’ systematic risk. When estimating the stocks beta coefficients using the Market 

Model, we used daily closing prices from January 2, 1998 to December 31, 2002 adjusted 

for dividends, stock splits and other price factors. We tested all regression equations for 

their global significance (F test) and for all the individual parameters (t test) rejecting the 

null hypothesis at 5% significance level for all the cases. The results are presented in 

Table 1.  
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Table 1 - Estimates of the individual and portfolio's betas 

Stock #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 
Port. 

Beta 

Beta 0.43 0.83 0.75 0.85 0.48 0.72 0.95 1.76 1.24 1.12 1.30 0.81 

The average and standard deviation of the stock index instantaneous rate of return for the 

same time interval were, respectively, 3.59% and 18.46% per annum, and the linear 

correlation coefficient between the instantaneous short-term interest rate and the 

instantaneous stock index rate of return was positive but small, and not statically 

significant. 

Then, using the process given by equation 2 we ran 5,000 simulations for the one year 

stock index daily figures, assuming a time step = 1/260 per year. From the stock index 

simulated paths we could then estimate the simulated one year portfolio returns for the 

real insurance undertaking stock portfolio, according to the estimated CAPM parameters. 

The random component of the simulation process was based on the generation of 

standard Normal independent r.v.’s. As a proxy for the risk free interest rate we used a 

one year maturity German Treasury Bill yield, observed at December 31, 2002.  

3.3 Interest rate and credit risks 

We started by dividing the insurer’s bond portfolio (entirely composed by Euro Zone 

bonds) into three sub-portfolios regarding the issuer’s type: government bonds; bonds 

issued by banks and other financial institutions; and a single bond issued by one 

telecommunications company. These three groups were those actually observed within 

the real portfolio of the insurance undertaking that we are studying. Then, we estimated 

the weighted Fisher-Weil duration for each sub-portfolio. The risk free yield curve was 
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extracted from a series of German zero coupon bonds (coupon strips) with different 

maturities, ranging from 1 to 27 years, and whose prices were observed at December 31, 

2002. Any intermediate maturity yield was estimated by linear interpolation. For the 3 

and 6-months maturities we used the German Treasury Bill yields observed at December 

31, 2002 for these maturities.  

Bond cash-flows were discounted by using a discount rate that adds the corresponding 

risk free maturity to the relevant credit spread, estimated in accordance to the industry 

sector and the issuers’ rating of the bond. Credit spreads are regularly supplied by J.P. 

Morgan and could be found in www.riskmetrics.com. The credit spread for German 

Treasury Bill and Bonds was assumed to be negligible and, therefore, null.  

In order to simplify the simulation of the bond portfolio, we assumed that the interest rate 

and the credit risk of holding any of the mentioned sub-portfolios was similar to the risk 

of holding an equivalent zero coupon bond with analogous duration.  

Then we simulated the three zero coupon bond prices using the interest rate model 

explained in Section 2. As a proxy for the risk free short term interest rate we used the 

German Treasury Bill yield with 3-months maturity. In the estimation process of the 

parameter a we used the market prices of German Treasury Bills maturing in 3 and 6 

months’ time and the market prices of Coupon Strips of German Treasury Bonds 

maturing in 1, 2, 3, 4, 5, 6, 7, 8 e 9 years’ time. Historical parameters were estimated 

using historical data from January 1, 1998 to at December 31, 2002 and the results were: 

â~ =3.0411, b̂ =0.1068, â =2.9210 and σ̂ =0.0947.  
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We started by using equation (6) to simulate the daily behaviour of the risk free short 

term interest rate. The random component of the stochastic process was based on the 

generation of standard Normal independent variables. 

After, we simulated the prices of the three zero coupon bonds using equation (4) 

considering no credit risk. Then, from equation (5), we calculated the corresponding risk 

free yield and the whole process was repeated 5,000 times, having generated 5,000 values 

for the one year risk free yield.  

Afterwards, we applied the Credit Metrics model considering each actual sub-portfolio 

average credit rating (Table 2) in order to incorporate the credit risk spread into the 

simulations. Credit ratings were collected from Standard and Poor’s and based upon the 

JP Morgan (www.riskmetrics.com) we built a rating transition probability matrix for the 

one year time frame.  

Table 2 - Rating and duration of the bond's portfolio 

 

 

In order to estimate the correlation coefficient matrix for the 3 sub-portfolios we used 

several proxies: the Dow Jones Euro Stoxx Bank Index rate of return as proxy for the 

banks and financial institutions bond portfolio; the bond itself for the telecom company 

bond; and the German coupon strip with 2.5 years maturity for the government bonds 

portfolio, whose duration was 2.71. The correlation matrix among the three sub-portfolios 

of bonds is shown in Table 3 and all the figures are significant at a 5% level. 

Portfolio Rating Duration  

Government Bonds AAA 2.71 

Bonds issued by banks and other financial institutions AA 5.08 

Bonds issued by telecommunication firms A 2.05 
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As a result, we manage to generate, a set of correlated Standard Normal r.v.’s from a set 

of independent Standard Normal r.v.’s by applying the Cholesky decomposition, as in 

Horn and Johnson (1985).  

 

 

Table 3 - Variance-covariance matrix of asset's rate of return proxies 

  Governmental Bank & fin. Inst. Telecom. Company 

Governmental 0.00052 -0.00253 -0.00197

Bank and financial inst. -0.00253 0.06446 0.04020

Telecom. company. -0.00197 0.04020 0.16080

Adding up the simulated credit spread to the simulated risk free yield for all zero coupon 

bonds we found the appropriate yield considering the credit risk. From this latter risky 

yield and inverting (5) we got the future value of each zero coupon yield, taking into 

account both interest rate and credit risks. Whenever the simulated rating was considered 

a default, we assumed the bond value to equal the credit recovery rate (simulated by a 

Beta distribution) times the face value of the bond. The process ends up by comparing 

each simulated value to its initial price in order to calculate the annual rate of return for 

each zero coupon bond and then by multiplying this rate of return by its respective market 

value at December 31, 2002.  

3.4 Reserve risk 

Our insurer’ portfolio was recent and not yet stable. Thus, in order to apply any stochastic 

methods to the claims payments we had to exclude the occurrences for 1997 and 1998, 

because we know that the payment pattern of those years was significantly different.  

We applied the Renshaw and Verral’s (1998) model to the claims payments matrix, 

occurred between 1999 and 2002. We did the quasi-deviance scale test and concluded 
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that the model was globally significant. We also did the individual parameter test, and 

concluded they were significant with one exception, the parameter associated with the 

effect of the occurrence year of 1999. One possible economic reason might be the fact 

that in this year claims were almost fully developed. Nevertheless, given that the matrix 

is not fully stable and that we only considered four occurrence years, we decided to keep 

this parameter in the model. The above results are presented in Tables 4 and 5. 

Table 4 - Estimates of the parameters of the over-dispersed Poisson's model 

Test of the nullity of the parameters 
 

Parameter 

 

 

Estimate 

 

Standard 

Error W 

 

 at  5%

 

Conclusion 

U 15.4555 0.0737 44,025.29 3.84 Statistically significant 

 

  

-0.8152 0.0828 97.01 3.84 Statistically significant 

 

  

0.1298 0.0932 1.94 3.84 Not Statistically significant

 

  

-2.2827 0.1890 145.84 3.84 Statistically significant. 

 

  

0.2337 0.0933 6.27 3.84 Statistically significant 

 

  

-2.8761 0.3637 62.54 3.84 Statistically significant 

 

  

0.5434 0.0979 30.83 3.84 Statistically significant 

 

  

-2.3506 0.2836 68.70 3.84 Statistically significant 

 

Table 5 - Scale deviance test 

H0: The model is adequate 

Scale deviance (D*) 3.02 

n   16 

 

p 
  8 

1α

1β

2β

2α

3β

3α

4β

( )
2

1χ
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 at  2.5% 
 15.50 

D* <                   at 2.5%:                  Accept H0 

 

The SE of the total reserve was 14%, which is a value that we find acceptable since the 

matrix is not fully stable. The graphical representations of the residuals against each of 

the explanatory variables do not seem to show any systematic standards. As a conclusion, 

the over-dispersed Poisson model has an acceptable fit to the data.  

We then applied a Bootstrap procedure associated with the validated model to the paid 

claims matrix. We simulated 5,000 paid claims matrices and calculated 5,000 values for 

undiscounted value of the claims reserve. We simulated 5,000 times the risk-free interest 

rate term structure in a one year period and determined the discounted value of the 

simulated claims reserve in December 31, 2003. We got the reserve risk results 

subtracting the simulated values at December 31, 2003 from the expected value of the 

discounted claims reserve at December 31, 2002 (for claims occurred 1999 and 2002). 

Regarding the bootstrap results, the SE of the estimated reserve is 15%, in line the results 

of the analytic model. The graphical representations of the residuals against each of the 

explanatory variables did not evidence any systematic pattern. 

3.5 Premium risk 

First we fit the distribution of the number of claims per year of the whole portfolio, based 

on data consisting the number of claims occurred per policy in the last year. We applied 

the Chi-square test (with a 5% significance level) to the mentioned Poisson and negative 

binomial distributions. The parameters of the distributions were estimated by maximum 

likelihood estimation (MLE). 

( )
2

pn−χ
( )
2

pn−χ
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From Table 6 we can see that the Poisson distribution was clearly rejected. The negative 

binomial was accepted, with a p-value of 24,3%. Assuming that the number of claims 

follows a negative binomial we determined the parameters of the distribution of the 

number of claims for the set of policies in force at December 31, 2002, 58,211α =  and 

0.925p = , corresponding to the sum m idd negative binomial, where m is the number of 

policies in force at that date.  

Table 6 - Distributions for the number of claims per policy 

No. of claims per policy 

Distribuition Parameters Estimates p-value Degrees of freedom

Poisson (λ ) λ  0.066 0.000 2 

Negative binomial ( , pα ) , pα  0.809, 0.925 0.244 3 

Next, we studied, using a Chi-square test, at 5% level, the fit for the individual claim 

amount distribution, based on a list of total cost, claim by claim, of all the claims 

occurred and reported in 2002. We tested a Lognormal, Pareto and a Gamma distribution. 

We use the MLE for the Lognormal and both the moment and ML estimates for the 

Pareto and Gamma.  

From Table 7 we see that the Gamma distribution was clearly rejected as well as the 

Pareto with ML estimation. The distribution that better fits the data is the Pareto, with 

parameters estimated by the moments method (MME), however with just one degree of 

freedom. The Lognormal was rejected, but if we exclude its tail (claim amounts above € 

30,000) one observes that this distribution has a better fit than the Pareto. Hence, we also 

performed the Chi-square test to a Lognormal distribution truncated at 30,000 with a 

Pareto tail. The latter distribution gives a p-value of 20% and the 2χ has two degrees of 

freedom. 
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Table 7 - Distributions for modeling the individual claim amount 

Distribuition Parameters Estimates p-value 

Degrees 

of 

freedom

µ  6.702
Lognormal, MLE 

σ  1.346
0.007 2 

α  2.051
Pareto, MME 

k 2,357.180
0.192 1 

α  0.194
Pareto, MLE 

k 4.670
0 2 

α  0.025
Gamma, MME β  89,374.516

0 2 

α  7.483
Gamma, MLE β  299.604

0 2 

Lognormal, MLE, µ  6.702

truncated at € 30.000 with  σ  1.346

Pareto tail, MME α  2.051

  β  2,357.180

0.199 2 

In addition, we performed Kolmogorov tests, at 5% level, for the distributions 

Lognormal, Pareto and truncated Lognormal with Pareto tail. All distributions were 

accepted. Based on the results of both tests we chose the Lognormal distribution with 

Pareto tail to model the individual claim amounts. Results are shown in Table 8 

Assuming that the number of claims followed a Negative Binomial distribution and that 

individuals claims amounts followed a Lognormal distribution with the “Pareto tail”, we 

simulated, using equation (8), 5,000 values for the aggregate total cost of claims of the 

policies in force at December 31, 2002, considering the remaining time that they will be 

in force. We deducted from the expected value of premium provision, the simulated 
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values and achieved the results of the premium risk (suffiency/insuffiency of premium 

provision).  

 

 

Table 8 - Results of the Kolmogorov test 

Distribuition 
 Test 

statistic
Critical value (5%) Conclusion 

Lognormal, MLE 20.75% 33.84% Accepted 

Pareto, MME 16.33% 33.84% accepted 

Lognormal, MME, truncated 

at € 30,000, with Pareto tail, MME 
20.75% 33.84% Accepted 

 

3.6 Aggregation of risks 

For the aggregation of Risks and calculation of the VaR and TCE, the global results for 

the insurer will be the result of the aggregation of all individual risk factors. We 

considered, risk by risk, each of the simulated values, obtaining 5,000 possible global 

results for the next year. Results are shown in the next section. 

4. Results 

In this section, we present the results from our application, considering the VaR and the 

TCE measures for one year time horizon and different alpha levels. We start by 

presenting the individual analysis for each risk factor and we conclude with the 

aggregated results for the entire portfolio of assets and liabilities of the company.    

4.1 Equity risk 

Table 9 - Equity risk results (euros) 

Level 95.0% 97.5% 99.0% 99.5%
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VaR -21,437 -29,686 -39,189 -43,119

TCE -31,885 -38,571 -45,432 -50,258

Starting with the equity risk we see from Table 9 that the results are in line with the 

expectations, given the model in use and the parameters estimates. Taking into account 

the reduced exposure to the stock market and the simulated results, the equity risk does 

not seem to be a menace to this particular insurer’s solvency. The worst VaR loss 

scenario in a one year time period with a 99.5% level is €43,119 and the corresponding TCE 

is an expected loss of €50,258. This is quite small in relative terms as will we see later in this 

section after comparing these figures with the Reserve and Premium risks. 

4.2 Interest rate and credit risks  

Table 10 - Interest rate and credit risk results (euros) 

Statistics 
Governmental 

Bonds 

Bonds issued by Banks 

and other Financial 

Institutions 

Bonds issued by the  

Telecommunications 

company 

VaR       

95.0% 429,139 84,444 29,883

97.5% 428,076 83,523 29,604

99.0% 426,668 82,561 29,206

99.5% 425,892 25,619 18,346

TCE       

95.0% 427,684 67,355 20,294

97.5% 426,694 50,734 10,846

99.0% 425,490 2,164 -17,093

99.5% 424,638 -75,536 -54,387

Table 10 shows that both interest rate and credit risks are also small for the modelled 

bond portfolio. In the worst VaR loss scenario in a one year time period with a 99.5% 

level the figures are all positive expressing no defaults, nor significant losses in the bond 

portfolio. Additionally, as the governmental bond portfolio (a high rating and low 
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duration portfolio) was of much higher significance the total bond portfolio doesn’t seem 

strongly affected by interest rate or credit risk.  

However, when the TCE is computed, we experience a potential capital loss in terms of 

both corporate bonds portfolio. As we see, the TCE measure for the simulated figures in a 

one year time period with a 99.5% level is negative either for the portfolio of bonds 

issued by the banks and other financial institutions (-€75,536) either for the bond 

portfolio issue by the telecommunications company (-€54,387). Even though, the total 

bond portfolio is still positive in this scenario, as a result of the strong weight of the 

governmental bond portfolio. The negative results shown in the TCE measure are the 

result of the simulated bond ratings downgrading with a consequent raise in the required 

credit spreads. 

4.3 Reserve risk 

Table 11 - Reserve risk results (euros) 

Level 95.0% 97.5% 99.0% 99.5%

VaR -1,944,351 -2,409,572 -2,771,884 -2,931,341

TCE -2,488,839 -2,743,515 -3,005,122 -3,158,818

Analysing Table 11, we can observe that there is some reserve risk arising from the most 

adverse development scenarios. The reserve risk follows approximately a Normal 

distribution and even tough it is the second more severe single risk factor; it does not 

have a heavy tail.   

4.4 Premium risk  

Table 12 - Premium risk Results (euros) 

Level 95.0% 97.5% 99.0% 99.5% 

VaR -1,510,020 -1,916,298 -2,658,329 -3,146,273
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TCE -2,503,282 -3,319,229 -4,950,018 -7,020,996

From Table 12 we see that the premium risk is the single risk factor that presents future 

results more severe to the insurer. This is due to the heavy tail of the estimated 

distribution. 

 

4.5 Determination of the aggregate VaR and TCE  

Table 13 - Insurance undertaking's aggregate results (euros) 

Level 95.0% 97.5% 99.0% 99.5%

VaR -1,988,506 -2,488,230 -3,493,925 -3,981,377

TCE -3,061,498 -3,920,409 -5,471,164 -7,201,006

From Table 13 we observe that the TCE is expectedly more conservative as a risk 

measure than VaR, by presenting capital requirements (clearly) higher. Taking TCE as 

risk measure at December 31, 2002, the insurance undertaking would need, at the 

confidence level of 99.5%, an economic capital of € 7,201,006, to be solvent.  

The difference between VaR and TCE becomes more significant as the confidence level 

increases, this is due to the heavy tail of the global profit and loss distribution, and very 

influenced by the premium risk heavy tail. TCE is much more sensitive to heavy tailed 

distributions. The study of such distributions requires very special techniques and care, 

which discussion is beyond the scope of this work. 

5. Conclusions 

The model presented had the objective of showing that it is possible to build up a 

solvency model that determines the economic capital requirement using the risk measure 
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TCE, based upon the main risk factors that affect the insurance activity and the balance 

sheet structure of an insurance undertaking at a given time, for a selected time horizon. 

In order to build up the model it is necessary to identify the assets, liabilities and 

operations that generate value, the risks that affect them, as well as the dependences 

among them. This procedure will lead to a more sound knowledge of the whole activity 

and structure of an insurance undertaking. 

The construction and application of a solvency model for the automobile branch allowed 

observing that the results obtained depend heavily on the estimates of the involving 

parameters and on the data used in the estimation. The construction of a solvency model 

like this one will force insurance companies to invest considerably in human resources 

training, information technology, and on the access to databases with relevant and 

accurate information. Also important and sensitive are the correlations between risks for 

the calculation of capital requirements, since the benefits of an increased diversification 

might result into a considerable lower capital need. 

As far as the model practical results are concerned, we conclude that the insurer had a 

conservative investment portfolio with limited interest rate and credit risks. Given the 

estimates of the parameters and the reduced exposure to the stock markets, the equity risk 

did not seem to influence the insurer’s solvency. Nevertheless, by considering the 

volatility observed in stock markets in recent years, it is possible that the actual future 

results became less favourable than the simulated ones. 

From the joint application of the over-dispersed Poisson model with the bootstrap 

procedure we concluded that the reserve risk is material to solvency of the insurance 

undertaking. Individually, the more potentially demanding risk is the premium risk, since 
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the total aggregate claims cost distribution has a heavy tail, as we have already underlined 

at the end of the preceding section. As we noticed, heavy tail distributions need special 

care and an accurate estimation is not an easy task. An improper fit can lead to unfair 

capital requirement calculation, either excessive or defective. 

Finally, we remark, that this is a static approach that assumes the maintenance of the 

current asset and liabilities structure, not taking into account, namely, new business 

underwritings. Thus, this analysis should be conducted periodically. In addition, we 

should point out that the TCE risk measure can be shown to be a lot more conservative 

than the VaR risk measure. 

References 

Artzner, P. “Application of Coherent Risk Measures to Capital Requirements in 

Insurance”, North American Actuarial Journal, Vol.2 No.2 (1999), 11-25.    

Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J. (1997); 

Actuarial Mathematics, 2
n
 Ed., Shaumburg, Il: The Society of Actuaries 

Cox, J., J. Ingersoll and S. Ross, “A Theory of the Term Structure of Interest Rates”, 

Econometrica, Vol.53, No.2 (1985), 373-407.   

Elton, E., Gruber, M., Brown, S. and Goetzmann, W. (2007), Modern Portfolio Theory 

and Investment Analysis, 7
th

 Ed., New York: John Wiley & Sons. 

Embrechts, P., A. McNeil and D. Straumann, “Correlation: Pitfalls and Alternatives”, 

RISK, Vol.12, No. 5 (1999), 69-71. 

Embrechts, P., Lindskog, F. and McNeil, A. (2003), Modelling Dependence with Copulas 

and Applications to Risk Management. In: S. Rachev (Ed.) Handbook of Heavy Tailed 

Distributions in Finance. Elsevier. 

England, P. and R. Verral, “Analytic and Bootstrap Estimates of Prediction Errors in 

Claims Reserving”, Insurance: Mathematics and Economics, Vol.25, No.3 (1999), 281-

293. 

Fischer, T., A. May and B. Walther. “Simulation of the Yield Curve: Checking a Cox-

Ingersoll-Ross Model”, Pre-print No. 2226, Stochastik und Operations Research, 

Technische Universität Darmstadt, 2002. 



 30

Horn, R. and Johnson, C. (1990), Matrix Analysis, Cambridge University Press. 

J.P. Morgan and Reuters, “Risk Metrics
TM

“, Technical Document, 4
th

 Ed., Morgan 

Guaranty Trust Company, New York, 1996. 

J.P. Morgan, CreditMetrics
TM

, Technical Document, J. P. Morgan & Co Inc., New York, 

1997, 

Klugman, S., Panjer, H. and Wilmot G. (2008), Loss Models, From Data to Decisions, 3
rd

 

edn, Hoboke, NJ: John Wiley & Sons. 

Linder, U. and V. Ronkainen “Solvency II, Towards a New Insurance Supervisory 

System in the EU”, Scandinavian Actuarial Journal, Vol.104, No.6 (2004), pp. 462-474. 

Lintner, J. “Security Prices, Risk and Maximal Gains from Diversification”, The Journal 

of Finance, Vol.20, No. 4 (1965), 587-615. 

Lynn Wirch, J. and M. Hardy. “A Synthesis of Risk Measures for Capital Adequacy”, 

Insurance Mathematics and Economics, Vol.25, No.11 (1999), 337-347  

McCullagh, P. and Nelder, J. (1989), Generalised Linear Models, 2.
nd

 Ed., London: 

Chapman and Hall.  

Pinheiro, P., J. Andrade e Silva and M. Centeno. “Bootstrap Methodology in Claims 

Reserving”, The Journal of Risk and Insurance, Vol.70, No.4 (2003), 701-714. 

Renshaw, A. and R. Verrall, “A Stochastic Model Underlying the Chain Ladder 

Technique, British Actuarial Journal, Vol.4, No.19 (1998), 903-923.   

Sharpe, W. “Capital Asset Prices: A Theory of Market Equilibrium Under Condition of 

Risk”, The Journal of Finance, Vol.19, No.3 (1964), 425-442.   

Taylor, G. (2000) Loss Reserving: An Actuarial Perspective, Kluwer Academic.  


