
Economics Letters 96 (2007) 70–76
www.elsevier.com/locate/econbase
Binary models with misclassification in the variable of interest
and nonignorable nonresponse☆

Esmeralda A. Ramalho ⁎

Universidade de Évora, Portugal
CEMAPRE, Portugal

Received 26 January 2005; received in revised form 8 November 2006; accepted 12 December 2006
Available online 5 April 2007
Abstract

In this paper we propose a general framework to deal with datasets where a binary outcome is subject to
misclassification and, for some sampling units, neither the error-prone variable of interest nor the covariates are
recorded. A model to describe the observed data is formalized and efficient likelihood-based generalized method of
moments estimators are suggested.
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1. Introduction

In this paper we propose a general framework to deal with datasets where a binary outcome is subject to
misclassification and, for some sampling units, neither the error-prone variable of interest nor the covariates
are recorded.We assume thatmisclassification is due to the nature of the variable of interest and, thus,may be
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described by the conditional probability of the observable outcome given its true value. On the other hand,
we consider that nonresponse depends on the error-prone alternative revealed and define a missing data
mechanism in terms of the conditional probability of a response indicator given the error-prone outcome.

Similarly to Ramalho and Smith (2003), we reinterpret the missing data problem in discrete choice
models by analogy with the choice-based (CB) sampling framework. Then, we extend this methodology to
handle also misclassification in a similar way to that employed by Ramalho (2002) to adapt the estimators
proposed by Imbens (1992) for CB samples. A model to describe the observed data is formalized and
efficient likelihood-based generalized method of moments (GMM) estimators are suggested.

2. The model

Let Y*aY* ¼ f0; 1g be a binary response variable andX a vector of k exogenous variables defined onX .
Employing also the superscript “⁎” to denote the latent version of all probabilities and densities, the population
joint density function of Y⁎ and Xmay be written as f ⁎( y⁎, x)=Pr⁎( y⁎|x, θ) f (x), where the marginal density
function f (x) for X is unknown and Pr⁎( y⁎|x, θ) is known up to the parameter vector θ. Our interest is
consistent estimation of and inference on the parameter vector θ. The marginal probability of observing an
individual for which Y⁎=y⁎ in the population is Q*y* ¼

R
X Pr*ð y*jx; hÞ f ðxÞdx;with P1

y*¼0 Q
*
y* ¼ 1.

In presence of misclassification, let YaY ¼ f0; 1g represent the binary observable outcome. The error
model is described by the conditional probability
PrðY ¼ yjY* ¼ y*; xÞ ¼ PrðY ¼ yjY* ¼ y*Þ ¼ ayy*; ð1Þ

0≤αyy⁎≤1 and

P1
y¼0 ayy* ¼ 1. Hence, the conditional probability of the observable variable Y given

X and the marginal probability of Y are, respectively, Prðyjx; h; aÞ ¼ P1
y*¼0 ayy*Pr*ðy*jx; hÞ and

Qy ¼
P1

y*¼0 ayy*Q*y*, where the vector α=(α10, α01) contains the two misclassification probabilities.
Similarly to Hausman et al. (1998), we adopt the identification condition α10+α01b1.

Assume also that a RS of size N on Y and X is to be collected, but only n individuals accept to
participate in the survey. The n sampling units for which (Y, X) is recorded form the so-called complete
sample. Moreover, in order to cope with the case where a given error-prone outcome is never observed,
we assume that an independent SRS of all covariates of size m is drawn from the population of interest
and define Nm=N+m and nm=n+m. While nm, n and m are observable in all cases, the total number of
individuals involved in the main survey, N, may or may not be known. Throughout this paper we assume
that N is known, since all the results may be straightforwardly simplified for the case where that
information is not available; see Section 4.

Define the binary indicators R, which takes the value 1 if (Y, X) is observed or 0 otherwise, and S,
which takes the value 1 or 0 when the sampling unit belongs to, respectively, the main or the
supplementary dataset. We assume that the nonignorable missing data mechanism is given by
PrðR ¼ 1jY ¼ y; Y* ¼ y*; xÞ ¼ PrðR ¼ 1jY ¼ yÞ ¼ dy; ð2Þ

where 0≤δy≤1. Thus, the data would be missing completely at random only when δ1=δ0=Pr(R=1).
Note also that due to the independence of the main and the supplementary samples, Pr(R=1|Y=y,
Y⁎=y⁎, x, S=1)=δy.

In order to handle the problem of interest by analogy with the CB sampling framework, for each of the
two observable outcomes Y, we reinterpret as strata the set of respondents and the set of nonrespondents.
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The error-prone proportion of each stratum of respondents and nonrespondents in the population is the
same, Qy, and in the sample is, respectively, Hy=Pr(Y=y, R=1, S=1) and Hy

nr=Pr(Y=y, R=0, S=1).
Additionally, the SRS form another stratum with proportion 1 in the population, because this sample is
random, and HS=Pr(S=0) in the sample. Due to the independence of the supplementary and the main
sample we may reexpress the missing data mechanism in Eq. (2) as dy ¼ Hy

Qyð1−HSÞ.
In this setup, the likelihood function for an individual in the available dataset,
lðy; x; r; sÞ ¼ hð y; x; r ¼ 1; s ¼ 1ÞrPrðr ¼ 0; s ¼ 1Þ1−r
h is

hðx; s ¼ 0Þ1−s

¼ ½HyhðxjyÞ�r
X1
y¼0

Z
X
½Qyð1−HSÞ−Hy�hðxjyÞdx

( )1−r* +s

½HS f ðxÞ�1−s

¼ Hy

Qy
Prðyjx; h; aÞf ðxÞ

� �r
ð1−HS−H1−H0Þ1−r

� �s

½HS f ðxÞ�1−s: ð3Þ
is similar to that in Ramalho and Smith (2003), with the crucial difference that some of the densities and
probabilities are now error-prone. From the density functions of (R, S) and X derived from Eq. (3),
respectively,
PrðR ¼ r; S ¼ sÞ ¼ ðH1 þ H0Þrð1−HS−H1−H0Þ1−r
h is

H1−s
S

and
hðxÞ ¼ f ðxÞ HS þ
X1
y¼0

Hy

Qy
Prðyjx; h; aÞ

" #
þ 1−HS−H1−H0;
we may conclude that although the indicators R and S are ancillary for θ and α, the covariates do not
share this property. Thus, the efficient GMM estimators proposed in the next section are based on the
likelihood (3), which is not conditional on X. Moreover, the analysis is conditional on R and S, since
H=(H0, H1, HS) is estimated together with the remaining parameters of interest instead of being
estimated separately from Ĥy ¼ ny

Nm
and ĤS ¼ m

Nm
, where ny is the number of fully observed subjects

reporting Y=y; for a discussion on this procedure of conditioning the analysis on ancillary statistics, see
Imbens and Lancaster (1996).

3. Generalized method of moments estimation

In order to avoid the specification of f(x), assume that the covariates follow a discrete distribution with
L points of support xl, l=1, 2…, L, and associated probability mass parameters Pr(X=xl)=πl, πlN0, l=1,
2…, L. The resultant log-likelihood function based on Eq. (3),
LðH ; h; pÞ ¼
XNm

i¼1

siri ln Hyi þ ln Pr yijxli ; h; a
� �

−ln
XL
l¼1

pl Pr yijxl; h; a
� �þ ln pli

" #

þ
XNm

i¼1

sið1−riÞlnð1−HSi−H1i−H0iÞ þ
XNm

i¼1

ð1−siÞðln HSi þ ln pliÞ; ð4Þ
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is maximized with respect to the vector of parameters (H, θ, α, π) subject to the restriction
PL

l¼1 pl ¼ 1.
The first order conditions of Eq. (4) are very similar to those in Ramalho and Smith (2003). Thus, by
analogous calculations, πl is concentrated out from those functions. Hence, the dependence on the
discrete distribution assumed for f(x) is removed, since π is replaced by Q1⁎ in the vector of parameters
of interest, and the following estimating functions are obtained:
gðv;uÞHt
¼ srIðy¼tÞ−Ht ð5Þ
gðv;uÞHS
¼ 1−s−HS ð6Þ
gðv;uÞh ¼ p sr
y−P

Pð1−PÞ−½1−sð1−rÞ�
A
B

� �
ð7Þ
gðv;uÞayy* ¼ ½y−Pr*ðy*jx; hÞ� sr
y−P

Pð1−PÞ−½1−sð1−rÞ�
A
B

� �
ð8Þ
gðv;uÞQ1
* ¼ Q1−½1−sð1−rÞ�PB ; ð9Þ
where V ¼ ðY ;X ;R; SÞ; t ¼ f0; 1g;P ¼ PrðY ¼ 1jx; h; aÞ; p ¼ jhP; Q1 ¼ a10 þ ð1−a10−a01ÞQ⁎
1; A ¼

H1
Q1
− H0

1−Q1
; B ¼ HS þ H0

1−Q1
þ AP and u is the vector of parameters of interest. φ is defined as φ=(H, θ, α,

Q1
⁎) when bothQ1 andQ1

⁎ are unknown, or simply asφ=(H, θ, α), when one of those probabilities is known.
In this case, the known probability is replaced in Eqs. (5)–(9).

The estimating functions (5)–(9) are used as moment indicators in the GMM framework. The objective
function to be minimized is YNmðuÞ ¼ gNmðv;uÞVWNmgNmðv;uÞ; where gNmðv;uÞ ¼ 1

Nm

PNm
i¼1 gðvi;uÞ is

the sample counterpart of the moment conditions E[g(v, φ)]=0, with E[.] denoting expectation taken
over l( y, x, r, s) of Eq. (3) and g(v, φ) defined in Eqs. (5)–(9), and WNm

is a positive semi-definite
weighting matrix. Assume that the usual regularity conditions required for GMM estimation are met; see
Newey and McFadden (1994, Theorems 2.6, 3.4). The resulting optimal estimator, φ̂, obtained from
choosing WNm

=ΨNm

−1, where ΨNm
is a consistent estimator of Ψ=E[g(v, φ)g(v, φ)′], is consistent for the

true value φ0 and satisfies ffiffiffiffiffiffi
Nm

p ðû−u0ÞYd N ½0; ðGVW−1GÞ−1�; where Yd denotes convergence in
distribution and G=E[∇φg(v, φ)′]. Asymptotic efficiency, in the semiparametric sense, can also be
proved by an analogous demonstration to that of Imbens (1992, Theorem 3.3).

4. Some particular cases

First, for cases where N is unknown, we need to define Hy=Pr(Y=y, S=1|R=1), set R=1 and Hy
nr=0,

replace Nm by nm and, since HS+H0+H1=1, suppress g(v, φ)HS
. Moreover, if none of the sampling units

for which Y=0 responds and all subjects for which Y=1 reveal (Y, X), we obtain a generalization of
Lancaster and Imbens' (1996) estimators for nonresponse to handle misclassification by setting Y=1,
nm=n1+m, and, as H0=0, suppressing g(v, φ)H0

.
Second, when a SRS is not available, we set S=1 and HS=0, replace Nm by N, and eliminate g(v, φ)HS

.
In this framework, Ramalho's (2002) estimators for CB samples subject to misclassification are
obtained by considering N unknown, which requires setting R=1, replacing N by n, and eliminating
either g(v, φ)H0

or g(v, φ)H1
.
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Finally, in cases where the structural model is a logit, such that Pr⁎( y⁎=1|x, θ) = (1+ e− x′θ)− 1,
where θ=(θ0, θ1), with θ0 defined as an intercept term and HyN0, by an analogous demonstration
to that of Caudill and Cosslett (2004) for CB sampling, it can be shown that the shape of
Prðy ¼ jjx; h; aÞ ¼ aj0e−x Vhþaj1

1þe−x Vh is preserved by the probability of Y given X in the complete error-prone
data,
PrSðy ¼ jjx;R ¼ 1; h; a; d0; d1Þ ¼

P1
y*¼0

djajy*Pr*ðy*jx; hÞf ðxÞ

P1
y¼0

P1
y*¼0

dyayy*Pr*ðy*jx; hÞf ðxÞ

¼ dj aj0e−xVh þ aj1
� �

P1
y¼0

dyay0e−xVh þ
P1
y¼0

dyay1

¼ ϖj0
ϖ0
ϖ1

e−xVh þϖj1

1þ ϖ0
ϖ1

e−xVh
; ð10Þ
where ϖ0 ¼
P1

y¼0 dyay0;ϖ1 ¼
P1

y¼0 dyay1; and ϖyy* ¼ PrSðY ¼ yjY* ¼ y;R ¼ 1Þ ¼ ayy*dyP1

y¼0
ayy*dy

. The

only difference is that now θ0 and αyy⁎ are replaced by, respectively, g ¼ h0−lnϖ0
ϖ1

and ϖyy*. Thus, for
consistent estimation of θ1, one may utilize the simple likelihood Pr( y= j|x, θ, α), where only the
problem of misclassification is accounted for, with the complete dataset.

5. A Monte Carlo simulation study

This section analyzes the performance of the estimation method proposed in this paper in cases where
Y⁎ given X is described by a logit model, the main sample only contains individuals who reported 1, a
SRS is available, and the number of individuals choosing 0, n0, and, consequently, N, are unknown. We
replicated two of Lancaster and Imbens' (1996) Monte Carlo experimental designs but we admitted the
possibility that some of the observed subjects have chosen alternative zero instead of the reported
outcome “one”.

The covariates X were generated from a bivariate normal distribution with zero means, unit variances
and zero correlation. In the two experimental designs, designated as A and B, the vector of parameters
of interest θ contained in Pr⁎( y⁎=1|x, θ)= (1+ e−x′θ)−1, where θ=(θ0, θ1, θ2) with θ0 defined as an
intercept term, was set equal to, respectively, (0.0, 2.0, 0.5) and (−1.89, 1.0, 1.0), producing Q1⁎=0.50
and Q1

⁎=0.20. In both designs H1=HS=0.5 (and H0=0) such that n=n1=m=2500, and we performed
experiments for three misclassification probabilities: α10=α01= ᾱ ={0.02, 0.05, 0.20}. In all expe-
riments we assumed that the marginal probabilities Q1

⁎ and Q1 are unknown and compared Lancaster
and Imbens' (1996) estimator (LIE) and its modified version for misclassification developed in this
paper (MLIE). The vector of parameters estimated in each case is, respectively, (H1, θ, Q1

⁎) and (H1,
θ, ᾱ, Q1

⁎). Similarly to previous studies where the probabilities of misclassification are estimated, e.g.
Hausman et al. (1998), Ramalho (2002), we considered a sample size of nm=5000. However, in our
experiments, the estimation problem is much more complex: those papers deal with datasets of 5000
observations for which all the information is measured, while we only have complete information for
2500 observations, all of them reporting “one”. Obviously, the MLIE would not perform well with



Table 1
Summary statistics for GMM estimators from 1000 replications

θdesign A=(0.0, 2.0, 0.5), θdesign B=(−1.89, 1.0, 1.0)

θ̂1 θ̂2

Design ᾱ Estimator FC Bias SD MAE RMSE Bias SD MAE RMSE

Mean Med. Mean Med.

A .02 LIE 0 − .129 − .132 .150 .099 .198 − .128 − .132 .071 .048 .146
MLIE 4 − .006 − .001 .321 .190 .321 .002 − .008 .119 .067 .119

.05 LIE 1 − .275 − .277 .133 .087 .305 − .272 − .240 .068 .043 .280
MLIE 7 .010 .005 .338 .215 .338 .012 .004 .116 .075 117

.20 LIE 63 − .647 − .651 .105 .069 .655 − .646 − .650 .055 .038 .648
MLIE 13 .166 .041 2.850 .398 2.855 2 .188 .020 .799 .132

B .02 LIE 5 − .069 − .073 .069 .048 .098 − .067 − .066 .065 .042 .093
MLIE 9 .009 − .005 .423 .086 .423 .013 − .003 .449 .081 .449

.05 LIE 5 − .166 − .169 .065 .043 .178 − .163 − .163 .062 .042 .174
MLIE 9 .005 .006 .255 .086 .255 .011 .009 .272 .084 .272

.20 LIE 363 − .467 − .472 .043 .027 .469 − .465 − .468 .041 .028 .467
MLIE 55 .026 .023 .586 .127 .587 .018 .026 .414 .127 .414

1 This problem is more serious in design B, because the available dataset is near a pure CB sampling design, a situation where
the problem of identification of θ0 and Q1

⁎ is well known; see Lancaster and Imbens (1996).
2 In design A, the results for α=0.2 were negatively affected by the presence of 4 replications where the estimate for θ1 was
larger than 30. Eliminating these replications, the mean bias for θ1 and θ2 is reduced to, respectively, 8.0% and 9.3% and their
standard deviations across the replications are 0.713 and 0.240.

75E.A. Ramalho / Economics Letters 96 (2007) 70–76
nm=400, the sample size considered by Lancaster and Imbens (1996) in the absence of
misclassification.

Table 1 reports for each estimator the mean and the median bias in percentage terms, the standard
deviation across 1000 replications, the mean absolute error and the root mean squared error for the slope
estimates. The number of replications that failed to converge (FC) is also reported, since it was very large
for ᾱ=0.2, mainly for LIE, which ignore the presence of misclassification.1 The behaviour of the MLIE is
very promising, namely for the two smallest misclassification probabilities, where the worst distortion of
the MLIE is 1.3%. Naturally, the performance decays with the highest level of misclassification, but even
in these cases the median bias of the MLIE is smaller than 4.1%.2 On the other hand, the LIE exhibits
large biases, but presents smaller standard deviations than those of the MLIE, which captures the
additional variability induced by misclassification. Therefore, the biased LIE often presents smaller
(understated) MAE and RMSE than the MLIE.
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