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Abstract
Binary response indexmodels may be affected by several forms of misspecification, which
range from pure functional form problems (e.g. incorrect specification of the link function,
neglected heterogeneity, heteroskedasticity) to various types of sampling issues (e.g. co-
variate measurement error, response misclassification, endogenous stratification, missing
data). In this article we examine the ability of several versions of the RESET test to detect
such misspecifications in an extensive Monte Carlo simulation study. We find that: (i) the
best variants of the RESET test are clearly those based on one or two fitted powers of the
response index; and (ii) the loss of power resulting from using the RESET instead of a test
directed against a specific type of misspecification is very small in many cases.

I. Introduction
In the econometric analysis of binary responses, parametric single index models are
typically employed. These models rely on the assumption of a Bernoulli distribution with
mean � for the response y conditional on the covariates x, where �=G[h(x�)], G(·) is a
cumulative density function and h(x�) is an index function in x and the vector of para-
meters of interest �. Consistent estimation of � requires � to be correctly specified. How-
ever, misspecification of �may arise for a variety of reasons. On the one hand, the assumed
cumulative density function G(·) or the index function h(·) may not describe properly the
target population. On the other hand, even in cases where the specification chosen for
G[h(x�)] is in fact appropriate for describing the population of interest, often � cannot be
consistently estimated from the available data set due to sampling issues of which the prac-
titioner is unaware (e.g. measurement error in one or more covariates, misclassification of
the outcome variable, non-ignorable missing data, endogenous stratification; see inter alia
Chesher, 1991; Hausman, Abrevaya and Scott-Morton, 1998; Ramalho and Smith, 2011;
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and Imbens, 1992, respectively). Therefore, when employing parametric models for binary
data, it is essential to test the correct specification of �.
There are two distinct sets of tests that may be applied to assess the specification of

�: (i) general tests for model misspecification, where no specific alternative hypothesis is
specified; and (ii) specific tests, which are usually based on the formulation of an alternative
parametric model. The former tests are sensitive to a wider variety of departures from the
postulatedmodel, while the latter are potentiallymore powerful when the alternativemodel
is correctly specified but otherwise tend to have low power. Since empirical researchers
often do not have any idea about the kind of misspecification that may affect their model
and given the great variety of potential misspecification sources, general specification tests
are muchmore commonly applied to test the specification of � in binary regressionmodels.
In fact, apart from the heteroskedasticity test proposed by Davidson and MacKinnon
(1984), specific tests for binary models are very rarely applied in empirical work.
In the context of linear regression models, the most widely used general specification

test is Ramsey’s (1969) Regression Specification Error Test (RESET), which consists of
a mere joint significance test for some fitted powers of x�. As noted by Pagan and Vella
(1989) and Peters (2000), RESET-type tests may also be used in binary and other nonlinear
single index models. Therefore, due to its simplicity and ease of implementation, in the
last decade the RESET test has also become the most popular general specification test
for binary and other parametric models.1 However, while in the linear setting the size and
power of the RESET test have been extensively investigated by Monte Carlo methods,
in the binary response framework very little is known about its finite sample properties.2
In fact, to the best of our knowledge, only Thomas (1993) has analysed the performance
of the RESET test in the binary setting and only through a very small-scale Monte Carlo
study, which was limited to the logit model and a very specific pattern of misspecification.
The main aim of this article is precisely to carry out an in-depth investigation of the

finite sample behaviour of the RESET test in the binary response framework. To this end, as
tractable analytical power comparisons are not available, we perform an extensive Monte
Carlo simulation study that examines, under many different scenarios, the finite sample
performance of several versions of the RESET test that differ on the number of powers
included as test variables. We consider some of the most popular parametric models for
binary responses (logit, probit, cauchit, loglog) and a wide variety of data generating
processes in order to investigate the ability of the test variants to detect not only pure func-
tional form problems (misspecification of G(·) or h(·)) but also the existence of sampling
problems. In each case, the finite sample power of the RESET test is compared with that
of a test specifically designed to detect the kind of misspecification simulated.
The remainder of the article is organized as follows. Section II describes the notational

framework of the article and discusses the main consequences of various forms of mis-
specification that may affect binary regression models. In section III, some variants of the
RESET test are discussed as well as the specific tests that will be included in the Monte
Carlo simulation study described in section IV. Finally, section V concludes.

1For some time, other popular general specification test for binary models was the information matrix test intro-
duced by White (1982). However, due to its poor finite sample properties, this test is now rarely applied.
2For Monte Carlo studies on the behaviour of the RESET test in the linear framework see, for example, Ramsey

and Gilbert (1972), Godfrey and Orme (1994), Leung and Yu (2000) and Hatzinikolaou and Stavrakoudis (2006).
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RESET test for binary response index models 109

II. Some specification issues in binary models
Consider a sample of i=1, . . . ,N individuals and let y={0, 1} be the response variable
of interest and x a vector of p exogenous variables. The conditional expected value of y
given x is defined as

�≡E (
y | x,�)=G [h(x�)] (1)

Consistent maximum likelihood (ML) estimation of � requires in general that the assumed
structural model G[h(x�)] is in fact a suitable description of the behaviour of the popula-
tion of interest and that a data set that effectively reflects the characteristics of the target
population is available.3
Next,we give some examples ofmisspecification problems that commonly affect binary

models. The impact of each of these forms of misspecification in the conditional mean of
y given x is illustrated in Figure 1 for simulated samples of 10,001 observations where a
probit model with a linear index, a single covariate x1 and �=1, that is h(x�)= x1, is taken
as a reference. x1 is a sequence on the interval [−3, 3], except in the case of omission of
variables and covariate measurement error where a normal distribution with zero mean
and variance one was used for generating it. Despite the simplicity of these examples, the
diversity of possible consequences produced by the various forms of misspecification are
clearly illustrated in Figure 1.

Misspecification of the structural model

Misspecification of the structural model may be due to an incorrect choice of the ‘link’
function G(·) or to an incorrect choice of how and which explanatory variables should
appear in the index function h(·).

Example 1. Incorrect link function

Despite the popularity of the logit and the probit specifications for G(·), which are
given by, respectively, eh(x�)/ [1+ eh(x�)] and �[h(x�)], in some cases there may be other
models that provide a better description of the data. For example, the cauchit (also known
as arc tangent), defined as 0.5+�−1 arctan[h(x�)], is appropriate for cases where the shape
of � presents fatter tails, and the loglog and complementary loglog, defined as ee−h(x�) and
1−e−eh(x�) , are suitable for cases where asymmetric functional forms are required. The first
graph of Figure 1 shows the differences between these five link functions. Note that while
the symmetric cauchit, logit and probit models approach 0 and 1 at the same rate, the
asymmetric cloglog (loglog) model increases slowly (sharply) at small values of G(·) and
sharply (slowly) when G(·) is near 1.
Example 2. Omission of relevant covariates

The omission of a relevant explanatory variable in models for binary data leads, in gen-
eral, to inconsistent estimation of �. In effect, when some relevant variables w are omitted
fromG[h(·)], theconditionalmeanof the responsegiven the includedcovariatesx isgivenby
3Naturally, consistent estimation of � is also possible if the structural model is appropriately adapted to reflect the

fact that the sampled and target populations may be different.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011
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RESET test for binary response index models 111

�=
∫
W
G[h(x,w,�, �)]f (w | x) dw, (2)

where � is the vector of parameters associated to w and f (w | x) is the conditional density
function of w given x. In contrast to linear models, where the omission of w is innocuous
in cases where x and w are uncorrelated, even in such a case equation (2) differs in gen-
eral from the naive version of the conditional mean G[h(x�)].4 This case is represented
in the second graph of Figure 1, which considers an example where a relevant variable
w, distributed as a displaced exponential with variance one and generated independently
from x1, is omitted. It is clear that � is no longer symmetric around zero and presents fatter
tails than the probit benchmark, the amount of dispersion depending on the weight of the
omitted variable on the index, which is determined by �.

Example 3. Nonlinear index misspecified as linear due to heteroskedasticity

An obvious source of misspecification is the omission of nonlinear terms in the index.
This omission may be the result of the presence of heteroskedasticity, a problem which
again is innocuous for consistent estimation of � in linear models but not in this setting.
Consider a linear latent model y*= x�+u, where u is a variate with zero mean and vari-
ance s(x, �) defined in such a way that when �=0, s(x, �)=1. Define the observed binary
outcome as y=1 (y=0) if y*>0 (y* ≤ 0). Clearly, the functional form implied by this
formulation is

�=G
[

x�√
s(x, �)

]
(3)

and using the linear index x�, overlooking the nonlinearities induced by heteroskedasticity,
leads to inconsistent estimation of �; see Davidson and MacKinnon (1984) and Yatchew
and Griliches (1985).
Figure 1 contains an illustration of equation (3) for the case where the skedastic func-

tion is s(x1, �)= e2�x1 . Again, the symmetric characteristic of the probit is distorted and the
variability of y given x is increased.

Misspecification due to observation problems

In some cases, the population of interest is properly described by the functional form chosen
for G[h(x�)] but the available data set, due to some sampling issues, provides a distorted
representation ofG[h(x�)]. In this subsection, we briefly analyse three potentially variance
increasing and/or shape distorting sources of misspecification that are related to the obser-
vation process: covariate measurement error, response misclassification and endogenous
sampling.We focus on cases where the index is linear, h(x�)= x�, to simplify the notation.
In all the examples that follow, the functional form appropriate for the data is written as
a function of G(x�), so that the distortions created by the three sampling issues become
apparent and the mechanism that governs them may be analysed in a simple way.

4The consistency of theMLestimator is not affected only when �=0. See inter aliaRamalho and Ramalho (2010).

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011
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Example 4. Covariate measurement error

The effects of the presence ofmeasurement error in continuous covariatesmay be exam-
ined by using Chesher’s (1991) small parameter asymptotic approximations. Assume that
we observe an error-prone version x* of the covariates x according to x*= x+u, where u
is a p-dimensional vector of unobservable measurement errors, which have an unknown
continuous joint distribution f (u). Assume also that x and u are independently distributed,
E(u)=0, and E(uu′)=�= [�jk], where � is a positive semi-definite p× p matrix. The
approximation for a small error variance for � is

�=G(x*�) [1+�jkmjk(y, x*)
]+o(�), (4)

where mjk(y, x*)=0.5[l jky | x(x*�)+ l jy | x(x*�)lky | x(x*�)+2l jy | x(x*�)lkx (x*)], superscripts denote
derivatives with respect to the latent covariates which are mismeasured, subscripts
indicate elements of vectors, ly | x(x*�)= lnG(x*�), lx(x*)= ln f (x*), o(�) is such that
limmax(�jj)→0

o(�)
max(�jj)

=0, and the Einstein summation convention from 1 to p is to be per-
formed over indices that appear both as superscripts and subscripts; see Chesher (1991) for
details. For the particular case where only one covariate, say xt , is error-prone, mjk(y, x*)
of equation (4) simplifies to 0.5�2t

G(x*�) [∇2
x�G(x*�)+ 2

�t
∇x�G(x*�)lX (x*)], where ∇x� denotes

derivative with respect to x� and �t is the coefficient associated to xt .
It is clear from equation (4) that the term �jkmjk(y, x*) reflects the distortions caused by

the presence of measurement error. Only in absence of measurement error, as x= x* and
�jk =0, the functional form is reduced to the model G(x�) maintained in the population of
interest. Figure 1 contains an illustration of equation (4) for a probit model for five different
magnitudes of the variance of the measurement error. Although the symmetric property of
the original probit curve is preserved, it is clear that covariate measurement error induced
dispersion, which becomes more substantial as the variance of the measurement error
grows.

Example 5. Response misclassification

The consequences of response misclassification may be simply formalized following
Cox and Snell (1989), pp. 122–123. Define two parameters, �1 and �0, as the probability of
observing 1 (0) when the actual response is 0 (1). The probability of observing y=1 given
x may be written as Pr(y=1 | x)=(1−�0)G(x�)+�1[1−G(x�)], which gives rise to

�=�1+
(
1−�0−�1

)
G(x�), (5)

where 0≤ �0, �1≤ 1 and, for identification matters, �0+�1≤ 1; see also Hausman et al.
(1998).
The functional form equation (5) reduces toG(x�) only in absence of misclassification,

such that �0=�1=0. Figure 1 shows that, similarly to covariate measurement error, this
kind of measurement error induces dispersion. However, now the symmetry of the probit
curve is preserved only in the case designated in the literature as randommisclassification,
which is characterized by �0=�1. For �0 /=�1, various forms of asymmetry are created
according to the magnitude of both �0 and �1, which govern, respectively, the right and
the left tail of the curve.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011
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RESET test for binary response index models 113

Example 6. Endogenous sampling

Endogenous or response-based sampling is common when the variable of interest is
binary, either as a consequence of an endogenous stratified (or a choice-based) sampling
design, where the proportion of each response in the sample is fixed by design, or due to
the presence of missing data on both y and x (case usually designated as unit non-response)
governed by a non-ignorable responsemechanism that depends on y. DefineH andQ as the
proportion of individuals for which y=1 in the sample and in the population, respectively.
The sampling conditional probability of observing 1 given x is

�= H
Q

[
1−H
1−Q +

(
H
Q

− 1−H
1−Q

)
G(x�)

]−1
G(x�); (6)

see inter aliaManski and McFadden (1981).

The functional form that describes the observeddata, equation (6), only reduces toG(x�)
in two cases: (i) the data is self-weighting or missing completely at random, that isH =Q;
and (ii)G(·) is a logit (although in this case equation (6) is a logit with an intercept displaced
in ln

( Q
H
1−H
1−Q

))
. The distortions imposed by this sampling problem are illustrated in Figure

1. Clearly, � becomes asymmetric in all cases.WhenH>Q (H<Q), the proportion of 1’s is
inflated (depressed) in the sample, relative to the population. Therefore, the curve is shifted
to the left (right), which implies that � goes more rapidly (slowly) to one than G(x�).

III. Specification tests for binary regression models
This section briefly discusses some alternative specification tests suitable to test the null
hypotheses thatG[h(x�)] is an appropriate specification for E(y | x). For simplicity, assume
that h(x�)= x� under the null hypothesis, i.e.H0 :E(y | x)=G(x�). All tests described next
are implemented as LagrangeMultiplier (LM) statistics for the omission of a set of artificial
regressors z from G(·). We compute these statistics from auxiliary regressions of the type
proposed by Davidson and MacKinnon (1984), who showed that, in the binary response
framework, an LM statistic for the omission of z with good small sample properties is
given by LM =ESS, where ESS is the explained sum of squares of the auxiliary regression

ũ= g̃x*�+ error, (7)

where g =∇x�G(x�), û=Y − Ĝ, ũ= û�̂, g̃ = ĝ�̂, �̂= [Ĝ(1− Ĝ)]−0.5, x*= (x′, z′) and
indicates evaluation under H0 at �̂= (�̂, 0).
FollowingWooldridge (2002), we suggest an integrated approach to construct the artifi-

cial regressor z, whichmay be applied both in tests against general and specific alternatives.
Let �=F[G(x�),	] be the model maintained under H1, which reduces to G(x�) for some
particular value of the vector 	. As shown in Wooldridge (2002), p. 464, the artificial
regressors can be straightforwardly calculated as z=∇	�̂ĝ−1.
In the next two sections, for each of the test in analysis, the three features required for

its implementation are described: the null hypothesis in test, the alternative model, and
the composition of the vector z. First, we describe the alternative versions of the RESET.
Then, we examine tests designed to be sensitive to each of the misspecification problems
considered in section II.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011
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TABLE 1

Specific tests

Specific test for: H1 :E(Y |X )= H0: z

Link function T (x
) G(x�) (T̂ − Ĝ)ĝ−1

Omitted variables G(x�+��) �=0 �

Heteroskedasticity �=G
[
x�
ex1 �

]
�=0 −x�̂x1

Covariate G(x*�)[1+�2m(y, x*)]+o(�2) �2=0 0.5�̂
2
1[∇x�ĝ + 2

�1
lX1 (x*1)ĝ]ĝ

−1

measurement error
Response �1+ (1−�0−�1)G(x�) �0=�1=0 z1=−Ĝĝ−1, z2 = (1− Ĝ)ĝ−1

misclassification

Endogenous sampling H
Q

[
1−H
1−Q +

(
H
Q − 1−H

1−Q

)
G(x�)

]−1
G(x�) H =Q Ĝ(1− Ĝ)ĝ−1

The RESET

The RESET, instead of being derived to test against a particular alternative model, is based
on the idea that any index model of the form E(y | x)=F(x�) can be arbitrarily approxi-
mated by G[x�+∑J

j=1 �j(x�)j+1] for J large enough. Therefore, testing the hypothesis
H0 :E(y | x)=G(x�) is equivalent to test for H0 :�=0 in the augmented model E(y | x, z)=
G(x�+ z�), where z= [(x�̂)2, . . . , (x�̂)J +1]. As the first few terms in the expansion are the
most important, in practice, the more popular versions of the test use J ≤3. According to
the number of test variables included, different is the variant of the RESET.5 In this article
we consider five variants of the test, designated as RESETJ , for J = {1, 2, 3, 4, 5}.

Some specific tests

In contrast to the RESET, the tests based on specific alternative models are designed to
be sensitive to particular forms of misspecification. Therefore, they are expected to be
more powerful than those derived against general alternatives and, thus, suitable to be
used as benchmarks for the finite sample power behaviour of the general RESET test. The
information required to implement these tests is summarized in Table 1.
To test two alternative specifications for the link function, sayG(·) and T (·), one against

the other, we consider the P test developed by Davidson and MacKinnon’s (1981) for test-
ing non-nested hypothesis. For all the other examples of misspecifications, we consider
specific tests based on the general models of section II, except for the case of omitted vari-
ables, where certainly a good benchmark for the RESET test is provided by a direct LM
test for the relevancy of the omitted variablew. The tests considered for heteroskedasticity,
covariate measurement error, and response misclassification were originally proposed by,
respectively, Davidson and MacKinnon (1984), Chesher (1991) and Copas (1988), while
the test for endogenous sampling is new.6

5A well known alternative version of the RESET for linear models where the test variables are different from the
ones considered here is that of Thursby and Schmidt (1977), where z=[x21, . . . . , x2k , . . . , xJ +1

1 , . . . , xJ +1
k ] for cases

where the regressors do not include dummy variables.
6Note that Ramalho and Smith (2011) had already proposed a test to detect non-ignorable discrete choice non-

response. However, while their test was derived in the generalized method of moments framework, the test proposed
in this article is a simple LM test constructed in the ML setup based on model (6). The major difference is that the

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011
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RESET test for binary response index models 115

IV. A Monte Carlo simulation study
This section presents an extensive Monte Carlo simulation study on the finite sample
performance of five versions of the RESET test that differ in the number of test vari-
ables, which ranges from one (RESET1) to five (RESET5). In the power analysis, in each
example, we consider also a specific LM test, derived from the parametric model that
governs the simulated data, as a benchmark for the performance of the RESET test.7
The finite sample properties of the tests are expected to differ according to the structural

model from which the data are generated. Additionally, the power of the test certainly will
depend also on the mechanism responsible by the deviations from the postulated model.
Therefore, in all the examples simulated, we consider four alternative links for binary
data (cauchit, logit, probit and loglog) and assume a linear index with two covariates,
h(x�)=�0+�1x1+�2x2, in most cases. As in Santos Silva (2001), x1 is generated as a
standard normal variate (with one exception, described later on), and x2 is generated as a
Bernoulli variate with mean 2/3.We set �2=1 and consider several values for both �0 or �1
in order to control the percentage of zeros and ones of y and the contribution of x1 for the
variance of the index, respectively. We consider also several values for the parameters that
define the misspecification mechanisms, as explained below. Given the substantial amount
of results produced, we summarize them in Figures 2–11. All experiments are based on
10,000 replications. In most cases, we consider sample sizes of N =500 and N =5,000.

Size properties of alternative RESET tests

In this sectionwe examine the size performance of the different RESETvariants in analysis.
Figures 2 and 3 display the percentage of rejections of H0 for a nominal level of 5% when
this hypothesis is indeed true (the horizontal lines represent the limits of a 95% confidence
interval for the nominal size). In Figure 2, we consider N =500, �0= {−2, −1.5, . . . , 2}
and �1={−2.5, −2, . . . , 2.5}, while in Figure 3, for four different � vectors, we represent
the empirical size of the tests for N ={500, 1,000, . . . , 4,500, 5,000}.
Figure 2 suggests that, in general, the empirical sizes of RESET1 and RESET2 are not

significantly different from the nominal level of 5% (most cases) or are slightly undersized
(e.g. loglog model for �1=1). In contrast, the remaining RESET variants appear to be
unreliable in many cases, especially in cauchit and logit models or when the model is
poorly identified (�1 is close to zero): in the former case they tend to be oversized, while in
the latter they are clearly undersized. These findings are corroborated by Figure 3: while
the RESET versions based on 3 or more powers are still oversized in many cases even
when N =5,000, both RESET1 and RESET2 display an appropriate behaviour for almost
all of the sample sizes simulated.8 Thus, in which regards the size properties of RESET

former test is derived from the sampling joint density function of the response and the covariates and the latter is
based on the sampling density function of the response conditional on the covariates.
7Note that these specific tests are expected to have low or no power in cases where the alternative specification is

incorrect but the investigation of their robustness in these cases is out of the scope of this article.
8Actually, according to some additional experiments not reported in the article, in some cases only for sample sizes

as large as 50,000 do the RESET4 and, mainly, RESET5 variants exhibit empirical sizes that are not significantly
different from the nominal ones at a 5% level. Probably, this has to do with the fact that the fifth and sixth powers of
the fitted values may be very high and distort somehow the behaviour of the test in finite samples.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011
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Figure 3. Empirical size for different sample sizes

tests, it is clearly preferable to compute versions that use only one or two fitted powers of
the response index.

Power properties of alternative RESET tests

In this section we investigate the power properties of the five RESET variants using simu-
lated data for each one of the six types of misspecification sources described in section II.

Misspecification of the link function
Figures 4 and 5 show the ability of both RESET and P non-nested tests to detect departures
from the true link function. In each case, the null hypothesis corresponds to an incorrect link
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Figure 4. Empirical power – misspecification of the link function (�1=1, �2=1;N =500)
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Figure 5. Empirical power – misspecification of the link function (�1=1, �2=1;N =5, 000)
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Figure 10. Empirical power – response misclassification

function, which in the case of the P test is assessed against the true specification. Clearly
the estimated power of the tests reflects the degree of similarity between the shapes of the
assumed and the true link functions, see the first graph of Figure 1. For example, when the
choice is between the three symmetric models, the tests, in general: (i) have more power to
distinguish between the heavy-tailed cauchit and the other models than for distinguishing
between logit and probit models; and (ii) have lower power when �0 approaches−2/3 (the
mean of h(x�) approaches zero), since around this value of �0 the three functions are very
similar.
In all cases, a more powerful RESET test is obtained if we use in their computation

two instead of a higher number of powers. The RESET1 version, on the other hand, does
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Figure 11. Empirical power – endogenous stratified sampling
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not display an uniform behaviour. Indeed, while in some cases its power is larger than that
of RESET2, in other cases its power is the lowest of all versions (e.g. when the cauchit is
one of the alternative links and the mean of h(x�) is not far away from zero). Comparing
the RESET and the P tests, we find that in some cases the latter is much more powerful
(e.g. H0: cauchit) but in others it occurs the opposite (e.g. H0: loglog).

Misspecification of the index function
In Figures 6 and 7 we analyse the power of the tests when some relevant covariates are
omitted from the index model. In Figure 6, the omitted variable, x3, is uncorrelated with
the included regressors, being generated as a displaced exponential variate with variance
one. In Figure 7, the nonlinear variable x21 is omitted and x1 is generated as a displaced
exponential variate with variance one.9 In both cases, we set �= (0, 1, 1) and compute the
percentage of rejections of the null hypothesis for different values of the parameter �3
associated to either x3 or x21. In the former case we consider �3={0, 0.25, . . . , 2.5}, while
in the latter �3={−0.25, −0.2, . . . , 0.25}.
Again, in general, increasing the number of test variables in the computation of the

RESET test diminishes its power. This conclusion is now valid even when RESET1 is
included in the comparison. In fact, in these examples, this is the most powerful RESET
version in most cases (the only exceptions occur when misspecification is due to the omis-
sion of a quadratic term and �3 is negative). Unlike the previous experiments, the loss of
power resulting from using the RESET test instead of a specific test may be enormous,
especially in the case of uncorrelated covariates. Nevertheless, note that even in this case
the RESET test is consistent, unlike what happens in linear regression models where it
has no power against this type of misspecification. On the other hand, the lower power
displayed by the RESET test in the logit case is certainly related to the robustness of this
model to the omission of uncorrelated covariates; see Ramalho and Ramalho (2010).10
In Figure 8 we consider another type of misspecification of the index model, which

is now due to heteroskedasticity of the form s(x1, �)= e2�x1 , with �= {0, 0.05, . . . , 0.3}.
The conclusions are very similar to those obtained in the previous experiments since an
identical ranking of the RESET versions was achieved. The main difference is that now
the loss of power relative to the specific test is less important.

Misspecification due to observation problems
Finally, we analyse the power of the RESET alternatives when the misspecification results
from some sampling problems. First, in Figure 9, we consider the case of covariate meas-
urement error. We consider a data generating process where only the observation of x1 is
affected by themeasurement error u, so the data is generated using h(x�)=�0+�1x1+�2x2
but estimation is based on h(x*�)=�0+�1x*1 +�2x2, where x*1 = x1+u and �= (0, 1, 1).We

9In this case, we cannot generate x1 as a standard normal variate as we do in all the other experiments carried out
in this article. In fact, as noted by a referee, in that case x1 and x21 would be uncorrelated and, hence, the omitted
variable would be uncorrelated with the included predictors in both setups of this section.
10Note also that, as some graphs of Figure 6 suggest, the power of the tests decreases for high values of �3. See

Savin and Wurtz (1999) for an explanation of this peculiar feature of binary response models that arises when the
probability of all outcomes zero or all outcomes one approaches the unity.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011
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RESET test for binary response index models 127

generate u from a Student-t distribution with five degrees of freedom and consider several
values for the variance of the measurement error, �2= {0, 0.25, . . . , 2}.
In this case, the results obtained are very different from those of previous experiments.

Now, the ranking of the RESET tests is completely reversed: inclusion of more test vari-
ables gives rise to a more powerful statistic. In particular, the RESET1 version exhibits
much lower power than the other variants. Moreover, the power of RESET tests (apart
from RESET1) is clearly superior to that of the specific test, which suggests that the test
that we are using as benchmark for RESET tests is of poor quality, at least when applied to
binary regression models.11 Note that, unlike all the other cases analysed in this article, this
is the only experimental design where the alternative hypothesis underlying the specific
test does not correspond exactly to the true data generating process, but merely to the small
error variance approximation given by equation (4).
In Figure 10 we analyse two patterns of response misclassification. Again, we set

�= (0, 1, 1). In the first set of experiments only ones are misclassified as zeros (�1=0
and �0 /=0) and in the second the probability of misclassifying a one or a zero is identical
(�0=�1). As in the previous case, there is no clear superiority of the specific test relative
to the best RESET variants, particularly when the probabilities of misclassification are
identical. On the other hand, the characteristics of RESET1 and RESET2 identified in
most of the previous experiments are again apparent. Indeed, while RESET2 exhibits in
most cases a superior performance relative to alternatives based on a higher number of test
variables, RESET1 is sometimes the most powerful test (�1=0) and other times the least
powerful of all RESET versions (�0=�1).
The problem of endogenous sampling is examined in Figure 11. For two different

proportions of ones in the population, Q=0.5 and Q=0.9, we simulate cases where the
corresponding proportion in the sample, H , takes several values: H ={0.1, 0.2, . . . , 0.9}
and H ={0.5, 0.55, . . . , 0.9}, respectively. We set �1=�2=1 and choose �0 in order to
produce the values fixed for Q. Naturally, in these final experiments we do not consider
the logit case, given its robustness to the problem in analysis. Now, using a higher number
of test variables in the computation of the RESET test leads to a decrease of its power. The
specific test is clearly the most powerful test but the difference to the best RESET versions
is unimportant.

V. Concluding remarks
In this article we examined the ability of several versions of the RESET test to detect vari-
ous types of misspecification in binary regression models. In terms of size performance,
we found that both RESET1 and RESET2 have in general suitable size properties, while
the other RESET variants display actual sizes which are too often significantly different
from the nominal ones. In terms of power, RESET2 exhibits in all cases but one (covariate
11To the best of our knowledge, the test proposed by Chesher (1991) is the only inference procedure sensitive

to measurement error that: (i) it is sufficiently general to be applied to any nonlinear model and, consequently, to
all binary models considered in this article; and (ii) it does not require additional information on, for example, the
variance or the distribution of the measurement error and/or the existence of a validation sample. Our Monte Carlo
results suggest that this greater flexibility may compromise the power of the test in such a serious way that it is
preferable to apply omnibus tests like the RESET. Clearly, the derivation of more powerful tests for detecting
covariate measurement error in binary regression models is an important issue for future research.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011
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measurement error) a superior power performance than other alternatives based on a higher
number of test variables. Moreover, even in the case of covariate measurement error, the
loss of power of RESET2 relative to the other versions is minimal in most cases. On the
other hand, the power behaviour of RESET1 is not uniform at all. Indeed, while in most
cases its power is the largest of all RESET versions (e.g. misspecification of the index
function, endogenous stratified sampling and some cases of misspecification of the link
function and misclassification), in others its power is much lower than the other RESET
variants (e.g. other cases of misspecification of the link function and misclassification, co-
variate measurement error). Overall, our results show that there is no reason for empirical
researchers to employ other RESET statistics besides RESET1 or RESET2.
In comparison with tests specifically constructed to assess a particular type of mis-

specification, the loss of power suffered by RESET1 and RESET2 is very small in many
cases (e.g. heteroskedasticity, all sampling problems). The only cases where the loss
of power may be substantial occur when the misspecification is due to the omission of
covariates, especially when they are uncorrelated with the included regressors, and in some
cases of misspecification of the link function. Thus, in the absence of reliable information
about a plausible alternative model, RESET1 and RESET2 are clearly good alternatives
for testing the specification of binary regression models.
Given that the power performance of the RESET1 and RESET2 statistics is often very

distinct, it would be very useful to have a single RESET statistic combining the sometimes
very powerful performance of RESET1 with the more uniform behaviour of RESET2.
There is an area of econometrics where the issue of combining different versions of one
test into a single statistic is frequently addressed. Indeed, when a nuisance parameter is
present only under the alternative hypothesis, as each value of the nuisance parameter gives
rise to a different test statistic, it is usual to use a single test statistic that summarizes the
information provided by all possible test versions according to a suitable criterion (e.g. the
supremum of the test variants); see inter aliaAndrews and Ploberger (1994) and Hansen
(1996). As the choice of the number of powers to include in the RESET procedure may be
seen as an analogous problem to that of the choice of an arbitrary value for the nuisance
parameter, we are currently examining the use of supremum-type RESET tests. Some
preliminaryMonte Carlo analysis revealed a very promising finite sample performance for
a bootstrap-based supremum-RESET test.
Another approach for combining variants of general specification tests into a single

statistic is that proposed by Aerts, Claeskens and Hart (1999). These authors developed
a test statistic that, similarly to the RESET case, uses sequences of nested orthogonal
series estimators to detect departures from the null model but, in contrast to RESET tests,
does not require the number of terms used in the approximation to be set a priori, being
defined by some model selection criteria (e.g. the Akaike Information Criterion). Aerts
et al. (1999) were able to derive the asymptotic distribution of their test statistic, which
may be an important advantage relative to the application of supremum-type RESET sta-
tistics. Indeed, our preliminary research suggests that bootstrap methods will be typically
required to approximate the distribution of the supremum statistics. However, a problem
with the tests proposed by Aerts et al. (1999), which explains why, to the best of our
knowledge, they have never been applied in the econometrics literature, is that there is no
natural way to choose the sequence of nested models required to implement the test when

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011

 14680084, 2012, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1468-0084.2011.00654.x by C

ochrane Portugal, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RESET test for binary response index models 129

the base model has more than one covariate (the expansion is based on x and not on x�̂ as
in the RESET case). Hence, an effective comparison of the performance of their test with
some supremum variant of the RESET test will also imply the investigation of what kind
of sequences deliver best power properties for the Aerts et al. (1999) test.
Another avenue for future research is the possibility of using different expansions in

the construction of the RESET test. In fact, the test by Aerts et al. (1999) is based on
Fourier instead of polynomial expansions. However, in the RESET case, to the best of
our knowledge, only DeBenedictis and Giles (1998, 1999) have considered such hypo-
thesis, proposing a Fourier-based RESET test. In a small Monte Carlo simulation study,
they found promising results for their RESET version in the linear regression framework.
Given the limited evidence provided so far, none of which is for binary parametric models,
the investigation of the finite sample performance of such RESETvariant is clearly another
interesting research topic.

Final Manuscript Received: December 2010
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