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Hedonic methods are a prominent approach in the construction of
quality-adjusted price indexes. This paper shows that the process
of computing such indexes is substantially simplified if arithmetic
(geometric) price indexes are computed based on exponential
(log-linear) hedonic functions estimated by the Poisson pseudo-
maximum likelihood (ordinary least squares) method. A Monte Carlo
simulation study based on housing data illustrates the convenience
of the links identified and the very attractive properties of the Poisson
estimator in the hedonic framework.
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1 Introduction

As is well known, price indexes for infrequently traded heterogeneous assets such as
houses, artworks, and collectable objects cannot be constructed simply by comparing
the average price of the assets sold in each time period, as the result would be dependent
on the particularmix of assets that happened to be sold in those periods. Instead, the het-
erogeneity of the assets has somehow to be taken into account in order to separate the
influences of quality changes from pure price movements. One way to do this is using
the so-called hedonic pricing methodology, which is the technique recommended for
the housing market by the recent Handbook on Residential Property Price Indices
(Eurostat, 2013, Ch. 12, p. 7) and has been widely applied not only to houses (e.g.,
Dorsey, Hu,Mayer andWang, 2010; Hill, 2013; Hill andMelser, 2008;Malpezzi, Chun
andGreen, 1998) but also to artworks (e.g., Ashenfelter andGraddy, 2003; Campos and
Barbosa, 2009; Chanel, Gérard-Varet and Ginsburg, 1996; Collins, Scorcu and Zanola,
2009) and collectables (e.g., wines – Fogarty and Jones, 2011; music manuscripts –

Georges and Seçkin, 2013; and rare diamonds – Renneboog and Spaenjers, 2012).1

*jsr@uevora.pt
1See Eurostat (2013) for a survey on alternative methods for compiling quality-adjusted price indexes.
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Quality-adjusted price indexes (QAPIs) based on the hedonic methodology
build upon the idea that different characteristics of an asset impact differently
on its price. To measure those impacts, it is necessary to specify the so-called
hedonic price function, which relates transaction prices to the relevant asset
characteristics. Using regression techniques, it is then possible to estimate the im-
plicit marginal prices of each asset characteristic. Finally, based on the estimated
marginal prices, and using an appropriate method, asset prices can be adjusted in
order to remove the effect of quality changes. Along this process, among other
aspects, four important choices have to be made: (i) the type of price index to
compute (e.g., geometric or arithmetic); (ii) the form of the hedonic function
(e.g., price or logged price as the dependent variable; linear or non-linear spec-
ification for the right-hand side (RHS)); (iii) the method used to estimate the
parameters of the hedonic function (e.g., ordinary or weighted least squares);
and (iv) the hedonic method used to adjust the prices (e.g., imputation price
method or time dummy variable method).
The choice of the functional form of the hedonic function, and its relationship

with the choice of the price index, is one of the key issues in the general literature
on hedonic price indexes. Most authors argue that those choices should be made
in an independent way. Otherwise, would the former require a specific form for
the latter, researchers could be forced to use a functional form that is inconsistent
with the data, which might create an error in the quality adjustment procedure
(see inter alia Triplett, 2006). In fact, as discussed by Pakes (2003) in a very
interesting analysis of the hedonic approach, the hedonic equation is merely a
reduced form equation determined by the interaction of supply and demand,
and, hence, there are no a priori restrictions on its functional form: practitioners
should simply use some statistical criteria to chose the hedonic function that
provides the most accurate price predictions. In contrast, Reis and Santos Silva
(2006) claimed that the type of price index that is used determines not only the
form of the dependent variable of the hedonic regression but also the estimation
method that should be used. Otherwise, some basic properties of QAPI would not
be satisfied. Finally, there is an apparent consensus that the time dummy variable
method should be used only in association with price indexes based on geometric
means and hedonic functions where the logged price is the dependent variable
and the RHS is linear in the parameters. This is because the main attractive-
ness of the time dummy variable method is the possibility of obtaining very
simple expressions for QAPI, and all authors seem to think that such expressions
can only be obtained using the mentioned combination of price index and
hedonic function.
In order to clarify and conciliate some of these divergent positions, in this paper we

investigate in a comprehensive way whether or not there exist any links between the
type of price index to be computed and the form of hedonic functions, hedonic
methods, and estimation methods. We consider that there is a link whenever a specific
combination of price indexes, functions, and methods substantially simplifies the
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calculations required to compute hedonic price indexes. To simplify the analysis, we
focus on two widely used hedonic price indexes, the arithmetic hedonic price index
(AHPI) and the geometric hedonic price index (GHPI), and consider only unit value
indexes, which are appropriate for the type of assets we are interested in (unique assets
traded only once in the sampling period).2 In contrast to the traditional practice in the
hedonic literature, which focus exclusively on QAPI, throughout the paper we use a
similar framework to that commonly applied in the analysis of the decomposition
of mean outcome differences between groups (see, e.g., the recent survey by Fortin,
Lemieux, and Firpo, 2011) and examine the decomposition of unadjusted price
indexes into quality and quality-adjusted price components under a variety of
assumptions.
Three main points emerge from our investigation: (i) there is a very conve-

nient link between AHPI (GHPI) and hedonic functions that use the asset price
(logged price) as dependent variable – failure in respecting this link implies that
consistent estimation of QAPI requires in general the application of bias correc-
tions; (ii) there is a link between a linear (exponential) specification for the RHS
of the hedonic function and the ordinary least squares (OLS) (Poisson pseudo-
maximum likelihood (PPML)) method – if other estimation methods are used,
then inconsistencies between alternative forms of calculating QAPI may arise,
and the process of producing these indexes may be more time consuming; and
(iii) in the time dummy framework, there is a link between AHPI (GHPI),
hedonic functions that use the asset price (logged price) as dependent variable,
and linear (exponential) specifications for the RHS of the hedonic function –

otherwise, the QAPI will not have a simple expression. Through a Monte Carlo
simulation study, we illustrate both the very large biases that may arise in this
framework if link (i) is not respected and the very attractive properties of the
PPML estimator in the hedonic context.
This paper is organized as follows. Section 2 briefly reviews the construction of

hedonic price indexes. Section 3 examines whether there exists any link between price
index formulas and the form of the dependent variable in the hedonic function.
Section 4 analyzes the existence of links involving the method chosen for estimating
the hedonic function. Section 5 examines the specific case of the time dummy variable
method. Section 6 is dedicated to the Monte Carlo investigation. Finally, Section 7
concludes.

2 The construction of hedonic price indexes: a brief overview

Throughout this paper, pit denotes the price p of asset i at period t, where i indexes
different assets in each time period. We assume that either t=0 (base period) or
t= s (current period). Let Nt be the number of assets observed at each period. Let
Xit,j be the characteristic j of asset i at period t, j=1,…, k, and let xit be the

2Unit value indexes are also used in a more general hedonic framework. See Haan (2004) for an example.

Convenient links for hedonic price indexes 93

© 2014 The Authors. Statistica Neerlandica © 2014 VVS

 14679574, 2014, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12024 by C

ochrane Portugal, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1× (k+1) vector with elements Xit,j, j=0,…, k, where variable Xit,0 = 1 denotes the
constant term of the hedonic regression. Next, we provide a brief overview of the
construction of hedonic price indexes.

2.1 Arithmetic and geometric price indexes

The two main alternative elementary formulas for computing price indexes for
unique assets traded only once in the sampling period are based on the ratio of
(unweighted) arithmetic or geometric means of prices. Let IA and IG be, respec-

tively, the population arithmetic and geometric price indexes, and let I
A
and I

G

be the corresponding sample estimators. For period s, the sample arithmetic price
index is given by

I
A
s ¼

1
Ns
∑Ns

i¼1 pis
1
N0
∑N0

i¼1 pi0
; (1)

while the sample geometric price index may be written as

I
G
s ¼ ∏Ns

i¼1 p
1
Ns

is

∏N0
i¼1 p

1
N0

i0

¼
exp 1

Ns
∑Ns

i¼1 ln pisð Þ
h i

exp 1
N0
∑N0

i¼1 ln pi0ð Þ
h i : (2)

It is straightforward to show that I
A
s is a consistent estimator of the population

arithmetic index

IAs ¼ E psð Þ
E p0ð Þ ; (3)

while I
G
s is a consistent estimator of the population geometric index

IGs ¼ exp E ln psð Þ½ �f g
exp E ln p0ð Þ½ �f g : (4)

The overall asset price change between periods 0 and s is due to the different
characteristics of the assets sold in each period and/or pure price movements. Thus,

both IAs and IGs may be decomposed into two components: a quality index (IAq
s or

I
Gq
s ), which assumes that the implicit prices of the asset characteristics do not change
over time and, hence, measures the price change that is due to changes in the asset

characteristics; and a QAPI (IAp
s or IGp

s ), which assumes that the asset characteristics
are constant across time and measures the price change that is due to changes in their

prices. Thus, we may write the population arithmetic price index as IAs ¼ I
Aq
s �IAp

s and

the population geometric price index as IGs ¼ I
Gq
s �IGp

s , where
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IAq
s ¼ E E pbjxsð Þ½ �

E E pbjx0ð Þ½ � ; IAp
s ¼ E E psjxað Þ½ �

E E p0jxað Þ½ � ; (5)

IGq
s ¼ exp E E ln pbð Þjxs½ �f gh i

exp E E ln pbð Þjx0½ �f gh i ; IGp
s ¼ exp E E ln psð Þjxa½ �f gh i

exp E E ln p0ð Þjxa½ �f gh i (6)

and (a,b) = (0,s) or (s,0). Note that when (a,b) = (0,s) [(a,b) = (s,0)], I
Ap
s I

Gp
s

h i
is a

Laspeyres (Paasche) QAPI, as the comparison is based on the assets existing at the
base (current) period.
The prices of the asset characteristics are not observable, so the sample estimators

I
A
s and I

G
s cannot be directly decomposed into quality and QAPIs. However, if a sam-

ple of the assets characteristics is available for each period, it is possible to estimate
their implicit prices, and their evolution, using the hedonic regression, which relates
(asset) prices to (asset) characteristics. Based on this regression, alternative estimators
for the unadjusted arithmetic and geometric price indexes may be constructed, being
given by, respectively,

Î As ¼
1
Ns
∑Ns

i¼1 p̂is
1
N0
∑N0

i¼1 p̂i0
(7)

and

Î Gs ¼
exp 1

Ns
∑Ns

i¼1̂ln pisð Þ
h i

exp 1
N0
∑N0

i¼1̂ln pi0ð Þ
h i ; (8)

which are consistent estimators of IAs and I
G
s provided that the predictors p̂it and̂ ln pitð Þ

are consistent estimators for E(pit) and E[ln(pit)], respectively. As shown later in the
paper, under suitable assumptions, the hedonic estimators Î As and Î Gs may be straight-
forwardly decomposed into quality and QAPIs.

2.2 The hedonic function

Most of the specifications that have been used for the hedonic function in empirical
studies differ essentially in the form under which the explanatory variables enter the
model (e.g., logs, squares, and interaction terms), while the dependent variable
appears either in levels or in logarithms, and the RHS is typically linear in the parame-
ters. In this paper, we do not discuss the first issue, because, for our purposes, the exact
specification of the explanatory variables is irrelevant in the sense that any function of
the asset characteristics is easily accommodated by the procedures proposed in the next
sections to compute AHPI andGHPI.3 In contrast, as shown later in the paper, both the

3Because of this, next, for simplicity, we use broadly the term ‘log-linear’ to denote any regression model
that considers logged prices as the dependent variable and uses a specification linear in the parameters
for the RHS (e.g., log–log, semi-log, and translog models).
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form of the dependent variable and the specification of the RHS of the hedonic function
affect decisively the construction of hedonic price indexes.
Given that prices are strictly positive, in this paper, we focus on the following two

specifications for hedonic functions: the log-linear model

lnpit ¼ xitβt þ uit; (9)

and the exponential model

pit ¼ exp xitβ�t þ u�it
� �

; (10)

where uit (u�it) is the error term and βt (β
�
t ) is a (k+1) × 1 vector of parameters, with

elements βt, j (β
�
t; j). The parameter βt,j (β

�
t; j) is often interpreted as the implicit marginal

price for (some function of) characteristic Xt, j and is allowed to change over time.4

While the log-linear model 9 has been widely used in the construction of hedonic price
indexes, the exponential model 10 has been rarely applied in the hedonic literature.5

In fact, when the dependent variable of the hedonic function is chosen to be the price
itself, it has been much more common to use the linear model pit ¼ xitβ��t þ u��it , which,
however, may generate negative price estimates in applied work.6

In a non-stochastic form (i.e., without an error term), models 9 and 10 would
represent exactly the same relationship between pit and xit. However, because of the
presence of the stochastic error terms uit and u�it , the two models are not equivalent,
as the former requires the assumption E(uit|xit) = 0, while the latter assumes
E exp u�it

� ���xit� � ¼ 1. As is well known, neither of those assumptions imply the other,

i.e., E(uit|xit) = 0⇒E[exp(uit)|xit]≠ 1 and E exp u�it
� ���xit� � ¼ 1⇒E u�it

��xit� �
≠0.

3 Links between the price index formula and the form of the dependent variable of the
hedonic function

This section examines in detail howAHPI andGHPImay be consistently estimated when
the dependent variable of the hedonic function is either the price or the logged price.

3.1 Links in the framework of arithmetic indexes

The analysis that follows is made first considering a log-linear hedonic function and
then for the exponential case. In the end, the conclusions are extended to any hedonic
function that uses the logged price or the price as dependent variable.

3.1.1 The case of a log-linear hedonic function

Using a log-linear hedonic function as basis for computing an AHPI has been a very
popular approach in the hedonic literature; see inter alia Coulson (2012), Dorsey, Hu,

4See, however, Pakes (2003), who argued that there is no obvious interpretation for the parameters of the
hedonic function given that it represents a reduced form model.
5See Wooldridge (1992) for one such rare application.
6See inter alia the application by Hill and Melser (2008) for the housing market, who had to drop dwellings
with negative price predictions before computing price indexes.
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Mayer and Wang (2010), Hill (2013), Malpezzi, Chun and Green (1998), and Triplett
(2006). However, while the estimation of a log-linear hedonic function yields directly

consistent estimates for the logarithm of the asset price,̂ ln pitð Þ ¼ xitβ̂ t (see Equation 9),
not for the price itself, the computation of anAHPI requires consistent estimates of prices,
not logged prices. Moreover, because of the stochastic nature of hedonic functions, the

antilog of̂ ln pitð Þ, exp̂ ln pitð Þ
h i

¼ exp xitβ̂ t
� �

, is not in general a consistent estimator of E

(pt|xit). Indeed, the log-linear hedonic function 9 implicitly assumes that pit=exp(xitβt+
uit), i.e.,

E pit xitÞ ¼ exp xitβtð ÞE exp uitð Þ xit�;j½jð (11)

where, in general,E [exp(uit)|xit]≠ 1; see Section 2.2. Therefore, in the log-linear context,
consistent estimates of asset prices require inevitably an estimate of E[exp(uit)|xit].
Let μit≡E [exp(uit)|xit] and assume that

μit ¼ g x�itαt
� �

; (12)

where g(�) may be a non-linear function, x�it is some function of xit, and αt is a vector of
parameters. Assuming, for the moment, that g(�) is a known function and that a
consistent estimator for μit, μ̂it ¼ g x�itα̂t

� �
, is available, a consistent estimator of IAs

of Equation 3 is given by

Î As ¼
1
Ns
∑Ns

i¼1exp xisβ̂s
� �

g x�isα̂s

� �
1
N0
∑N0

i¼1exp xi0β̂0
� �

g x�i0α̂0
� � : (13)

Clearly, the only case where the naive estimator exp xitβ̂ t
� �

for pit can be used for

consistent estimation of IAs occurs when μit is constant across assets and over time
(μit=μ).
Expression 13 is decomposed into quality and quality-adjusted price components as

follows:

Î As ¼
1
Ns
∑Ns

i¼1exp xisβ̂b
� �

g x�isα̂b

� �
1
N0
∑N0

i¼1exp xi0β̂b
� �

g x�i0α̂b

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Î Aq
s

1
Na
∑Na

i¼1exp xiaβ̂s
� �

g x�iaα̂s

� �
1
Na
∑Na

i¼1exp xiaβ̂0
� �

g x�iaα̂0ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Î Aq
s

; (14)

where Î Aq
s and Î Ap

s are consistent estimators for, respectively, IAq
s and I

Ap
s of Equation 5.

From Equation 14, it is clear that in the scale of interest for the construction of AHPI,
the implicit price of each characteristic is a function of both β̂ t and α̂t .

7 Thus, the
estimation of AHPI based on log-linear hedonic functions requires, in general, the

7Hence, if one is interested in testing whether the implicit prices have changed significantly between two
periods, the traditional practice of applying a Chow test for assessing the null hypothesis of equal βt coefficients
in the two periods is not enough in this context: the constancy of the parameters αt must also be tested.
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availability of consistent estimates of α0 and αs, which, by turn, require the specification
of the g(�) function in Equation 12. Instead of making a direct functional form
assumption for g(�), it has been much more common to make further assumptions on
the distribution of the error term uit, which imply a specific form for g(�).
One possibility consists of assuming that uit is homoskedastic, which implies that E

[exp(uit)|xit] does not depend on xit; seeDuan (1983). Under this assumption, a consistent
estimator of μit is given byDuan’s (1983) smearing estimator, which consists of estimating
the unknown error distribution by the empirical distribution function of theOLS residuals
of the log-linear model and then taking expectations with respect to that distribution:

μ̂it ¼
1
Nt

∑
Nt

i¼1
exp ûitð Þ: (15)

Alternatively, it may be assumed that uit has a normal distribution with a variance
of a known form, uit∼N 0; x�itαt

� �
. As is well known, this implies that exp(uit) has a log-

normal distribution, with mean given by

μit ¼ exp 0:5x�itαt
� �

: (16)

In this case, an estimate of αt can be obtained by regressing the squared OLS resid-
uals of the log-linear model on x�it. From now on, we use the term ‘normal-smearing
estimator’ to denote the estimator computed according to Equation 16.
Many authors in the hedonic price literature are aware of the need for applying bias cor-

rections when computing AHPI from log-linear hedonic functions. Clearly, most authors
prefer to apply the normal-smearing estimator (e.g., Coulson, 2012; Dorsey, Hu, Mayer
and Wang, 2010; Malpezzi, Chun and Green, 1998; Pakes, 2003; Triplett, 2006) rather
than the smearing correction (García and Hernández, 2007, seem to be the only authors
to have used this estimator), although all of them assume homoskedasticity. Typically,
the assumptions underlying the application of the chosen bias correction are not discussed,
much less are they tested.Moreover, some authors still do not apply any bias correction in
this context, either because it is considered irrelevant or because practitioners are simply
not aware of it.8 The Monte Carlo study in Section 6 illustrates the important biases that
may arise if such bias corrections are not implemented.

3.1.2 The case of an exponential hedonic function

As shown in the previous section, the computation of AHPI based on log-linear
hedonic functions requires an estimate of μit. On the other hand, the estimation of

8Actually, many authors seem to confuse the bias corrections analyzed in this section, which are necessary
for obtaining consistent predictors for asset prices, with those discussed by Goldberger (1968), which aim
only at reducing the finite sample bias of those predictors and, thus, are not important asymptotically.
See inter alia the recent excellent survey by Hill (2013) on QAPI for residential housing, which, however,
discusses only Goldberger’s (1968) finite sample bias correction but cites several papers, including a previ-
ous version of this paper, which actually address the other, more important, bias correction.
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μit by simple methods requires some stringent assumptions on the distribution of the
error term, which, a priori, there is no reason to believe will hold with actual data.9 In
this section, we investigate whether the calculation of AHPI is simpler when the
hedonic function has an exponential specification.
Assume that the data generating process (DGP) of asset prices is appropriately

described by the exponential hedonic function 10, with E exp u�it
� ���xit� � ¼ 1. Assume

also that the researcher specifies and estimates that same hedonic function. In this

framework, a consistent predictor of asset prices is simply given by p̂it ¼ exp xitβ̂�t
� �

.

Therefore, a consistent estimator of IAs is given by the hedonic estimator Î As of Equation

7, with p̂it replaced by exp xitβ̂�t
� �

, which can be straightforwardly decomposed into

quality and QAPIs:

Î As ¼
1
Ns
∑Ns

i¼1exp xisβ̂�s
� �

1
N0
∑N0

i¼1exp xi0β̂�0
� � ¼

1
Ns
∑Ns

i¼1exp xisβ̂�b
� �

1
N0
∑N0

i¼1exp xi0β̂�b
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Î Aq
s

1
Na
∑Na

i¼1exp xiaβ̂�s
� �

1
Na
∑Na

i¼1exp xiaβ̂�0
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Î Ap
s

: (17)

Clearly, the construction of AHPI based on exponential hedonic functions is much
simpler, as there is no need to implement any bias corrections. Nevertheless, because
log-linear and exponential regression models are not equivalent, it is important to
examine the effects of estimating an exponential regression model in cases where
the DGP has a log-linear representation. Consider first the augmented log-linear
model that assumes in addition to Equation 9 that

μit ¼ exp xitαtð Þ: (18)

Then, from Equation 11, it follows that

E pit xitÞ ¼ exp xit βt þ αtð Þ½ � ¼ exp xitβ�t
� �

;
���

(19)

where β�t ≡βt þ αt. Hence, for our purposes, the addition of assumption 18 to the log-
linear model is equivalent to assume from the start that the DGP of asset prices is
appropriately described by the exponential hedonic function 10. Therefore, the expo-
nential model 19 produces consistent estimators for E(pit|xit) even when the true hedonic
function has a log-linear form, provided that assumption 18 holds in the data. It is true
that βt and αt cannot be identified but that is irrelevant for the computation of AHPI.
As shown next, assumption 18 is by no means heavier than those assumptions made

in the previous section to ignore or to simplify the estimation of the μit in the log-linear
context. Let αt,0 be the intercept and αt,+ be the remaining component of αt. The bias
correction may be ignored only if μit=μ= exp(w), which, relative to Equation 18,
imposes two additional constraints: αt,0 =w and αt,+ = 0. The smearing estimator, by

9For example, when working with log-linear hedonic functions in the construction of house price indexes,
Fletcher, Gallimore andMangan (2000), Goodman and Thibodeu (1995), and Stevenson (2004) found asset
age-induced heteroskedasticity, which prevents application of the simple smearing estimator.
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assuming μit= μt= exp(αt,0), is also more restrictive, because it requires that αt,+ = 0.
Relative to the normal-smearing estimator, the augmented log-linear formulation does
not require normality of uit but adds the assumption x�it ¼ xit. However, functions of xit
can be straightforwardly added to the index function in Equation 18. For example,
assume that the true hedonic function is log linear and that Equation 16 reduces to
μit ¼ exp 0:5x2itαt

� �
. Then

E pit xitÞ ¼ exp xitβtð Þexp 0:5x2itαt
� � ¼ exp zitδ�t

� �
;

���
(20)

where zit is a vector containing the distinct elements of both xit and x2it , and δ�t is a
vector of parameters. Therefore, assumption 16 is also easy to accommodate in a
standard exponential regression model. Thus, the same assumptions that simplify
the calculation of AHPI when the hedonic function is log-linear also ensure that the
exponential model yields consistent estimators for asset prices.

3.1.3 The general case

The previous analysis suggests that it is much simpler to compute AHPI based on
exponential hedonic functions, which do not require the estimation of any bias correc-
tions, than to use log-linear models, in which case not only is there one additional
function to be dealt with (the error variance function) but also it is typically less clear
how to specify it. Thus, we may conclude that there is a very convenient link between
the computation of AHPI and the specification of exponential hedonic functions.
However, using an exponential model is not the only way of ensuring that no bias
corrections are required to calculate AHPI. Indeed, it is straightforward to see that
simple decompositions of unadjusted price indexes as in Equation 17 are also
produced by any other hedonic function that uses the price as dependent variable
(e.g., the linear model), irrespective of the particular specification adopted for the
RHS. It is also evident that with any other form of the dependent variable, it will
be necessary to use (variants of) the more complex decomposition 14, irrespective of
the particular transformation adopted for the dependent variable of the hedonic
function. Hence, what is effectively relevant for a simple computation of AHPI is that
the dependent variable of the hedonic function is the price itself and not some trans-
formation of it.
Thus, we may conclude the following:

Link 1a: There exists a link between the computation of AHPI and hedonic functions
that consider the untransformed asset price as dependent variable.

If this link is respected, AHPI may be consistently estimated without applying any
bias corrections, and one may focus on the issue of choosing the best specification for
the RHS of the hedonic function. To this end, we may use standard functional form
tests (e.g., RESET) to assess whether the adopted model is in fact an appropriate
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specification for E(pit|xit) and/or employ non-nested hypothesis tests to assess, e.g.,
linear and exponential models against each other. We may also, following Pakes
(2003), use the adjusted R2 to decide which hedonic model provides the most exact
and accurate price predictions. Therefore, the apparently contradictory positions of
many authors discussed in the Section 1 are actually conciliable, because: (i) although
by convenience the choice of the dependent variable must be dictated by the choice of
the price index, there are no a priori restrictions on the specification of the RHS of the
hedonic function; and (ii) in all empirical studies where log-linear models have been
used to compute AHPI, the (sometimes implicit) assumptions made imply that
asymptotically equivalent results are produced by exponential hedonic functions.

3.2 Links in the framework of geometric indexes

Using arguments similar to those put forward in the previous section, it is straightfor-
ward to show that the construction of GHPI simplifies considerably when the hedonic
function uses logged prices as the dependent variable.10 For example, assuming that
the DGP of asset prices is suitably described by a log-linear model, a consistent
estimator of IGs of Equation 4 is given by the hedonic estimator of Equation 8, with

^ln pitð Þ replaced by xitβ̂ t, which can be decomposed as follows:

Î Gs ¼
exp 1

Ns
∑Ns

i¼1 xisβ̂s
� �

exp 1
N0
∑N0

i¼1 xi0β̂0
� � ¼

exp 1
Ns
∑Ns

i¼1 xisβ̂b
� �

exp 1
N0
∑N0

i¼1 xi0β̂b
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Î Gq
s

exp 1
Na
∑Na

i¼1 xiaβ̂s
� �

exp 1
Na
∑Na

i¼1 xiaβ̂0
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Î Gp
s

: (21)

In contrast, any specification for the hedonic function that does not use logged
prices as the dependent variable will require the use of bias corrections. Therefore:

Link 1b: There exists a link between the computation of GHPI and hedonic functions
that consider logged asset prices as a dependent variable.

4 Links between the price index formula, the RHS of the hedonic function, and the
estimation method

Another issue that is worth investigating is the relation between the sample (I
A
s and I

G
s )

and the hedonic (̂I As and Î Gs ) estimators of unadjusted arithmetic and geometric price
indexes that were introduced in Section 2.1. Next, we discuss under which
circumstances both types of estimators produce identical estimates of unadjusted
price variations.

10For details, see the supplementary material available at http://evunix.uevora.pt/~jsr/papers/
HedonicLinks-Supplement.pdf.
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From Equations 2 and 8, a sufficient condition for ensuring that I
G
s ¼ Î Gs is given by

N�1
t ∑

Nt

i¼1
lnpit ¼ N�1

t ∑
Nt

i¼1
l̂n pitð Þ: (22)

In general, this equality does not hold. However, there is a case in which Equation 22 is
satisfied.When the hedonic function has a log-linear specification and the parameters of

the model are estimated by OLS, the estimator β̂ t for βt satisfies the following set of
orthogonality conditions between the residuals ûit and the explanatory variables:

∑
Nt

i¼1
x′it ûit ¼ ∑

Nt

i¼1
x′it lnpit �̂ lnpit
� �

¼ 0: (23)

Typically, xit includes an intercept, implying that∑Nt
i¼1 ûit ¼ 0, and, hence, the averages of

both the observed and OLS predicted logged prices are identical, as in Equation 22.

Similarly, equality I
A
t ¼ Î At is only satisfied when

1
Nt

∑
Nt

i¼1
pit ¼

1
Nt

∑
Nt

i¼1
p̂it; (24)

see expressions 1 and 7. Assuming a linear hedonic function, then, again, estimation
by OLS ensures that condition 24 holds. Assuming the more interesting exponential
specification recommended in this paper, there are a variety of alternative methods
that may be used for estimating β�t , but, as shown next, only one of them ensures that
condition 24 is satisfied.
Themost commonmethods for estimating the parameters of an exponential regression

model are non-linear least squares (NLS), PPML, and Gamma pseudo-maximum
likelihood (GPML). In all cases, the only condition required for consistency is the correct
specification of the hedonic function, with the methods differing essentially on the
functional form assumed for the conditional variance of exp u�it

� �
in Equation 10:

V exp u�it
� ���xit� � ¼ τexp xitβ�t

� ��ρ
; (25)

where ρ=0 (GPML), ρ=1 (PPML), or ρ=2 (NLS), and τ is a constant term. As shown by
Santos Silva and Tenreyro (2006), the first-order conditions for each estimator are given by

∑
Nt

i¼1
x′it pit � exp xit β̂�t

� �h i
exp xitβ̂�t

� �ρ�1
¼ 0; (26)

which implies that only when ρ=1 (PPML estimator) are the averages of observed
and predicted dwelling prices identical as required by condition 24.11

11The PPML method is available as a canned command in many econometric packages. For instance, it
may be implemented in Stata using one of the following command lines: poisson pit Xit,1…Xit,k, ro-
bust or ppml pit Xit,1…Xit,k (the latter command requires the previous installation of the package ppml.
ado; just type ‘findit ppml’ and follow the links). See Santos Silva and Tenreyro (2011) for details on both
implementations of the PPML estimator.
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A very useful implication of Equations 22 and 24 is that the process of producing

Paasche-type QAPI is substantially simplified. Consider Î Ap
s of Equation 17, with

a= s. Denote byps the arithmetic mean of the actual asset prices in period s. Estimating

β̂�t by PPML, it follows from Equation 24 that Î Ap
s reduces to

Î Ap
s ¼ ps

1
Ns
∑Ns

i¼1 exp xisβ̂�0
� � ; (27)

a similar simplification is available if we use a linear hedonic function and estimate it
by OLS. In the case of GHPI, Î Gp

s of Equation 21, with a= s and β̂ t estimated by OLS,
may be simplified to

Î Gp
s ¼ ps

exp 1
Ns
∑Ns

i¼1 xisβ̂0
h i ; (28)

where ps now denotes a geometric mean. These simplified Paasche-type price indexes
are very attractive for statistical agencies, because they may be computed in a more
timely and simple manner: the hedonic function needs to be estimated only at the
base period.
Thus, we conclude that:

Link 2: There exists a link between a linear (exponential) specification for the RHS of
the hedonic function and the OLS (PPML) estimation method.

At this point, it is worth acknowledging that Reis and Santos Silva (2006) have also
analyzed some of the issues discussed so far. However, in addition to working in
another context (they dealt with weighted indexes for frequently traded assets), there
are three crucial differences between our approach and theirs. The first has to do with
the definition of a QAPI. Right from the start, Reis and Santos Silva (2006) defined
(Paasche) QAPI expressions using expressions similar to Equations 27 and 28, i.e.,
ratios of observed and predicted prices. Then, they argue that only when (the
equivalent of) Links 1 and 2 are simultaneously respected is a basic property of any

estimator of QAPI satisfied: the index should equal 1 when β̂0 equals β̂s. In contrast,
because our estimators of QAPI are defined as ratios of predicted prices, they always
satisfy that basic property, even when none of the identified links is respected. As a
consequence, while we talk about convenient links, their links are presented as compul-
sory. The second relevant difference is that, because they deal with (the equivalent of)
Links 1 and 2 simultaneously, they do not evaluate separately the consequences of not
respecting only one of the links. In contrast, we have shown that those consequences
are markedly different: while failing to respect Link 1 may lead to inconsistent estima-
tion of QAPI if incorrect assumptions about the error term are made, failing to
respect Link 2 only means that the process of producing Paasche QAPI will be more
time consuming and that in small samples there may be some deviations between
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hedonic and sample estimates of unadjusted price variation, which tend to zero
asymptotically. Finally, Reis and Santos Silva (2006) focused on the computation
of geometric price indexes and, hence, have not explicitly dealt with exponential
functions, while one of the main aims of this paper is precisely to show the usefulness
of such functions in the hedonic framework.

5 Links in the context of the time dummy variable method

The technique used in the previous sections to obtain the price decompositions given in
Equations 17 and 21 is known as the imputation price method, which is the most
common and flexible hedonic method because it allows the model parameters to vary
freely over time.12 In contrast to this method, the time dummy variable method
assumes that the implicit prices of the asset characteristics are constant across a certain
number of time periods. Hence, only one hedonic function needs to be estimated for the
whole period, using a sample that comprises observations from all periods.
Let T denote that number of periods, let Ti be a vector of T� 1 dummy variables

whose elements Tit (t=1,…,T� 1) take the value unity if asset i was sold at period t
(and zero otherwise), and let λ (λ*) be the associated vector of coefficients with elements
λt (λ

�
t ). Let also rit be a vector containing all asset characteristics other than the period

of sale and θ (θ*) be the associated vector of parameters that is assumed to be constant
over time. Thus, in the log-linear case, the hedonic function may be written as

ln pitð Þ ¼ ritθ þ Titλt þ uit; (29)

while in the exponential case, it is given by

pit ¼ exp ritθ� þ Titλ�t þ u�it
� �

: (30)

Under suitable assumptions, consistent predictors for logged asset prices in periods

0 and s are given by, respectively,̂ ln pi0ð Þ ¼ ri0θ̂ and̂ ln pisð Þ ¼ risθ̂ þ λ̂s, and consistent

predictors for asset prices are given by, respectively, p̂i0 ¼ exp ri0θ̂�
� �

and p̂is ¼
exp risθ̂� þ λ̂�s

� �
.

From Equation 21, it follows that the GHPI based on the log-linear function 29
simplifies to

Î Gp
s ¼

exp 1
Na
∑Na

i¼1 riaθ̂ þ λ̂s
� �
exp 1

Na
∑Na

i¼1 riaθ̂
� � ¼ exp λ̂s

� �
; (31)

which is a well-known result in the hedonic literature and, in fact, the main attractiveness
of using the time dummy variable method. For this reason, and because most authors

12Note that this is true even when Link 2 is respected. Indeed, under Link 2, the hedonic regressions for some
periods do not need to be explicitly estimated, but the underlying parameters are still allowed to change
freely.
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seem to think that a similar result is not possible in the AHPI framework, there is an
apparent consensus in the hedonic literature that there is a link between the time dummy
variable method, the log-linear hedonic function, and the GHPI, in the sense that only
with this specific combination of methods, functions, and indexes is the calculation of
QAPI substantially simplified. See, for example, Diewert, Heravi and Silver (2009),
Haan (2010), Hill (2013), and Silver andHeravi (2007), which, in their sections dedicated
to the time dummy variable method, restrict their attention to GHPI calculated from
hedonic functions based on logged prices, and Diewert (2011) and Triplett (2006), which
consider a linear hedonic function and conclude that no expression similar to Equation
31 is available in the AHPI framework. However, as shown next, a similar simplification
applies to AHPI when used in association with the exponential hedonic function 30.
Indeed, from Equation 17, it follows that

Î Ap
s ¼

1
Na
∑Na

i¼1 exp riaθ̂� þ λ̂�s
� �

1
Na
∑Na

i¼1 exp riaθ̂�
� � ¼ exp λ̂�s

� �
: (32)

Hence, the link established in the hedonic literature is reformulated as follows:

Link 3: In the framework of the time dummy variable method, there exists a link
between the AHPI (GHPI) and hedonic functions that consider the price (logged price)
as dependent variable and use an exponential (linear) specification for the RHS.

6 Monte Carlo simulation study

We use Monte Carlo methods to compare estimators of (fixed base Paasche-type)
AHPI based on choices that do and do not respect Link 1 and/or Link 2.13 Moreover,
we also compare the ability of each estimator to predict asset prices. In order to
obtain a realistic scenario for our experiments, the housing dataset of Anglin and
Gençay (1996) is used as basis for simulating several patterns of evolution for
dwelling prices and characteristics. All experiments are based on 5000 replications.

6.1 Anglin and Gençay’s (1996) dataset

All Monte Carlo experiments that follow are based on real data for the Canadian
housing market, namely for the city of Windsor. This dataset, which was first
analyzed by Anglin and Gençay (1996), consists of 546 observations for the year of
1987 and includes 11 explanatory variables: one continuous regressor, four count

13Link 3 is not considered, because failure in respecting it does not cause any further bias relative to the one
already implied by failure in respecting Link 1. Indeed, if we take into account Link 1 but not Link 3, that
is, if we use logged prices (prices) but not a linear (exponential) specification for the right-hand side of the
hedonic function, and then compute geometric (arithmetic) indexes, the only negative consequence of such
an approach is the necessity of using the full formula for computing the index instead of the simplified for-
mulas given in Equations 31 and 32.
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variables, and six binary regressors. To simplify our investigation, without loss of
generality, next we consider only one of each type of explanatory variable, namely
the natural logarithm of the lot size of the property in square feet (LOT), the number
of bedrooms (BDMS), and a dummy variable, which equals one if the dwelling is
located in a preferred neighborhood of the city (REG). In all regressions, the dependent
variable is the sale price in Canadian dollars, divided by 100,000, or its logarithm.
Regressing the logarithm of the price on a constant term and the three mentioned

explanatory variables produces the following results:

l̂n pið Þ ¼ �4:809þ 0:460LOTi þ 0:141BDMSi þ 0:184REGi; (33)

with σ̂2 ¼ 0:075 , where σ2 is the error term variance under the assumption of
homoskedasticity. In order to establish a possible heteroskedasticity pattern, we
regressed also the squared residuals, û2i , of Equation 33 on LOTi and its square,
obtaining

û2i ¼ �0:007LOTi þ 0:002LOT2
i þ error: (34)

Finally, we also estimated the following exponential hedonic function:

p̂it ¼ exp �4:770þ 0:458LOTit þ 0:147BDMSit þ 0:168REGitð Þ: (35)

6.2 Prediction of dwelling prices

Before focusing on the comparison of alternative estimators for AHPI, we consider
the effects of different assumptions on the error term over the prediction of dwelling
prices by four different methods. Three of them consider a log-linear hedonic
function, estimated by OLS: the naive OLS estimator, which first estimates ln(pit)
and then uses its antilog as predictor of pit; the normal-smearing OLS estimator
(OLSn), which applies the bias correction 16 to the OLS estimator and assumes a nor-
mal-distributed error term with known variance; and the smearing OLS estimator
(OLSs), which applies the bias correction 15 to the OLS estimator and assumes a
homoskedastic error term. The fourth estimator considers an exponential hedonic
function, which is estimated by PPML and includes the variableLOT2

it as an additional
regressor under heteroskedasticity.
In this first set of experiments, we simulate 5000 random samples of size 546 drawn

with replacement from the actual sample of regressors. Then, we generate dwelling
prices for a single time period using the hedonic function ln(pi) =� 4.809+ 0.460
LOTi+0.141BDMSi+0.184REGi+ ui, where ui was generated from three alternative
distributions with mean zero and variance σ2

i : a normal distribution N 0;σ2
i

� �
, a

displaced Gamma distribution Gamma γ2σ2
i ; γ

� �� γσ2
i , where γ=1.5, and a Gumbel

distribution Gumbel(�0.577216ηi, ηi), where ηi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6σ2

i =π2
p

. Regarding the error term

variance, we considered both the cases of homoskedasticity (σ2
i ¼ σ2 , where σ2 is
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either 0.075 or 0.375) and heteroskedasticity ( σ2
i ¼ �0:007LOTi þ cLOT2

i , where
c=0.002 or 0.01).
FollowingMood, Graybill and Boes (1974, pp. 540–543), for the normal, Gamma, and

Gumbel cases, E[exp(uit)] is given by, respectively, exp 0:5σ2
it

� �
, γ= γ� 1ð Þ½ �γ2σ2

itexp �γσ2
it

� �
,

and Γ (1� ηit)exp(�0.577216ηit). Therefore, in the normal and Gamma cases,

E pijxið Þ ¼ exp xiβ þ φσ2
i

� � ¼ exp ziδ�ð Þ;
where φ=0.5 (normal) or φ= γ2ln[γ/(γ� 1)]� γ (Gamma) and zi=xi (homoskedasticity)
or zi ¼ xi;LOT2

i

� �
(heteroskedasticity). In contrast, for the Gumbel case,

E pijxið Þ ¼ exp xiβ � 0:577216ηi þ ln Γ 1� ηið Þ½ �f g

¼ exp xiβ �
ffiffiffi
6

p

π
σi þ ln Γ 1�

ffiffiffi
6

p

π
σi

� �
 �� �
;

which simplifies to exp(ziδ*) only in case of homoskedasticity and has a non-standard
representation otherwise.
Figure 1 displays the average predictions across replications yielded by each

estimator for dwellings, which have three bedrooms and are not located in a preferred
neighborhood of the city and whose lot size ranges, in steps of 50, from 1650 to
15,600 ft2. The first two values represent the mode for the variables BDMS and
REG, while the boundary values chosen for the lot size are its minimum and
maximum values in the sub-sample of dwellings for which (BDMS,REG) = (3,0).
Figure 1 displays also the expected value of dwelling prices (denoted as True), i.e.,
the values obtained from Equation 11 using the true vector β0, the original data for
the regressors, and the correct form for E[exp(uit)|xit].
As shown by Figure 1, none of the OLS estimators are able to yield consistent

predictions of dwelling prices across the whole set of experiments. The naive OLS

Fig. 1. Alternative methods for predicting dwelling prices (N0 = 546).
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estimator produces biased predictions in all cases, with the bias increasing as E[exp
(ui)|xi] increases from 1.038 (normal, σ2

i ¼ 0:075 ) to 1.206 (normal, σ2
i ¼ 0:375 ),

1.289 (Gumbel), and 1.440 (Gamma). The OLSn estimator yields inconsistent predic-
tions whenever ui has a non-normal distribution. Finally, the smearing estimator fails
in consistently predicting dwelling prices under heteroskedasticity, overpredicting the
price for low values of the lot size and underpredicting it for high values.
In contrast, the PPML estimator performswell in all experiments, even in the case of a

Gumbel-distributed error term, where the exponential regression model estimated is not
well specified. Note that the small bias displayed sometimes by the PPML estimator for
larger values of LOT is a small sample issue, disappearing asymptotically, as can be
confirmed in Figure 2, which is based on 5000 samples of 5460 dwellings drawn with
replacement from the original sample. In contrast, the biases of the other estimators
do not vanish as the sample size becomes larger.
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Fig. 2. Alternative methods for predicting dwelling prices (N0 = 5460).
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6.3 Link 1

6.3.1 Experimental design

Now, we evaluate the performance of the same four methods when the aim is the
estimation of AHPI. The following model was used to generate the dwelling prices
in each of the t=0,…, 20 periods that this study comprises:

ln pitð Þ ¼ βt;0 þ βt;1LOTit þ βt;2BDMSit þ βt;3REGit þ uit: (36)

Based onAnglin andGençay’s (1996) dataset, we set β′0 ¼ �4:809; 0:460; 0:141; 0:184½ �:
For the remaining periods, βt= βt� 1(1+Δβt), t≥ 1, where the four elements of Δβt are
drawn independently from a normal distribution with mean zero and variance 0.0001
(design A) or 0.0001/50 (design B). To generate uit, we considered the same three distribu-
tions of the previous experiment, with the error term variance being now given by σ2

it .
Three distinct patterns were considered forσ2

it: (i)σ
2
it ¼ 0:075 (homoskedasticity); (ii)σ2

it ¼
σ2
t ∈ 0:075; 0:375½ � (time-varying error variance), either because σ2

t ¼ 0:075þ 0:015t or is

randomly drawn from a uniform distribution on that interval; and (iii) σ2
it ¼

�0:007LOTit þ ctLOT2
it (heteroskedasticity), where ct∈ [0.002,0.010], with ct=0.002+

0.0004t or drawn from a uniform distribution on the mentioned interval.
Monte Carlo samples of size Nt of dwelling characteristics for period 0 were

randomly drawn, with replacement, from the original dataset of 546 observations,
with Nt being drawn from a uniform distribution with limit points 250 and 500 in
order to mimic the fact that with actual data the sample size typically differs across
periods. For periods 1,…, 20, the samples were generated in two steps. In the first
step, ‘base samples’ of size 546 were constructed. In the second step, samples of size
Nt were randomly drawn, with replacement, from the base samples. To construct
the base samples, first, the dwellings in the original sample where sorted according
to their actual sale prices. Then, we constructed four strata, where the first stratum
contains the 25% cheapest dwellings, the second comprises the next 25%, and so on.
Let ft be a four-element vector of probabilities assigned to each stratum. We next
drew ft from a Dirichlet distribution with parameter ςt ¼ φf Bt , where φ=5 is a

precision parameter, f Bt ¼ f Bt�1 þ Δf Bt is the expected value of ft, Δf Bt ¼
�0:01; 0; 0:005; 0:005½ ��t, and f B0 ¼ 0:25; 0:25; 0:25; 0:25½ �.14 Finally, for each period,
we generated a base sample, drawing with replacement from the original dataset a
stratified sample based on ft. Experiments involving tenfold samples were also
performed, in which case the same procedures were applied to generate the Monte
Carlo sample, but only after replicating the original sample ten times.
To illustrate the main practical characteristics of the experimental designs

simulated, Figure 3 displays unadjusted and quality-adjusted arithmetic price indexes,
as well as the associated quality index, for both designs A and B when the error term

14See Murteira and Ramalho (2013) for details on the particular Dirichlet distribution considered.
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has a normal distribution and its variance is defined according to the error variance
patterns (i) and (ii) defined earlier. These are fixed base indexes and represent ‘popu-
lation’ indexes, as they were calculated using the base samples, the true βt parameters,
and the known bias correction E[exp(uit)|xit].
As Figure 3 shows, the pure price evolution is quite distinct in designs A and B, being

much more irregular and displaying much larger absolute variations in the former case.
Note also that, although the parameters of the hedonic function are kept fixed across
error variance patterns, both the unadjusted and QAPIs vary from experiment to
experiment because of different assumptions on the error term variance. For example,

consider the three graphs of the second row of Figure 3. In the first graph, IAp
s changes

very little over time. In the second graph, as the result of an increasing variance of the

error term, at a constant rate, IAp
s also increases at a relatively constant rate. Finally,

in the third graph, because of the random nature ofσ2
it, the time trajectory of IAp

s is much
less regular. This illustrates clearly the need for implementing bias corrections in cases
where the hedonic function is specified in a scale that is not the one of interest for
calculating the index: when the hedonic function is log linear, while ln(pit) and GHPI
do not change as a result of a variation of σ2

it, pit and AHPI do change.

6.3.2 Results

Figure 4 reports the main results obtained for alternative estimators of AHPI. The
first two rows consider the case of a time-varying error variance, while in the last
two rows the error term is heteroskedastic.15 On the other hand, Table 1 presents

15The results for the case where the error term variance is constant over time and across dwellings are omit-
ted because, in such a case, the four estimators yield consistent (and indistinguishable) estimators for IAp

s .

Fig. 3. Population arithmetic price indexes – uiteN 0;σ2
t

� �
.
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annual growth rates for the case of design A, reporting the percentage mean and
maximum absolute bias of each estimator over the 20 time periods considered (for
design B, the results are very similar).

Fig. 4. Alternative estimators of quality-adjusted arithmetic price indexes.

Table 1. Alternative estimators of quality-adjusted arithmetic price indexes: annual growth rates (design
A; % bias)

Mean absolute bias Maximum absolute biasError distribution

OLS PPML OLSn OLSs OLS PPML OLSn OLSs

Time-varying error variance: σ2
t ¼ 0:075þ 0:015t

Normal 0.7 0.0 0.0 0.0 0.8 0.1 0.1 0.1
Gumbel 1.0 0.1 0.3 0.1 1.2 0.2 0.5 0.2
Gamma 1.4 0.6 0.7 0.6 1.6 2.1 1.0 2.1

Time-varying error variance: σ2
t ∼Uniform 0:075; 0:375ð Þ

Normal 6.5 0.0 0.0 0.0 14.1 0.1 0.1 0.1
Gumbel 9.0 0.0 2.5 0.1 20.5 0.1 5.6 0.2
Gamma 12.6 0.4 6.1 0.5 29.2 1.3 13.1 1.5

Heteroskedasticity: σ2
it ¼ �0:007LOTit þ ctLOT2

it , ct=0.002+ 0.0004t
Normal 1.5 0.1 0.1 0.1 2.2 0.2 0.1 0.3
Gumbel 2.5 0.2 0.2 0.3 4.6 0.8 2.5 1.1
Gamma 2.9 0.3 1.4 1.1 4.2 1.1 2.1 2.8

Heteroskedasticity: σ2
it ¼ �0:007LOTit þ ctLOT2

it , ct∼Uniform(0.002,0.01)
Normal 12.9 0.1 0.1 0.2 29.1 0.1 0.1 0.7
Gumbel 21.1 0.5 7.7 0.8 53.1 1.7 18.2 1.9
Gamma 25.8 1.5 12.1 1.3 64.9 3.6 27.2 3.6
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As expected, in these circumstances, any estimates of IAp
s based on the naive OLS

estimator are inconsistent, as Figure 4 clearly shows. Moreover, annual growth rates

calculated with basis on I
Ap
s may originate mean and maximum absolute biases of

25.8% and 64.9%, respectively (see the last row of Table 1). In fact, the estimates of

I
Ap
s produced by OLS are independent of the value ofσ2

it, while all the other estimators,
automatically (PPML) or through a bias correction (OLSn and OLSs), incorporate
the effect of a varying error term variance on the untransformed price scale. Note also
that while the bias of OLS, in terms of annual growth rates, is not that large when the
error term variance increases at a constant rate (see the first and third panels of
Table 1), the cumulated effects in the end of the 20 time periods are huge (maximum
bias: 44.5% under heteroskedasticity and a Gamma error term).
On the other hand, large deviations from the normality assumption may induce

very large biases in the estimation of AHPI by OLSn (maximum bias: 24.5% under
heteroskedasticity and a Gamma error term). Moreover, the bias in terms of annual
growth rates may also be substantial, with a mean value 12.1% and a maximum of
27.2% in the Gamma, heteroskedastic case.
Regarding the smearing estimator, its performance is very interesting, producing

consistent estimates of I
Ap
s even in the case of heteroskedasticity.16 Similarly, the

PPML estimator performed well in all experiments, even in the Gumbel case with
heteroskedasticity. However, the variability of the smearing estimator is much
larger than that of PPML, especially in small samples and with non-normal error
terms, as can be seen in Figure 5, which displays the root mean square errors
(RMSE) of the estimators under heteroskedasticity for both Nt ∈ {250,500} and Nt ∈
{2500,5000}. Interestingly, the OLSn estimator displays the lowest RMSE when the
sample size is small. However, this can be hardly seen as a positive feature of this
estimator: it just means that, in cases where the error term has a non-normal
distribution, OLSn estimates are concentrated far away from the true price indexes.
When the sample size increases, the PPML estimator is the best RMSE performer in
most cases.
Overall, the results in this section show the importance of respecting Link 1 and,

hence, using an exponential hedonic function. When Link 1 is ignored, it is essential
to implement the right bias correction, as the bias of the naive OLS estimator may be
huge and the relatively popular OLSn only works well when the error term is normally
distributed. Somewhat surprisingly, the smearing estimator seems to be an attractive

alternative for computing I
Ap
s , given its apparent robustness to heteroskedasticity.

However, this estimator has the undesirable feature of yielding inconsistent estimates
of dwelling prices under heteroskedasticity.Moreover, it displays muchmore variability
than the PPML estimator.

16We simulated many other experiments with different heteroskedasticity patterns across dwellings, and in
all cases, we failed to find an example in which the OLSs-based hedonic indexes would deviate in a sizable
manner from the true value of the index.
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6.4 Link 2

In Section 4, we identified a very relevant link between AHPI, exponential hedonic
functions, and the PPML method. Next, we investigate whether respecting this link
may originate less precise estimates of AHPI in some circumstances by considering
two alternative estimation methods to PPML: NLS and GPML. These alternative
methods are expected to produce more efficient estimators of the parameters of the
hedonic function when the nuisance parameter ρ that appears in the error term vari-
ance 25 is close to 0 (GPML) or 2 (NLS).
The following exponential hedonic function is now used to generate dwelling prices:

pit ¼ exp β�t;0 þ β�t;1LOTit þ β�t;2BDMSit þ β�t;3REGit þ u�it
� �

; (37)

where, based on Anglin and Gencay’s (1996) dataset, we set β�′0 ¼
�4:770; 0:458; 0:147; 0:168½ �; see Equation 35. We generate exp u�it

� �
as a log-normal

random variable with mean one and variance as in Equation 25, with τ =1 and ρ=
1, 0, 1, 2. The remaining characteristics of these experiments are similar to those of
the previous section (design A).
Figure 6 displays 99% confidence intervals and RMSE for alternative estimators of

AHPI. Both statistics show clearly that NLS is often much less precise than its
competitors, which is a consequence of the extreme values that NLS occasionally
yields. These results mimic the erratic behavior of NLS in the estimation of regression
coefficients already detected by Manning and Mullahy (2001) and Santos Silva and

Fig. 5. Root mean square errors – heteroskedastic case: σ2
it ¼ �0:007LOTit þ ctLOT2

it .

Convenient links for hedonic price indexes 113

© 2014 The Authors. Statistica Neerlandica © 2014 VVS

 14679574, 2014, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12024 by C

ochrane Portugal, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Tenreyro (2006). Regarding PPML and GPML, no substantial efficiency gains arise
from using one or the other estimator, so, given the attractive features of the former
estimator discussed before, in general, there will be no reasons for using other estima-
tor than PPML in this context.

7 Conclusion

7.1 Main findings

QAPIs are often computed using hedonic pricing methodologies. In practice, the
various choices underlying the estimation of hedonic indexes (price index formula,
hedonic function, hedonic method, and estimation method) are usually made in
independent ways. In this paper, we have discussed in detail several links between
those choices that allow important simplifications in the procedures required to
construct a hedonic price index.
The first link identified in the paper concerns the association between AHPI

(GHPI) and hedonic functions that use the price (logged price) as dependent variable:
only when this link is respected will no bias corrections be necessary to obtain
consistent estimates of QAPI. The Monte Carlo study provided clear evidence of
the substantial biases that may arise in the construction of AHPI when a log-linear
hedonic function is used and wrong assumptions are made on the error term distribu-
tion. The other two links discussed in the paper are also very useful, as they allow the
computation of QAPI in a more simplified and timely manner. In the context of the
imputation price method, the process of producing Paasche-type AHPI is substan-
tially simplified if hedonic functions with linear (exponential) specifications for the
RHS are estimated by OLS (PPML). In the framework of the time dummy variable
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Fig. 6. Alternative quality-adjusted arithmetic price indexes based on exponential hedonic functions.
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method, the use of an exponential hedonic function allows the computation of AHPI
simply as the exponential transformation of a time dummy variable coefficient; so far,
such simplification was thought to be valid only for computing GHPI based on log-
linear hedonic functions.
Overall, the exponential model, which has rarely been used in the hedonic

literature, proves to be more useful to deal with AHPI than the more popular linear
model, particularly when estimated by PPML. As the linear model, it avoids the
use of bias corrections and allows the simplification of Paasche QAPI if the appropri-
ate estimation method is used. In addition, the exponential model (i) avoids the
occurrence of negative predictions for asset prices; (ii) allows the use of the time
dummy variable method; and (iii) produces asymptotically equivalent results to those
yielded by the popular log-linear hedonic model in the few cases where the bias
corrections required to the latter type of model are not too hard to estimate.

7.2 Possible extensions

In this paper, we focused on the construction of AHPI and GHPI. However, there
are alternative price index formulas that are commonly used in the computation
of QAPI, such as Fisher and Tornqvist indexes.17 Actually, based on the so-called
economic and axiomatic approaches, see Hill (2013), many authors recommend the use
of Fisher and Tornqvist indexes over the elementary indexes discussed in this paper.
The Fisher QAPI ( IFs ) is given by the geometric mean of Laspeyres and Paasche
quality-adjusted AHPI,

IFs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E psjx0ð Þ
E p0jx0ð Þ

E psjxsð Þ
E p0jxsð Þ

s
; (38)

while the Tornqvist QAPI ( ITs ) is given by the geometric mean of Laspeyres and
Paasche quality-adjusted GHPI,

ITs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp E ln psjx0ð Þ½ �f g
exp E ln p0jx0ð Þ½ �f g

exp E ln psjxsð Þ½ �f g
exp E ln p0jxsð Þ½ �f g

s
: (39)

Clearly, given that they are a function of two versions of either IAs or IGs , the links
identified in this paper are also relevant for the computation of Fisher and Tornqvist
QAPI.
With a few adaptations, namely the use of weighting schemes, the links identified in

this paper also apply to heterogeneous goods frequently transacted. Indeed, based on
the work of Reis and Santos Silva (2006), we may conjecture that one just has to use
weighted OLS (geometric indexes) or weighted PPML (arithmetic indexes), with the
same weights being used in the construction of the price index and in the estimation
of the hedonic function.

17For a comprehensive text on index number theory, see Balk (2008).
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Finally, in many areas of economics, interest lies not in the computation of QAPI
but in quality indexes. Clearly, in this case, Link 1 is also relevant. For example, from
Equations 14 and 17, it follows immediately that, unless Link 1a is respected, the
construction of arithmetic quality indexes requires the use of bias corrections.
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