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Abstract
We study the nonlinear Schrödinger system

⎧
⎪⎨

⎪⎩

iut + �u − u +
(
1

9
|u|2 + 2|w|2

)

u + 1

3
u2w = 0,

iσwt + �w − μw + (9|w|2 + 2|u|2)w + 1

9
u3 = 0,

for (x, t) ∈ R
n × R, 1 ≤ n ≤ 3 and σ,μ > 0. This system models the interaction

between an optical beam and its third harmonic in a material with Kerr-type nonlinear
response. We prove the existence of ground state solutions, analyse its stability, and
establish local and global well-posedness results as well as several criteria for blow-up.

Keywords Nonlinear Schrödinger systems · Blow-up · Ground states · Orbital
stability

Mathematics Subject Classification 35Q60 · 35Q41 · 35Q51 · 35C07

1 Introduction

In recent years, cascading nonlinear processes have attracted an increasing interest. It is
nowwell understood that this phenomena leads to effective higher-order nonlinearities
inmaterialswithχ(2) andχ(3) susceptibilities, in particular in the framework of second
and third-order generation (see for instance [5,13,14,18,19] and references therein).
In [20], Sammut et al. introduced a new model for the resonant interaction between

B Filipe Oliveira
foliveira@iseg.ulisboa.pt

Ademir Pastor
apastor@ime.unicamp.br

1 Mathematics Department, CEMAPRE, ISEG, Universidade de Lisboa, Rua do Quelhas 6,
1200-781 Lisboa, Portugal

2 IMECC-UNICAMP, Rua Sérgio Buarque de Holanda, 651, Campinas, SP 13083-859, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s13324-021-00554-9&domain=pdf
http://orcid.org/0000-0001-7098-2087


123 Page 2 of 38 F. Oliveira, A. Pastor

a monochromatic beam with frequency ω propagating in a Kerr-type medium and its
third harmonic (with frequency 3ω). The third-harmonic generation leads to features
typical of non-Kerr χ(2) media.We begin by briefly detailing its derivation. For a more
thorough explanation of the computations and approximations involved we refer the
reader to [4] and [20]. Let ( �E, �B) the electromagnetic field,μ0 and ε0, respectively, the
vacuum permeability and permittivity, c the speed of light in the vacuum and vvecD
the electric displacement vector. From the Maxwell–Faraday’s equation

∂ �B
∂t

= −�∇ × �E

and Ampère’s Law (for nonmagnetic materials and in the absence of free currents)

�∇ × �B = μ0
∂ �D
∂t

,

we obtain

�∇ × �∇ × �E + μ0
∂2 �D
∂t2

= 0.

Using the constitutive law �D = n2ε0 �E + 4πε0 �PNL , where �PNL is the nonlinear part
of the polarization vector and n the linear refractive index, the identity μ0ε0c2 = 1
and noticing that �∇ × �∇ × �E = −� �E + �∇( �∇ · �E), we get, after neglecting the last
term in this identity, the vectorial wave equation

� �E − n2

c2
∂2 �E
∂t2

= 4π

c2
∂2 �PNL

∂t2
. (1.1)

Assuming that the beams propagate in a slab waveguide, in the direction of the (Oz)
axis, we decompose one of the transverse directions of �E in two frequency components
as

E = �e
(
E1e

i(k1z−ωt) + E3e
i(k3z−3ωt)

)
,

where �e(Z) stands for the real part of the complex number Z . Each one of these
frequency components satisfy equation (1.1) for suitable values of the polarization,
namely, PNL(ω)e−iωt and PNL(3ω)e−3iωt , where the nonlinear polarization can be
written in terms of the χ(3) susceptibility as

PNL = χ(3)E3 = χ(3)
∑

ω j

PN L(ω j )e
−ω j t , ω j = jω, | j | ≤ 9.

A simple computation yields

PNL(ω)e−iωt = 1

8
χ(3)(3|E1|2E1 + 6|E3|2E1 + 3E3E

2
1e

−i(3k1−k3)z)ei(k1z−ωt)
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and

PNL(3ω)e−3iωt = 1

8
χ(3)(6|E1|2E3 + 3|E3|2E3 + E3

1e
i(3k1−k3)z)ei(k3z−3ωt).

By plugging into (1.1) the quantities E1ei(k1z−ωt) and E3ei(k3z−3ωt), and under the
slowly-varying amplitude approximation, we obtain the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�⊥E1 + 2ik1
∂E1

∂z
+
( (n(ω))2ω2

c2
− k21

)
E1 + χ(|E1|2E1 + 2|E3|2E1 + E3E

2
1e

−i(3k1−k3)z) = 0

�⊥E3 + 2ik3
∂E3

∂z
+
(9(n(3ω))2ω2

c2
− k23

)
E3 + 9χ(2|E1|2E3 + |E3|2E3 + 1

3
E3
1e

i(3k1−k3)z) = 0,

where χ = 3πω2χ(3)

2c2
.

Using the dispersion relations k21 = (n(ω))2ω2

c2
, k23 = 9(n(3ω))2ω2

c2
and introducing the

dimensionless variables t = zd z, (x1, x2) = x0(x, y) for a given beam width x0 with
associated diffraction length zd = 2x20k1, this system can be reduced to

⎧
⎪⎨

⎪⎩

iUt + �U +
(
1

9
|U |2 + 2|W |2

)

U + 1

3
U

2
W = 0,

iσWt + �W − ασW +
(
9|w|2 + 2|u|2

)
W + 1

9
U 3 = 0,

(1.2)

where U = 3(k1x0χ)
1
2 E1, W = 3(k1x0χ)

1
2 E3e−i(3k1−k3)z), σ = k3/k1 and α =

2k1(3k1 − k3)x20 .
Finally, considering the nonlinearity-induced propagation constant β, and intro-

ducing u and w trough the relations

U (x, t) = √βeiωt u(
√

βx,
√

βt), W (x, t) = √βei3ωtw(
√

βx,
√

βt),

we get the nonlinear Schrödinger system

⎧
⎪⎨

⎪⎩

iut + �u − u +
(
1

9
|u|2 + 2|w|2

)

u + 1

3
u2w = 0,

iσwt + �w − μw +
(
9|w|2 + 2|u|2

)
w + 1

9
u3 = 0,

(1.3)

where μ = (3 + α
β
)σ. Note that at resonance (k3 = 3k1), σ = 3 and μ = 3σ . This

equality will play a major role in several results presented in this paper.
From a mathematical point of view, the system (1.3) has been studied in [1] and

[20] in one space dimension. In [1], the authors established local and global well-
posedness results for the associated Initial Value Problem with periodic initial data.
Furthermore, they showed the existence of smooth curves of periodic standing-wave
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solutions (dnoidalwaves) and proved several results concerning their linear and nonlin-
ear stability. In [20], the linear stability of localized stationary solutions was adressed
and some numerical simulations presented.

In the present paper we are concerned with the study of (1.3) in Euclidean space
(x, t) ∈ R

n ×R, 1 ≤ n ≤ 3. Our main goal is to study the Cauchy problem associated
with (1.3) in the L2-based Sobolev space of order one, H1(Rn), the so-called energy
space. This terminology comes from the fact that such a system conserves the energy
functional

E(u, w) = 1

2

∫
(|∇u|2 + |∇w|2 + |u|2 + μ|w|2)−

∫ (
1

36
|u|4 + 9

4
|w|4 + |u|2|w|2 + 1

9
�e(u3w)

)

(1.4)

and the mass

M(u, w) =
∫ (

|u|2 + 3σ |w|2
)

. (1.5)

It is well-known that for Schrödinger-type equations with cubic nonlinearities, the
space dimension n = 2 is critical in the sense that global existence in the energy space
is guaranteed provided that the initial data has L2 norm below the one of the ground
state (see for instance [24]). Hence, since we are interested in addressing this type
of issue for (1.3), the associated stationary problem must also be studied. Recall that
standing waves are special solutions of (1.3) of the form

u(x, t) = eiωt P(x), w(x, t) = e3iωt Q(x), (1.6)

where P and Q are real functions with a suitable decay at infinity. By replacing (1.6)
into (1.3) we see that (P, Q) must satisfy

⎧
⎪⎨

⎪⎩

�P − (ω + 1)P +
(
1

9
P2 + 2Q2

)

P + 1

3
P2Q = 0,

�Q − (μ + 3σω)Q +
(
9Q2 + 2P2

)
Q + 1

9
P3 = 0.

(1.7)

The rest of this paper is organized as follows: in Sect. 2 we will show the existence
of solutions for (1.7) and study their properties. By a solution of (1.7) we mean a pair
of functions (P, Q) ∈ H1(Rn) × H1(Rn) such that

∫

(∇P · ∇ f + (ω + 1)P f =
∫ (

1

9
P3 + 2Q2P + 1

3
P2Q

)

f

and

∫

(∇Q · ∇g + (μ + 3σω)Qg =
∫ (

9Q3 + 2P2Q + 1

9
P3
)

g,
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for any pair ( f , g) ∈ H1(Rn) × H1(Rn). So, a solution is a priori understood in the
weak sense. However, as it is standard from the elliptic regularity theory, such a weak
solution is indeed a strong solution in the usual sense (see, for instance, [9]). It is easy
to check that solutions of (1.7), also called bound states, are the critical points of the
action functional defined by

S(P, Q) := E(P, Q) + ω

2
M(P, Q), (1.8)

that is, denoting by B = B(ω,μ, σ ) the set of all solutions of (1.7), we have

B(ω,μ, σ ) := {(P, Q) ∈ H1 × H1 : S′(P, Q) = 0}.

Among all bound states, we will single out the ground states, i.e., the bound states
which minimize the action S among all other bound states. We will prove that such
a set of solutions is indeed nonempty (Theorem 2.1). The method we use to prove
this result is a variational one, by minimizing S in the so-called Nehari manifold. In
addition, we also study when a ground state has both components nontrivial.

In Sect. 3 we study the Cauchy problem associated to (1.3) for initial data in the
energy space (u0, w0) ∈ H1(Rn) × H1(Rn). After establishing local-well posedness
and a blow-up alternative (Theorem 3.1) we show that the Cauchy problem is globally
well-posed in dimension n = 1 (Corollary 3.2). In what concerns dimensions n = 2
and n = 3, we will give sufficient conditions for global well-posedness in terms of the
size of the initial data with respect to the size of ground states at resonance μ = 3σ
(Theorems 3.8 and 3.10).

In Sect. 4 we study the blow-up of solutions to (1.3). We will begin by showing in
Theorem 4.2 that, at resonance, Theorem 3.8 is sharp. In dimension n = 3, we also
show that Theorem 3.10 is sharp at resonance provided that the initial data (u0, w0)

lies in H = H1(R3) ∩ L2(Rn, |x |2dx) (Theorem 4.6). Moreover, we exhibit several
conditions implying that the solution blows up either forward or backward in time
(Theorems 4.7 and 4.8).

Finally, in Sect. 5, we deal with the stability/instability of the ground states (P, Q).
We will show that the ground states are orbitally stable in dimension one provided
ω + 1 = μ + 3σω (Theorem 5.4). On the other hand, we prove that ground states are
unstable if either n = 3 and μ > 0 or n = 2 and μ 
= 3σ .

Throughout the paper we will use standard notation in PDEs. Unless otherwise
stated, the domain of the different integrals is Rn , hence, for convenience, we will
denote

∫

Rn f dx simply by
∫

f . Also, C will represent a generic constant which may
vary from inequality to inequality.

2 Existence of ground states

Themain goal of this section is to prove the existence of ground states. More precisely,
we will establish the following result:
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Theorem 2.1 Let 1 ≤ n ≤ 3, σ,μ > 0 and ω > max{−1,−μ/3σ }. Then the set of
ground states, denoted by G(ω,μ, σ ), is nonempty, that is,

G(ω, μ, σ ) :=
{
(P0, Q0) ∈ B \ {(0, 0)} : S(P0, Q0) ≤ S(P, Q), ∀(P, Q) ∈ B,

}

= ∅.

In addition, there exists at least one ground state, say, (P0, Q0), which is radially
symmetric, Q0 is positive and P0 is either positive or identically zero.

Before proceeding, let us establish some Pohojaev-type identities for the solutions
of (1.7), which will be useful later.

Lemma 2.2 Assume that (1.7) has a solution (P, Q) ∈ H1(Rn) × H1(Rn). Then the
following identities hold:

∫ (

−|∇P|2 − (ω + 1)P2 + 1

9
P4 + 2P2Q2 + 1

3
P3Q

)

= 0, (2.1)

∫ (

−|∇Q|2 − (μ + 3σω)Q2 + 9Q4 + 2P2Q2 + 1

9
P3Q

)

= 0, (2.2)

and

(n − 4)
∫ (

|∇P|2 + |∇Q|2
)

+ n(ω + 1)
∫

P2 + n(μ + 3σω)

∫

Q2 = 0. (2.3)

Proof Bymultiplying the first equation in (1.7) by P , the second one by Q, integrating
over Rn and using integration by parts, we obtain (2.1) and (2.2).
On the other hand, by the same procedure but multiplying this time the two equations
by x · ∇P and x · ∇Q respectively, we deduce

∫ (
(n − 2)

2
|∇P|2 + n(ω + 1)

2
P2 − n

36
P4 + 2Q2Px · ∇P + 1

3
P2Qx · ∇P

)

= 0

(2.4)

and

∫ (
(n − 2)

2
|∇Q|2+ n(μ+3σω)

2
Q2 − 9n

4
Q4 + 2P2Qx · ∇Q + 1

9
P3x · ∇Q

)

=0.

(2.5)

Now, integration by parts yields

∫ (

2P2Qx · ∇Q + 1

9
P3x · ∇Q

)

= −
∫ (

2Q2Px · ∇P + 1

3
P2Qx · ∇P + nP2Q2 + n

9
P3Q

)

.
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By replacing this last identity into (2.5) and summing the resulting equation with
(2.4),

(n − 2)

2

∫

(|∇P|2+|∇Q|2) + n(ω + 1)

2

∫

P2 + n(μ + 3σω)

2

∫

Q2

− n

4

∫ (
1

9
P4 + 9Q4 + 4P2Q2 + 4

9
P3Q

)

= 0. (2.6)

Also, summing equations (2.1) and (2.2), we obtain

∫ (
1

9
P4 + 9Q4 + 4P2Q2 + 4

9
P3Q

)

=
∫

(|∇P|2 + |∇Q|2) +
∫
(
(ω + 1)P2 + (μ + 3σω)Q2) .

(2.7)

Identity (2.3) then follows by combining (2.7) and (2.6). 
�
Remark 2.3 As an immediate consequence of Lemma 2.2 we see that, under the
assumption ω > max{−1,−μ/3σ }, ground state solutions in H1(Rn) ∩ L4(Rn) do
not exist if n ≥ 4.

In order to prove Theorem 2.1, we will study a minimization problem in the Nehari
manifold.

Lemma 2.4 Let

N := {(u, w) ∈ H1(Rn) × H1(Rn) : (u, w) 
= (0, 0), S′(u, w) ⊥ (u, w)}

be the Nehari manifold associated to the action S. Then any solution of the minimiza-
tion problem

inf{S(u, w) : (u, w) ∈ N }, (2.8)

is a ground state.

Proof Since B ⊂ N , it is enough to prove that all critical points of (2.8) are indeed
bound states.
We begin by noticing that (u, w) ∈ N if and only if (u, w) 
= (0, 0) and

τ(u, w) : =
∫

|∇u|2 + |∇w|2 + (1 + ω)u2 + (μ + 3σω)w2

−1

9
u4 − 4u2w2 − 9w4 − 4

9
u3w = 0. (2.9)

Furthermore,

〈τ ′(u, w), (u, w)〉L2 = 2

(∫

|∇u|2 + |∇w|2 + (1 + ω)u2 + (μ + 3σω)w2

−2

9
u4 − 8u2w2 − 18w4 − 8

9
u3w

)

,
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and, if (u, w) ∈ N ,

〈τ ′(u, w), (u, w)〉L2 = −2
( ∫

|∇u|2 + |∇w|2 + (1 + ω)u2 + (μ + 3σω)w2
)


= 0,

(2.10)

which shows that N is locally smooth.
In addition, it is easy to check that [h1, h2]Hess τ(0,0)

t [h1, h2] > 0 for all
(h1, h2) 
= (0, 0), which means that (0, 0) is a strict minimizer of τ , hence an isolated
point of the set {τ(u, w) = 0}, implying that N is a complete manifold. Finally, any
critical point of S constrained to N is a (unconstrained) critical point of S. Indeed,
let us consider (u0, w0) ∈ N a critical point of S constrained to N . There exists a
Lagrange multiplier λ such that S′(u0, w0) = λτ ′(u0, w0). By taking the L2 scalar
product with (u0, w0),

〈S′(u0, w0), (u0, w0)〉L2 = λ〈τ ′(u0, w0), (u0, w0)〉L2 ,

that is, in view of (2.10), 0 = −2λ
( ∫ |∇u0|2+|∇w0|2+(1+ω)u20+(μ+3σω)w2

0

)
.

Hence λ = 0 and S′(u0, w0) = 0, which establishes the claim. 
�
As a consequence of Lemma 2.4, in order to show Theorem 2.1 we will prove the

existence of a minimizer to problem (2.8).

Proof (Proof of Theorem 2.1)
Notice that for (u, w) ∈ H1 × H1, (u, w) 
= (0, 0), with τ(u, w) ≤ 0, there exists

t ∈]0, 1] such that (tu, tw) ∈ N . Indeed, if τ(u, w) = 0, one chooses t = 1. If
τ(u, w) < 0 we simply observe that

τ(tu, tw) = t2
{∫ [

|∇u|2 + |∇w|2 + (1 + ω)u2 + (μ + 3σω)w2

−t2
(
1

9
u4 + 4u2w2 + 9w4 + 4

9
u3w

)]}

:= t2Tu,w(t),

with Tu,w(0) > 0 and Tu,w(1) < 0. The Intermediate Value Theorem allows us to
conclude.
We now take a minimizing sequence (u j , w j ) ∈ N for the problem

m = inf{S(u, w) : (u, w) ∈ N }.

Since (u j , w j ) ∈ N ,

S(u j , w j ) = 1

4

(∫

|∇u j |2 + |∇w j |2 + (1 + ω)u2j + (μ + 3σω)w2
j

)

,

hence it is clear that m ≥ 0 and that (u j , w j ) is bounded in H1 × H1.
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In order to get compactness we will replace (u j , w j ) by a suitable symmetric
rearrangement (see, for instance, [22]). Indeed, let u∗

j and w∗
j be the decreasing radial

rearrangements of |u j | and |w j |, respectively. It is well-known that this rearrangement
preserves the L p norm (1 ≤ p ≤ +∞). Furthermore, the Pólya-Szegö inequality,

‖∇ f ∗‖L2 ≤ ‖∇| f |‖L2 ,

in addition with the inequality ‖∇| f |‖L2 ≤ ‖∇ f ‖L2 (see [16]) shows that

S(u∗
j , v

∗
j ) ≤ S(u j , v j ).

On the other hand, the Hardy-Littlewood inequality,

∫

|uw| ≤
∫

u∗w∗,

combined with the monotonicity of the map λ �→ λ4 (see for instance [12] for details)
yields

∫

u2w2 ≤
∫

(u∗)2(w∗)2 and
∫

|u3w| ≤
∫

(u∗)3w∗.

A combination of these inequalities give

τ(u∗
j , w

∗
j ) ≤ τ(|u j |, |w j |) ≤ τ(u j , w j ) = 0.

Next, let t j ∈]0, 1] be such that (t j u∗
j , t jw

∗
j ) ∈ N . We have

S(t j u
∗
j , t jw

∗
j ) = t2j S(u∗

j , w
∗
j ) ≤ S(u∗

j , w
∗
j )

and hence, we obtained a minimizing sequence (t j u∗
j , t jv

∗
j ) of radially decreasing

functions, denoted again, in what follows, by (u j , v j ). Since this sequence is bounded
in H1 × H1, up to a subsequence, (u j , v j )⇀(u∗, v∗) weakly in H1 × H1.

To obtain a convergence in a strong topology, it is often necessary to treat the
unidimensional n = 1 separately due to the lack of compactness of the injection
H1
d (R) ↪→ L4(R), where H1

d (R) denotes the space of the radially symmetric functions
of H1(R). This lack of compactness is, in a sense, a consequence of the inequality

|u(x)| ≤ C |x | 1−n
2 ‖u‖H1(Rn) (2.11)

for u ∈ H1
d (Rn), which provides no decay in the case n = 1. However, if u is also

radially decreasing, it is easy to establish that

|u(x)| ≤ C |x |− n
2 ‖u‖L2(Rn),
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which provides decay in all space dimensions, hence compactness by applying the
classical Strauss’ compactness lemma ([21]). Therefore, putting

H1
rd(R

n) = {u ∈ H1
d (Rn) : u is radially decreasing},

we get the compactness of the injection H1
rd(R

n) ↪→ L4(Rn) for all n ≥ 1 (see
the Appendix of [3] or Section 1.7 in [6] for more details). Consequently, up to a
subsequence, (u j , v j ) → (u∗, v∗) strongly in L4 and almost everywhere. In particular
this shows that (u∗, v∗) is radially symmetric and nonnegative.

Next, since

∫
1

36
u4j + 9

4
w4

j + u2jw
2
j + 1

9
u3jw j →

∫
1

36
u4 + 9

4
w4 + u2w2 + 1

9
u3w,

we deduce that

τ(u∗, w∗) ≤ lim inf τ(u j , w j ) = 0.

Once again, let t ∈]0, 1] such that (tu∗, tv∗) ∈ N . Thus,

m ≤ S(tu∗, tw∗) = t2S(u∗, w∗) ≤ lim inf S(u j , v j ) = m.

This implies that (tu∗, tw∗) is a minimizer. In particular, all inequalities above are
in fact equalities, which means that t = 1, (u∗, w∗) ∈ N and (u j , w j ) → (u∗, w∗)
strongly in H1.
Finally, it is easy to see that (P0, Q0) = (u∗, w∗) is a ground state accordingly to the
conclusions of the theorem. Indeed, by elliptic regularity (P0, Q0) is a C2 solution
and satisfies

{
�P0 − (ω + 1)P0 = −( 19 P

2
0 + 2Q2

0)P0 − 1
3 P

2
0 Q0 ≤ 0,

�Q0 − (μ + 3σω)Q0 = −(9Q2
0 + 2P2

0 )Q0 − 1
9 P

3
0 ≤ 0.

Therefore, from the maximum principle (see, for example, Theorem 3.5 in [9]) both
P0 and Q0 are either positive or identically zero. Note that Q0 is not identically zero;
otherwise so is P0. This completes the proof of Theorem 2.1. 
�

Next we will pay particular attention to the question of when both components of a
ground state are non-trivial. First of all, recall that a ground state of the scalar equation

�w − (μ + 3σω)w + 9w3 = 0, (2.12)

is a solution (in the weak sense) that minimizes the action S0(w) := S(0, w) among all
solutions of (2.12). As is well known (see, for instance, [3] or [6]), for μ + 3σω > 0,
(2.12) has a unique (up to translation) ground statewhich is positive, radially symmetric
and decays exponentially at infinity.
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It is easily seen that if (0, Q) is a ground state of (1.7) then Q is a ground state of
(2.12). Thus, a natural question is if the reciprocal is also true, that is, if Q is a ground
state of (2.12), is it true that (0, Q) is a ground state of (1.7)? As we will see below,
depending on the parameters μ and σ , the answer to this question may be negative or
positive:

Proposition 2.5 In addition to the assumptions of Theorem 2.1, assume μ = 3σ and

μ ≥ 9
4

4−n . Then there exists a pair (P∗, Q∗) in the Nehari manifold N such that

S(P∗, Q∗) < S(0, Q),

where Q is the ground state of (2.12). In particular (0, Q) is not a ground state of
(1.7).

Proof In what follows, for real functions u, w ∈ H1, we introduce the functional

N (u, w) :=
∫ (

1

36
u4 + 9

4
w4 + u2w2 + 1

9
u3w

)

. (2.13)

and

K (u, w) = ‖∇u‖2L2 + ‖∇w‖2L2 . (2.14)

According to Lemma 2.4 it suffices to prove the existence of θ, t ∈ R and W ∈
H1 such that (tθW , t Q) ∈ N and S(tθW , t Q) < S(0, Q). But from the proof of
Lemma 2.4 we have (tθW , t Q) ∈ N if and only if τ(tθW , t Q) = 0, where τ is
defined in (2.9). Since

τ(tθW , t Q) = K (tθW , t Q) + (1 + ω)M(tθW , t Q) − 4N (tθW , t Q),

by taking t ∈ R satisfying

t2 = K (θW , Q) + (1 + ω)M(θW , Q)

4N (θW , Q)
(2.15)

we see that τ(tθW , t Q) = 0 (we will choose θ > 0 and W > 0, so that
N (θW , Q) > 0). Consequently, from this point on, we take t as in (2.15).

Now, in view of the identity,

K (tθW , t Q) + (1 + ω)M(tθW , t Q) = 4N (tθW , t Q)
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and (2.15), we deduce

S(tθW , t Q) = 1

2

(
K (tθW , t Q) + (1 + ω)M(tθW , t Q)

)
− N (tθW , t Q))

= 1

4

(
K (tθW , t Q) + (1 + ω)M(tθW , t Q)

)

= t2

4

(
K (θW , Q) + (1 + ω)M(θW , Q)

)

=
(
K (θW , Q) + (1 + ω)M(θW , Q)

)2

16N (θW , Q)
.

Thus S(tθW , t Q) < S(0, Q) if and only if

(
K (θW , Q)+(1+ω)M(θW , Q)

)2
<4N (θW , Q)

(
K (0, Q)+(ω + 1)M(0, Q)

)
,

(2.16)

where we used that S(0, Q) = (K (0, Q) + (ω + 1)M(0, Q))/4. Both sides of (2.16)
are polynomials of degree four in θ . The leading coefficient of the polynomial in the
left-hand side is (K (W , 0) + (ω + 1)M(W , 0))2 whereas the leading coefficient of
the polynomial in the right-hand side is

1

9

(∫

W 4
)(

K (0, Q) + (ω + 1)M(0, Q)
)
.

Therefore, (2.16) holds, for θ sufficient large, provided that

(K (W , 0) + (ω + 1)M(W , 0))2 <
1

9

(∫

W 4
)(

K (0, Q) + (ω + 1)M(0, Q)
)
.

(2.17)

So, we are left to show that (2.17) holds for some W ∈ H1. For that, assume W (x) =
Q(λx) for some λ ∈ R to be determined. With this definition, (2.17) is equivalent to

λ2
∫

|∇Q|2+(ω+1)
∫

Q2 <
λn/2

3

(
K (0, Q)+(ω+1)M(0, Q)

)1/2
(∫

Q4
)1/2

.

In view of (2.3),

K (0, Q) =
∫

|∇Q|2 = nμ(ω + 1)

4 − n

∫

Q2, (2.18)

Also, by using (2.2) and (2.18), we deduce

∫

Q4 = 4

9

μ(ω + 1)

4 − n

∫

Q2. (2.19)
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By replacing (2.18) and (2.19) into (2.17), we then obtain that (2.17) is equivalent to

nμ

4 − n
λ2 + 1 − 4μ

9(4 − n)
λn/2 < 0. (2.20)

Let f (λ) denotes the left-hand side of (2.20). It is easy to see that such a function has
a global minimum at the point λ0 = 9−2/(4−n). In addition, f (λ0) = 1−μλ20. Finally,
under the assumption f (λ0) < 0, which means to say μ ≥ 94/(4−n), we then see that
(2.20) holds for λ = λ0 and the proof of the proposition is complete. 
�

Next, we shall show that under the condition ω + 1 = μ + 3σω, the ground states
of (1.7) are precisely of the form (0, Q), where Q is a ground state of (2.12). We will
closely follow the strategy in [8]. Define the functionals

I (u, w) =
∫

(|∇u|2 + |∇w|2) +
∫ (

(ω + 1)u2 + (μ + 3σω)w2
)

, (2.21)

Ñ (u, w) = 1

4
N (u, w) =

∫ (
1

9
u4 + 9w4 + 4u2w2 + 4

9
u3w

)

(2.22)

and, for λ > 0, consider the minimization problem

Iλ = inf{I ( f , g) : ( f , g) ∈ H1 × H1 with Ñ ( f , g) = λ}. (2.23)

Our goal will be to prove that for a certain specific λ such an infimum is attained
by the ground states of (1.7). Initially, note that, from the homogeneity of I and Ñ , if
follows that

Iλ = λ1/2 I1. (2.24)

Also, from Young and Gagliardo-Nirenberg’s inequality,

Ñ (u, w) ≤ C(‖u‖4L4 + ‖w‖4L4) ≤ CK (u, w)n/2M(u, w)2−n/2 ≤ C I (u, w)2,

which implies that Iλ > 0, for any λ > 0. To motivate which λ would be the correct
one, we recall that if (u, w) ∈ G(ω,μ, σ ) then, by (2.7), Ñ (u, w) = I (u, w). Hence,
we must choose λ such that Iλ = λ. In view of (2.24), we must choose λ = λ1, where

λ1 := (I1)
2. (2.25)

Lemma 2.6 Let assumptions of Theorem 2.1 hold and let m = inf{S(u, w) : (u, w) ∈
N }. Then

λ1 = 4m.
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Proof From the proof of Theorem 2.1 we already know the minimization problem
(2.8) has a solution (a ground state). So, we may fix (u, w) ∈ H1 × H1 satisfying
m = S(u, w). Since (u, w) ∈ G(ω,μ, σ ), we have Ñ (u, w) = I (u, w) and

m = S(u, w) = E(u, w) + ω

2
M(u, w) = 1

2
I (u, w) − 1

4
Ñ (u, w) = 1

4
I (u, w).

(2.26)

Hence, I (u, w) = 4m. Next, define (U ,W ) = (1/4m)1/4(u, w). Then, Ñ (U ,W ) = 1
and

I (U ,W ) =
(

1

4m

)1/2

I (u, w) = (4m)1/2.

This identity implies that I1 ≤ (4m)1/2, which yields λ1 ≤ 4m.
We shall have established the lemma if we prove that λ1 ≥ 4m, that is, I1 ≥ (4m)1/2.
Take any (z, v) ∈ H1 × H1 with Ñ (z, v) = 1. It then suffices to prove that 4m ≤
I (z, v)2. To prove this, first observe that, for any ( f , g) ∈ H1 × H1,

〈S′( f , g), ( f , g)〉 = I ( f , g) − Ñ ( f , g).

In particular, for any � > 0 we have 〈S′(�z, �v), (�z, �v)〉 = �h′(�), where h(�) =
S(�z, �v). But since

h′(�) = �I (z, v) − �3 Ñ (z, v) = �
(
I (z, v) − �2

)
,

by choosing �0 > 0 such that �20 = I (z, v) we deduce that h′(�0) = 0 and (Z , V ) =
(�0z, �0v) ∈ N . Consequently,

m ≤ S(Z , V ) = �20

2
I (z, v) − �40

4
Ñ (z, v) = �40

4
= I (z, v)2

4
,

which give the desired assertion. 
�

Next, we show the following:

Proposition 2.7 Under the assumptions of Theorem 2.1, (u, w) ∈ G(ω,μ, σ ) if and
only if I (u, w) = Iλ1 and Ñ (u, w) = λ1.
In particular, the set of solutions of the minimization problem (2.23) with λ = λ1 is
nonempty.

Proof Let us first take (u, w) ∈ G(ω,μ, σ ). By reasoning as in (2.26) and using
Lemma 2.6, we get

I (u, w) = 4m = λ1 = Iλ1 and Ñ (u, w) = I (u, w) = 4m = λ1,
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which shows one of the assertions.
Let us now assume that (u, w) satisfies I (u, w) = Iλ1 and Ñ (u, w) = λ1. By the
Lagrange multiplier theorem, there exists η ∈ R such that, for any ( f , g) ∈ H1×H1,

∫

(∇u · ∇ f + (ω + 1)u f = 2η
∫ (

1

9
u3 + 2w2u + 1

3
u2w

)

f ,

∫

(∇w · ∇g + (μ + 3σω)wg = 2η
∫ (

9w3 + 2u2w + 1

9
u3
)

g.

By taking ( f , g) = (u, w), and adding the last two identities,wededuce that I (u, w) =
2ηÑ (u, w). But, from

λ
1/2
1 I1 = Iλ1 = I (u, w) = 2ηÑ (u, w) = 2ηλ1,

we obtain I1 = 2ηλ
1/2
1 , which compared to (2.25) gives 2η = 1. Consequently,

(u, w) ∈ B(ω,μ, σ ) and I (u, w) = Ñ (u, w).
It remains to show that (u, w) is indeed a ground state. To do so, take any (z, v)

in B(ω,μ, σ ) and let κ := Ñ (z, v) > 0. Recalling (2.7), we then have I (z, v) =
Ñ (z, v) = κ and,

S(z, v) = 1

2
I (z, v) − 1

4
Ñ (z, v) = 1

4
I (z, v) = κ

4
.

Define (̃z, ṽ) = (λ1/κ)1/4(z, v). Then,

Ñ (̃z, ṽ) = λ1

κ
Ñ (z, v) = λ1

and

λ
1/2
1 I1 = I (u, w) ≤ I (̃z, ṽ) =

(
λ1

κ

)1/2

I (z, v) =
(

λ1

κ

)1/2

κ = λ
1/2
1 κ1/2.

This last inequality implies that κ ≥ (I1)2 = λ1. Thus,

S(z, v) = κ

4
≥ λ1

4
= S(u, w), (2.27)

which proves that (u, w) ∈ G(ω,μ, σ ). 
�
Finally, we prove the previously announced result:

Proposition 2.8 In addition to the assumptions of Theorem 2.1, suppose that ω + 1 =
μ + 3σω. If (u, w) ∈ G(ω,μ, σ ) then u ≡ 0 and w is a ground state of (2.12).
In particular, up to translation, ground states are unique.
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Proof Take (u, w) in G(ω,μ, σ ). From Proposition 2.7 we have I (u, w) = Iλ1 and
Ñ (u, w) = λ1. Let us introduce the function F : R2 → R by F(x, y) = 1

9 x
4 +9y4 +

4x2y2+ 4
9 x

3y. It is easily seen that, restricted to the unit circle S1, F has twomaximum
points, namely, (0, 1) and (0,−1). In addition, its maximum value is F(0,±1) = 9.

Now, define U (x) := |(u(x), w(x))| = √u(x)2 + w(x)2 > 0. Thus,

Ñ (u, w) =
∫

F(u(x), w(x)) =
∫

F

(
1

U (x)
(u(x), w(x))

)

U (x)4 ≤
∫

F(0, 1)U (x)4

=
∫

F(0,U (x)) = Ñ (0,U ).

(2.28)

Also, because |∇U |2 ≤ |∇u|2 + |∇w|2,

I (0,U ) =
∫

|∇U (x)|2 + (μ + 3σω)|U (x)|2

≤
∫

|∇u(x)|2 + |∇w(x)|2 + (ω + 1)u(x)2 + (μ + 3σω)w(x)2 = I (u, w),

where we used that ω + 1 = μ + 3σω. In view of (2.28) and the homogeneity of Ñ ,
there exists 0 < t ≤ 1 such that Ñ (0, tU ) = Ñ (u, w) = λ1. Hence,

I (0, tU ) = t2 I (0,U ) ≤ I (0,U ) ≤ I (u, w).

By recalling that (u, w) is a minimum of I restricted to Ñ = λ1, it must be the case
that t = 1. Thus,

Ñ (0,U ) = λ1 and I (0,U ) = I (u, w) = Iλ1 .

Another application of Proposition 2.7 yields that (0,U ) ∈ G(ω,μ, σ ). Consequently,
U must be a ground state of (2.12).

By defining (z, v) = U−1(u, w), we see that we can write (u(x), w(x)) =
U (x)(z(x), v(x)), with (z(x), v(x)) ∈ S

1, for any x ∈ R
n . From

∫

9U (x)4 =
∫

F(0,U (x)) = Ñ (0,U )

= Ñ (u, w) =
∫

F
(
U (x)(z(x), v(x))

)
=
∫

F(z(x), w(x))U (x)4

it follows that
∫

U (x)4(9 − F(z(x), w(x))) = 0,

Therefore, F(z(x), v(x)) = 9 for a.e. x ∈ R
n , which implies that either (z(x), v(x)) =

(0, 1) or (z(x), w(x)) = (0,−1) for a.e. x ∈ Rn . Consequently, (u(x), w(x)) =
(0,U (x)) or (u(x), w(x)) = (0,−U (x)), which is the desired conclusion. 
�
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Remark 2.9 In the case ω + 1 = μ + 3σω, besides the solutions of the form (0, w)

(with w a solution of (2.12)), (1.7) has another interesting solution. Indeed, assume
that Q = bP , where b is the (negative) real solution of the equation

2b2 + 1

3
b + 1

9
= 1

b

(

9b3 + 2b + 1

9

)

.

Then, equations in (1.7) reduce to the same one, namely,

�P − (μ + 3σω)P +
(

2b2 + 1

3
b + 1

9

)

P3 = 0. (2.29)

Hence, if Pb is a solution of (2.29) it follows that (Pb, bPb) is a solution (1.7). Note
that, according to Proposition 2.8, even if Pb is a ground state of (2.29) (which clearly
exist), (Pb, bPb) is not a ground state of (1.7).

In the case n = 1, the unique ground state of (2.12) is explicitly given by

w(x) = 1

3

√
2(μ + 3σω) sech(

√
(μ + 3σω)x). (2.30)

So, according to Proposition 2.8, the unique ground sate of (1.7) is (0, w), with w

given in (2.30).

3 Global well-posedness

In this section we are interested in the study of the Cauchy problem associated with
(1.3) in the energy space; so, we couple (1.3) with an initial data (u0, w0) in H1(Rn)×
H1(Rn) and consider the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

iut + �u − u +
(
1

9
|u|2 + 2|w|2

)

u + 1

3
u2w = 0,

iσwt + �w − μw +
(
9|w|2 + 2|u|2

)
w + 1

9
u3 = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x).

(3.1)

By using the contraction mapping principle combined with the well-known
Strichartz estimates, one can easily show the local well-posedness of (3.1) (see [6] or
[15] for details). More precisely, one may establish the following result:

Theorem 3.1 Assume 1 ≤ n ≤ 3 and u0, w0 ∈ H1(Rn). Then, the Cauchy problem
(3.1) admits a unique solution,

(u, w) ∈ C((−T∗, T ∗); H1(Rn) × H1(Rn))

defined in the maximal interval of existence (−T∗, T ∗), where T∗, T ∗ > 0.
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In addition, the following blow-up alternative holds: if T ∗ < ∞ then

lim
t→T ∗

(
‖∇u‖2L2 + ‖∇w‖2L2

)
= +∞.

A similar statement holds with T∗ instead of T ∗.

Since the quantity M defined in (1.5) is conserved and is equivalent to the standard
norm in L2 × L2, in order to prove the global well-posedness of (3.1) in H1 × H1,
one only needs to get an a priori bound on the L2-norm of the gradients of u and w.
With this in mind, let us recall the functional

K (u, w) = ‖∇u‖2L2 + ‖∇w‖2L2 . (3.2)

To obtain an upper bound for K , we may use the conservation of the energy and
Hölder’s inequality combined with the Gagliardo-Nirenberg inequality

‖ f ‖4L4 ≤ C‖∇ f ‖nL2‖ f ‖4−n
L2 :

K (u, w) ≤ K (u, w) + ‖u‖2L2 + μ‖w‖2L2

= 2E(u0, v0) + 2
∫ (

1

36
|u|4 + 9

4
|w|4 + |u|2|w|2 + 1

9
�e(u3w)

)

≤ 2E(u0, v0) + 2
∫ (

1

36
|u|4 + 9

4
|w|4 + |u|2|w|2 + 1

9
|u|3|w|

)

≤ 2E(u0, v0) + 2C
(
‖u‖4L4 + ‖w‖4L4

)

≤ 2E(u0, v0) + 2C
(
‖∇u‖2L2 + ‖∇w‖2L2

)n/2 (‖u‖2L2 + 3σ‖w‖2L2

)2−n/2

= 2E(u0, v0) + 2CK (u, w)n/2M(u0, w0)
2−n/2,

(3.3)

where C is a positive universal constant. An immediate consequence of (3.3) is that
if n = 1 then K (u(t), w(t)) is bounded. Indeed, for all ε > 0,

K (u, w) ≤ 2E(u0, w0) + C
(
εK (u, w)) + 1

ε
M(u0, w0)

3
)
,

and, choosing ε = 1/2C ,

K (u, w) ≤ 4E(u0, w0) + 4C2M(u0, w0)
3.

In view of the blow-up alternative stated in Theorem 3.1, this yields the following
corollary:
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Corollary 3.2 Assume n = 1 and u0, w0 ∈ H1(R). Then, the Cauchy problem (3.1) is
globally well-posed.

Now, if n = 2, (3.3) does not give an immediate a priori bound. However, in this
case, we can rewrite it as

(1 − 2CM(u0, w0))K (u, w) ≤ 2E(u0, w0).

Hence, if M(u0, w0) < 1/2C then the last inequality provides a bound for
K (u(t), w(t)) and we deduce:

Corollary 3.3 Assume n = 2 and u0, w0 ∈ H1(R2). Then, the Cauchy problem (3.1)
is globally well-posed, provided that the initial mass M(u0, w0) is sufficiently small.

Next we focus on the question of how small M(u0, w0) must be for the conclusion
of Corollary 3.3 to hold. As we observed above, the constant C appearing in (3.3)
plays a crucial role in this question. So, in some sense, the problem is related with the
best constant we can place in the inequality

∫ (
1

36
|u|4 + 9

4
|w|4 + |u|2|w|2 + 1

9
|u|3|w|

)

≤ CK (u, w)n/2M(u, w)2−n/2.

(3.4)

Recall that for u, w ∈ H1,

N (u, w) :=
∫ (

1

36
u4 + 9

4
w4 + u2w2 + 1

9
u3w

)

.

Also, define

J (u, w) := K (u, w)n/2M(u, w)2−n/2

N (u, w)
. (3.5)

It is easily seen that (3.4) is equivalent to

1

C
≤ J (u, w)

for functions (u, w) in the set

N := {(u, w) ∈ H1(Rn) × H1(Rn); N (u, w) > 0}.

In particular, the infimum of J on N is clearly the reciprocal of the best constant in
(3.4). In the sequel we will show that this infimum is indeed attained on N. We start
with the following preliminary result:
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Lemma 3.4 Assume 1 ≤ n ≤ 3. Let (P, Q) be any solution of (1.7) with ω = 0 and
μ = 3σ . Then,

N (P, Q) = S(P, Q), (3.6)

K (P, Q) = nS(P, Q), (3.7)

K (P, Q) = n

4 − n
M(P, Q). (3.8)

In particular,

J (P, Q) = nn/2(4 − n)2−n/2S(P, Q). (3.9)

Proof By summing (2.1) and (2.2) we promptly deduce that

K (P, Q) + M(P, Q) = 4N (P, Q). (3.10)

Thus, since for ω = 0, S = E , we obtain

S(P, Q) = E(P, Q) = 1

2

(
K (P, Q) + M(P, Q)

)
− N (P, Q)

= 2N (P, Q) − N (P, Q) = N (P, Q),

which proves (3.6). Also, the identity (3.8) follows directly from (2.3).

Furthermore, from (3.8), M(P, Q) + K (P, Q) = 4
n K (P, Q), and, from

N (P, Q) = E(P, Q) = 1

2
(K (P, Q) + M(P, Q)) − N (P, Q),

one obtains (3.7).
Finally, (3.9) is a consequenceof (3.6)–(3.8). Theproof of the lemma is thus completed.


�

Lemma 3.5 Suppose 1 ≤ n ≤ 3. The infimum of J is attained on N at a pair of real
functions (P, Q), that is,

inf
N

J (u, w) = J (P, Q),

if and only if, up to scaling, (P, Q) is a ground state solution of (1.7) with ω = 0 and
μ = 3σ .
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Proof Assume (P, Q) is a minimum of J on N. Since (P, Q) is a critical point we
have J ′(P, Q) = 0, which implies that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− n

K (P, Q)
�P + 4 − n

M(P, Q)
P = 1

N (P, Q)

(
1

9
P3 + 2Q2P + 1

3
P2Q

)

,

− n

K (P, Q)
�Q + (4 − n)3σ

M(P, Q)
Q = 1

N (P, Q)

(

9Q3 + 2P2Q + 1

9
P3
)

.

(3.11)

Now take λ, ν > 0 such that

λ2 = nM(P, Q)

(4 − n)K (P, Q)
and ν2 = M(P, Q)

(4 − n)N (P, Q)

and define

P̃(x) = νP(λx), Q̃(x) = νQ(λx).

A straightforward calculation reveals that (P̃, Q̃) satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�P̃ + P̃ =
(
1

9
P̃3 + 2Q̃2 P̃ + 1

3
P̃2 Q̃)

)

,

−�Q̃ + 3σ Q̃ =
(

9Q̃3 + 2 P̃2 Q̃ + 1

9
P̃3
)

,

(3.12)

which is exactly system (1.7) with ω = 0 and μ = 3σ . In addition, it is not difficult
to see that J (P̃, Q̃) = J (P, Q) and N (P̃, Q̃) = ν4λ−nN (P, Q) > 0, which means
that (P̃, Q̃) is also a minimizer of J on N. Relation (3.9) then yields that (P̃, Q̃) is
a minimizer of S on N. In view of (2.7), it is easy to conclude that any bound state
belongs to N and we deduce that (P̃, Q̃) is a ground state.

Conversely, if (P, Q) is a ground state of (1.7) with ω = 0 and μ = 3σ , we have
(P, Q) ∈ N and (P, Q) is a minimum of S. The identity (3.9) again implies that
(P, Q) is also a minimum of J . 
�

The above results allow us to obtain the best constant in the Gagliardo-Nirenberg
inequality (3.4). More precisely, we have:

Corollary 3.6 Assume 1 ≤ n ≤ 3. Then the inequality

N (u, w) ≤ CGN K (u, w)n/2M(u, w)2−n/2
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holds, for any (u, v) ∈ N, with

CGN = (4 − n)n/2−1

nn/2

1

M(P, Q)

= (4 − n)n/2−2

nn/2

1

S(P, Q)
,

where (P, Q) is any ground state of (1.7) with ω = 0 and μ = 3σ .

Proof It suffices to recall that

1

CGN
= inf

N
J (u, w)

and use Lemmas 3.4 and 3.5. 
�
Remark 3.7 Note that the constant CGN does not depend on the choice of the ground
state (P, Q) since all ground states have the same mass M (and the same action S).
Hence, the question of uniqueness of ground states is not an issue here.

With Corollary 3.6 in hand we can to prove the following Theorem:

Theorem 3.8 Assume n = 2 and u0, w0 ∈ H1(R2). Then the Cauchy problem (3.1)
is globally well-posed provided that

M(u0, w0) < M(P, Q),

where (P, Q) is any ground state of (1.7) with ω = 0 and μ = 3σ .

Proof Indeed, It suffices to use (3.3) with the constant C replaced by CGN given in
Corollary 3.6. 
�

Next we turn attention to the global well-posedness for n = 3. We begin by stating
the following Lemma, whose proof can be found in [2] and [17]:

Lemma 3.9 Let I be an open interval with 0 ∈ I . Let a ∈ R, b > 0 and q > 1.

Define γ = (bq)
− 1

q−1 and f (r) = a − r + brq , for r ≥ 0. Let G(t) be a nonnegative

continuous function such that f ◦ G ≥ 0 on I . Assume that a <
(
1 − 1

q

)
γ .

(i) If G(0) < γ , then G(t) < γ , ∀t ∈ I .
(ii) If G(0) > γ , then G(t) > γ , ∀t ∈ I .

In addition if a < (1 − δ1)
(
1 − 1

q

)
γ and G(0) > γ , for some δ1 > 0, then there

exists δ2, depending only on δ1 such that G(t) > (1 + δ2)γ , ∀t ∈ I .

Our main theorem here reads as follows.
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Theorem 3.10 Assume n = 3 and u0, w0 ∈ H1(R3). Suppose that

E(u0, w0)M(u0, w0) <
1

2
E(P, Q)M(P, Q) (3.13)

and

K (u0, w0)M(u0, w0) < K (P, Q)M(P, Q), (3.14)

where (P, Q) is any ground state of (1.7) with ω = 0 and μ = 3σ . Then, as long as
the local solution given in Theorem 3.1 exists, there holds

K (u(t), w(t))M(u(t), w(t)) < K (P, Q)M(P, Q). (3.15)

In particular, this implies that the Cauchy problem (3.1) is globally well-posed under
conditions (3.13) and (3.14).

Proof Let a = 2E(u0, w0), b = 2CGNM(u0, w0)
1/2, and q = 3/2. If G(t) =

K (u(t), w(t)), from (3.3), with CGN instead of C , we obtain f ◦ G ≥ 0, where
f (r) = a − r + br3/2. Also, by using Lemma 3.4 we see that

γ = 3M(P, Q)2

M(u0, w0)
.

In addition, a simple calculation using Lemma 3.4 also reveals that

a <

(

1 − 1

q

)

γ ⇔ E(u0, w0)M(u0, w0) <
1

2
E(P, Q)M(P, Q)

and

G(0) < γ ⇔ K (u0, w0)M(u0, w0) < K (P, Q)M(P, Q).

Hence, Lemma 3.9 implies that (3.15) holds. This completes the proof of the theorem.

�

4 Blow up

In this section we will show some blow up results.

Definition 4.1 We say that the solution of (3.1), given in Theorem 3.1, blows up
forward in time if T ∗ < ∞ and backward in time if T∗ < ∞. We say that the solution
blows up if it blows up forward and backward in time.

Our results of this Section will show that the condition in Theorem 3.8 is sharp, at
least for some parameters σ and μ. Actually, in the case n = 2 we can construct an
explicit solution that blows up, say, forward in time.
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Theorem 4.2 Assume n = 2, σ = 3, and μ = 9. Let (P, Q) be any ground state
of (1.7) with ω = 0 (and μ = 3σ ). Then, there exists u0, w0 ∈ H1 satisfying
M(u0, w0) = M(P, Q) such that the corresponding solution of the Cauchy problem
(3.1) blows up forward in time.

Proof First we note that (u, w) is a solution of (3.1) if and only if

ũ(x, t) = eit u(x, t), w̃(x, t) = e3i tw(x, t)

is a solution of

⎧
⎪⎨

⎪⎩

i ũt + �ũ + ( 19 |̃u|2 + 2|w̃|2)̃u + 1
3 ũ

2
w̃ = 0,

iσw̃t + �w̃ + (9|w̃|2 + 2|̃u|2)w̃ + 1
9 ũ

3 = 0,

ũ(x, 0) = u0(x), w̃(x, 0) = w0(x).

(4.1)

Actually, this equivalence is true only under the condition μ = 3σ . So the problem is
reduced to showing that (4.1) has a solution with M(u0, w0) = M(P, Q) that blows
up forward in time.

Next, a tedious but straightforward calculation gives that if (̃u, w̃) is a solution of
the differential equations in (4.1) so is the pair (̂u, ŵ) defined by

û(x, t) = 1

1 − t
e− i |x |2

4(1−t) ũ

(
x

1 − t
,

t

1 − t

)

, ŵ(x, t) = 1

1 − t
e− 3i |x |2

4(1−t) w̃

(
x

1 − t
,

t

1 − t

)

.

In addition,

û(x, 0) = e− i |x |2
4 u0(x), û(x, 0) = e− 3i |x |2

4 w0(x).

Finally, by taking

ũ(x, t) = eit P(x), w̃(x, t) = e3i t Q(x),

it is easily seen that (̃u, w̃) is a solution of the equations in (4.1). Consequently,

û(x, t) = 1

1 − t
e− i |x |2

4(1−t) e
it
1−t P

(
x

1 − t

)

, ŵ(x, t) = 1

1 − t
e− 3i |x |2

4(1−t) e
3i t
1−t Q

(
x

1 − t

)

is a solution of (4.1) that blows up at time t = 1 and satisfies M (̂u(0), ŵ(0)) =
M(P, Q). 
�

Remark 4.3 By using the same ideas as in the proof of Theorem 4.2 one can construct
a blowing up solution at any time T 
= 0. In particular, we can also construct a solution
that blows up backward in time.



On a Schrödinger system arizing in nonlinear optics Page 25 of 38 123

The Theorem 4.2 holds only in dimension n = 2, the critical dimension. Next we
will obtain some virial identities to system (1.3). First observe that (1.3) can be written
in the pseudo-Hamiltonian form

d

dt
X(t) = �E ′(X(t)), (4.2)

where X(t) = (u(t), w(t)), E ′ stands for the Fréchet derivative of E , and � is the
skew-adjoint operator given by

� =
(−i 0

0 −i/σ

)

. (4.3)

Proposition 4.4 Assume

u0, w0 ∈ H1(Rn) ∩ L2(Rn, |x |2dx) =: H

and define

V (t) =
∫

|x |2(|u(t)|2 + 3σ |w(t)|2),

where (u(t), w(t)) is the maximal solution of (3.1), with initial data (u0, w0), and
defined in the maximal time interval [0, T ∗). Then V ∈ C2 ([0, T ∗)). In addition,

V ′(t) = 4Im
∫

(u(t)x · ∇u(t) + 3w(t)x · ∇w(t)) (4.4)

and

V ′′(t) =
∫ (

8|∇u|2 + 8|∇w|2 − 2n

9
|u|4 − 54n

σ
|w|4 − 8n|u|2|w|2

)

+ 2

(
24

σ
− 8

)

�e
∫

u|w|2x · ∇u + 1

9

(
12

σ
− 12

)

n�e
∫

u3w

+ 1

9

(
24

σ
− 8

)

�e
∫

3u2wx · ∇u. (4.5)

Proof We proceed formally. Introduce the functional

V(u, w) =
∫

|x |2(|u|2 + 3σ |w|2)

and note that V (t) = V(u(t), w(t)) ≡ V(X(t)). Thus,

V ′(t) = d

dt
V(X(t)) = 〈V ′(X(t)),

d

dt
X(t)〉 = 〈V ′(X(t)),�E ′(X(t))〉 =: P(X(t)).

(4.6)
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Thus, in order to determine V ′(t), it suffices to determine the functional P . To do so,
we use a dual Hamiltonian system. Indeed, given Y0 = (̃u0, w̃0) ∈ H, assume the
initial-value problem

d

dt
Y (t) = �V ′(Y (t)), Y (0) = Y0 (4.7)

is (at least) locally well-posed. Then

d

dt
E(Y (t)) = 〈E ′(Y (t)),

d

dt
Y (t)〉 = 〈E ′(Y (t)), �V ′(Y (t))〉 = −〈V ′(Y (t)), �E ′(Y (t))〉 = −P(Y (t)).

(4.8)

Evaluating at t = 0, we deduce

P(Y0) = − d

dt
E(Y (t))

∣
∣
∣
t=0

.

In conclusion, in order to determine the first derivative of V (t), it suffices to solve
(4.7) and then take the derivative of the energy at this solution evaluated at t = 0.

Next we solve (4.7). Indeed, if Y (t) = (̃u(t), w̃(t)), it easy to see that (4.7) is
equivalent to

⎧
⎨

⎩

d

dt
(̃u(t), w̃(t)) = (−2i |x |2ũ,−6i |x |2w̃)

ũ(0) = ũ0, w̃(0) = w̃0,

whose solution is

Y (t) = (̃u(t), w̃(t)) = (e−2i |x |2t ũ0, e−6i |x |2t w̃0).

Hence,

P(Y0) = − d

dt
E(Y (t))

∣
∣
∣
t=0

= −1

2

d

dt

(∫

|∇ũ(t)|2 + |∇w̃(t)|2
) ∣
∣
∣
t=0

= 4Im
∫
(
ũ0x · ∇ũ0 + 3w̃0x · ∇w̃0

)
.

This establishes (4.4).
To compute V ′′(t)we use the above argument replacing V (t) by V ′(t) and V(u, w)

by

G(u, w) = 4Im
∫

(ux · ∇u + 3wx · ∇w) .
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Since

G ′(u, w) = −4i (2x · ∇u + nu, 6x · ∇w + 3nw) ,

we see that

d

dt
Y (t) = JG ′(Y (t)), Y (0) = Y0 (4.9)

is equivalent to

⎧
⎨

⎩

d

dt
(̃u(t), w̃(t)) = (−8x · ∇ũ − 4nũ,− 24

σ
x · ∇w̃ − 12n

σ
w̃)

ũ(0) = ũ0, w̃(0) = w̃0,

It is not difficult to check that the solution of the above initial-value problem is

Y (t) = (̃u(t), w̃(t)) = (e−4nt ũ0(e
−8t x), e− 12

σ
t w̃0(e

− 24
σ
t x)).

Hence,

E(Y (t)) =
∫ (

1

2
e−16t |∇ũ0|2 + 1

2
e− 48

σ
t |∇w̃0|2 − 1

36
e−8nt |̃u0|4 − 9

4
e− 24

σ
nt |w̃0|4

+ 1

2
|̃u0|2 + μ

2
|w̃0|2

)

− e−8nt
∫

|̃u0(e
(
24
σ

−8
)
t
x)|2|w̃0(x)|2dx

− 1

9
e

(
12
σ

−12
)
nt
Re
∫

ũ
3
0(e

(
24
σ

−8
)
t
x)w̃0(x)dx

and

d

dt
E(Y (t))

∣
∣
∣
t=0

=
∫ (

−16

2
|∇ũ0|2 − 48

2σ
|∇w̃0|2 + 8n

36
|̃u0|4 + 9

4

24n

σ
|w̃0|4 + 8n |̃u0|2|w̃0|2

)

− 2

(
24

σ
− 8

)

Re
∫

ũ0|w̃0|2x · ∇ũ0 − 1

9

(
12

σ
− 12

)

nRe
∫

ũ
3
0w̃0

− 1

9

(
24

σ
− 8

)

Re
∫

3ũ
2
0w̃0x · ∇ũ0.

Consequently, by recalling that V ′′(t)must be the above expression (with the oppo-
site sign) when we replace (̃u0, w̃0) by (u(t), w(t)), (4.5) follows. The proof of the
proposition is thus completed. 
�
Corollary 4.5 Under the assumptions of Proposition 4.4, if σ = 3 then

V ′′(t) = 8nE(u0, w0) + 4(2 − n)

∫

(|∇u|2 + |∇w|2) − 4n
∫

(|u|2 + μ|w|2)
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Proof It follows easily from Proposition 4.4. Indeed, a simple computation yields

V ′′(t) = 16E(u0, w0) + 8(2 − n)

∫ (
1

36
|u|4 + 9

4
|w|4 + |uw|2 + 1

9
Reu3w

)

− 8
∫

(|u|2 + μ|w|2),

and, by the definition of the energy functional,

V ′′(t) = 16E(u0, w0) + 8(2 − n)

[
1

2

∫
(|∇u|2 + |∇w|2 + |u|2 + μ|w|2)− E(u0, v0)

]

− 8
∫

(|u|2 + μ|w|2)

= 8nE(u0, w0) + 4(2 − n)

∫

(|∇u|2 + |∇w|2) − 4n
∫

(|u|2 + μ|w|2),

as claimed. 
�
With Corollary 4.5 in hand we can also show that, under the assumption (3.13), the

condition (3.14) is sharp (at least in the case σ = 3 and μ = 9) to obtain the global
well posedness of (3.1). More precisely, we have

Theorem 4.6 Assume n = 3, σ = 3, μ = 9. Suppose that

E(u0, w0)M(u0, w0) <
1

2
E(P, Q)M(P, Q) (4.10)

and

K (u0, w0)M(u0, w0) > K (P, Q)M(P, Q), (4.11)

where (P, Q) is any ground state of (1.7) with ω = 0 (and μ = 3σ ). Then, as long
as the local solution given in Theorem 3.1 exist there holds

K (u(t), w(t))M(u(t), w(t)) > K (P, Q)M(P, Q). (4.12)

In particular, if u0, w0 ∈ H then the solution blows up in finite time.

Proof In view of (ii) in Lemma 3.9, the proof of the first part is similar to the one of
the Theorem 3.10; so we omit the details.

Assume now u0, w0 ∈ H. From assumption (4.10), we can find a sufficiently small
δ1 > 0 satisfying

E(u0, w0)M(u0, w0) <
1

2
(1 − δ1)E(P, Q)M(P, Q).
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Consequently, using Lemma 3.9, there exists δ2 > 0 (depending only on δ1) such that

K (u(t), w(t))M(u0, w0) > (1 + δ2)K (P, Q)M(P, Q).

Thus, from Corollary 4.5, we deduce that

M(u0, w0)V
′′(t) < 24E(u0, w0)M(u0, w0) − 4K (u(t), w(t))M(u0, w0)

< 12(1 − δ1)E(P, Q)M(P, Q) − 4(1 + δ2)K (P, Q)M(P, Q)

= 4(1 − δ1)K (P, Q)M(P, Q) − 4(1 + δ2)K (P, Q)M(P, Q)

= −4(δ1 + δ2)K (P, Q)M(P, Q),

where we have used that K (P, Q) = 3E(P, Q). Since the right-hand side of this last
inequality is negative, a standard convexity argument allows us to conclude. 
�

Next, we state some sufficient conditions which imply that the solution blows up
either forward or backward in time.

Theorem 4.7 Assume 2 ≤ n ≤ 3, σ = 3 and μ > 0. Suppose u0, w0 ∈ H and let

(u, v) ∈ C((−T∗, T ∗);H × H)

be the maximal solution of (3.1) given in Theorem 3.1. The following statements hold:

(i) If E(u0, w0) < 0 then T∗ < ∞ and T ∗ < ∞.
(ii) If E(u0, w0) = 0 and

Im
∫

(u0x · ∇u0 + 3w0x · ∇w0) < 0,

then T ∗ < ∞.
(iii) If E(u0, w0) = 0 and

Im
∫

(u0x · ∇u0 + 3w0x · ∇w0) > 0,

then T∗ < ∞.
(iv) If E(u0, w0) > 0 and

Im
∫

(u0x · ∇u0 + 3w0x · ∇w0) < −√nE(u0, w0)M(xu0, xw0)

then T ∗ < ∞.
(v) If E(u0, w0) > 0 and

Im
∫

(u0x · ∇u0 + 3w0x · ∇w0) >
√
nE(u0, w0)M(xu0, xw0)

then T∗ < ∞.
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Proof It is clear from Corollary 4.5 that V ′′(t) ≤ 8nE(u0, w0). So, the proof follows
the standard convexitymethod andwe shall omit the calculations. The interested reader
will find the details for the classical Schrödinger equation in [6, Sect. 6.5]. 
�

In the particular case μ = 9, the above result can be improved in the following
sense:

Theorem 4.8 Assume 2 ≤ n ≤ 3, σ = 3 and μ = 9. Suppose u0, w0 ∈ H and let

(u, v) ∈ C((−T∗, T ∗);H × H)

be the maximal solution of (3.1) given in Theorem 3.1. Then,

(i) If 2E(u0, w0) < M(u0, w0) then T∗ < ∞ and T ∗ < ∞.
(ii) If 2E(u0, w0) = M(u0, w0) and

Im
∫

(u0x · ∇u0 + 3w0x · ∇w0) < 0,

then T ∗ < ∞.
(iii) If 2E(u0, w0) = M(u0, w0) and

Im
∫

(u0x · ∇u0 + 3w0x · ∇w0) > 0,

then T∗ < ∞.
(iv) If 2E(u0, w0) > M(u0, w0) and

√
2Im

∫

(u0x · ∇u0 + 3w0x · ∇w0) < −√n(2E(u0, w0) − M(u0, w0))M(xu0, xw0)

then T ∗ < ∞.
(v) If 2E(u0, w0) > M(u0, w0) and

√
2Im

∫

(u0x · ∇u0 + 3w0x · ∇w0) >
√
n(2E(u0, w0) − M(u0, w0))M(xu0, xw0)

then T∗ < ∞.

Proof In this case, the last integral in 4.5 becomes M(u0, w0). Hence, V ′′(t) ≤
4n(2E(u0, w0) − M(u0, w0)). 
�
Remark 4.9 Under the assumption 2E(u0, w0) < M(u0, w0) (and σ = 3, μ = 9) a
simple calculation using the definition of the energy and Lemma 3.6 shows that

K (u0, w0)
n−2M(u0, w0)

4−n >
nn

4(4 − n)n−2 M(P, Q)2.
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Hence, for n = 2, we obtain M(u0, w0) > M(P, Q), which does not contradict
Theorem 4.2. On the other hand, for n = 3, using that K (P, Q) = 3M(P, Q),

K (u0, w0)M(u0, w0) >
9

4
K (P, Q)M(P, Q),

which implies that (4.11) holds.

5 Stability/instability of ground states (u, v) = (ei!tP(x), ei!tQ(x))

This section is devoted to study the (orbital) stability/instability of the standing waves
(1.6) in some particular cases. Let (P, Q) be a real ground state of (1.7). In particular
Q 
= 0 and (P, Q) must satisfy

{
�P − (ω + 1)P + ( 19 P

2 + 2Q2)P + 1
3 P

2Q = 0,

�Q − (μ + 3σω)Q + (9Q2 + 2P2)Q + 1
9 P

3 = 0.
(5.1)

To start with, let us make clear our notion of stability and instability. Recall that
(1.3) is invariant by translations and rotations, that is, if (u, w) is a solution of (1.3)
so are (u(· + y), w(· + y)) and (eiθu, e3iθw), for any θ ∈ R and y ∈ R

n . Thus, the
orbit generated by (P, Q) is defined by

� = {(eiθu(· + y), e3iθu(· + y)) : θ ∈ R, y ∈ R
n}.

Definition 5.1 (Orbital stability) We say that a standing wave (eiωt P, e3iωt Q) is
orbitally stable by the flow of (1.3) if for any ε > 0 there exists a δ > 0 with the
following property: if (u0, w0) ∈ H1 × H1 satisfies ‖(u0, w0) − (P, Q)‖H1×H1 < δ

then the solution of (1.3), with initial data (u0, w0) is global and satisfies

sup
t∈R

inf
(θ,y)∈R×Rn

‖(u(t), w(t)) − (eiθu(· + y), e3iθu(· + y))‖H1×H1 < ε.

Otherwise, we say that (eiωt P, e3iωt Q) is orbitally unstable by the flow of (1.3).

Roughly speaking, this means that there exists an ε-neighborhood of � such that
any solution of (1.3) starting in this neighborhood remains close to the orbit generated
by (P, Q). As usual in the current literature we say that (P, Q) is orbitally stable
(unstable) instead of saying that (eiωt P, e3iωt Q) is orbitally stable (unstable).

5.1 Instability

In order to establish our main theorem concerning instability let us introduce

� :=
{
(u, w) ∈ H1(Rn) × H1(Rn) : M(u, w) = M(P, Q)

}
. (5.2)
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Recall the following criterion for instability.

Theorem 5.2 (Instability Criterion for ground states) Assume there exists � ∈
H1(Rn) × H1(Rn) satisfying

(i) � belongs to the tangent space T(P,Q)�;
(ii) �−1� is L2-orthogonal to i(P, 3Q) and ∂x j (P, Q), j = 1, . . . , n;
(iii) i(P, 3Q) and ∂x j (P, Q), j = 1, . . . , n are linearly independent;
(iv) 〈S′′(P, Q)�,�〉 < 0, where S = E + ω

2 M.

Then, (P, Q) is orbitally unstable by the flow of (1.3).

Proof See [7,10]. 
�
We are now in position of proving the following result:

Theorem 5.3 Assume either n = 3 and μ > 0 or n = 2 and μ 
= 3σ . Let (P, Q) be
a ground state. Then, the standing wave (eiωt P, e3iωt Q) is orbitally unstable by the
flow of (1.3).

Proof We will check the assumptions in Theorem 5.2. To do so, let us introduce the
smooth curve

�(t) =
(
γ (t)λ

n
2 (t)P(λ(t)·), α(t)λ

n
2 (t)Q(λ(t)·)

)
,

where α, γ , and λ are smooth functions to be chosen later satisfying,

α(0) = γ (0) = λ(0) = 1. (5.3)

In particular we have �(0) = (P, Q). Define the real number k by

k :=
∫
P2

3σ
∫
Q2

.

The assumption that �(t) ⊂ � is equivalent to

γ 2k + α2 = k + 1. (5.4)

So, from now on we will assume that (5.4) holds; so that once we choose the function
α, γ is completely determined. By defining

� = �′(0) (5.5)

we promptly see that � ∈ T(P,Q)�; and condition (i) in Theorem 5.2 holds.
Next we recall that

�−1 =
(
i 0
0 σ i

)

.
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Hence�−1� has purely imaginary components. This immediately implies that�−1�

is orthogonal to ∂x j (P, Q), j = 1, . . . , n. On the other hand, if � = (�1, �2), we
have

�−1� ⊥ i(P, 3Q) ⇔ (�1, σ�2) ⊥ (P, 3Q) ⇔ (�1, �2) ⊥ (P, 3σQ) ⇔ � ⊥ ∇M(P, Q).

SinceM(�(t)) = M(P, Q), by taking the derivativewith respect to t and evaluating
at t = 0, it is clear that� ⊥ ∇M(P, Q) and assumption (ii) in Theorem5.2 is checked.

Note that i(P, 3Q) and ∂x j (P, Q) are orthogonal in L2 × L2 which yields (iii). So
it remains to check (iv). To do so, first recall that S(�(t)) = E(�(t)) + ω

2 M(P, Q),
because �(t) ⊂ �. Thus,

d2

dt2
E(�(t)) = d2

dt2
S(�(t)) = 〈S′′(�(t))�′(t), �′(t)〉 + 〈S′(�(t)), �′′(t)〉.

Evaluating at t = 0 and using that S′(P, Q) = 0, we see that (iv) is equivalent to

d2

dt2
E(�(t))

∣
∣
∣
t=0

< 0. (5.6)

Hence our task is to prove that we can choose α and λ such that (5.6) holds. But, by
using (5.4), a simple calculation reveals that

d

dt
E(�(t)) = α′(t)A(t) + λ′(t)B(t)

where

A(t) =
∫ (

−αλ2

k
|∇P|2 + αλ2|∇Q|2 + 1

9k2
(k + 1 − α2)αλn P4 − 9α3λnQ4

)

+
∫ (

2

k
α3λn P2Q2 − 2

k
(k + 1 − α2)αλn P2Q2 − α

k
P2 + μαQ2

)

+
∫ (

1

3k3/2
(k + 1 − α2)1/2α2λn P3Q − 1

9k3/2
(k + 1 − α2)3/2λn P3Q

)

and

B(t) =
∫ (

1

k
(k + 1 − α2)λ|∇P|2 + α2λ|∇Q|2 − n

36k2
(k + 1 − α2)2λn−1P4

− 9n

4
α4λn−1Q4

)

+
∫ (

− n

k
(k + 1 − α2)α2λn−1P2Q2 − n

9k3/2
(k + 1 − α2)3/2αλn−1P3Q

)
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In view of (2.7) and (2.3), we have

B(0) =
∫

(|∇P|2 + |∇Q|2) − n

4

∫ (
1

9
P4 + 9Q4 + 4P2Q2 + 4

9
P3Q

)

= −1

4

(

(n − 4)
∫
(|∇P|2 + |∇Q|2)+ n(ω + 1)

∫

P2 + n(μ + 3σω)

∫

Q2
)

= 0.

Also, in view of (2.2) and (2.1),

A(0) =
∫ (

−1

k
|∇P|2 + |∇Q|2 + 1

9k
P4 − 9Q4 +

(
2

k
− 2

)

P2Q2 − 1

k
P2 + μQ2

)

+ 1

3k

∫

P3Q − 1

9

∫

P3Q

=
∫ (

−1

k
|∇P|2 + |∇Q|2 + 1

9k
P4 − 9Q4 +

(
2

k
− 2

)

P2Q2 − 1

k
P2 + μQ2

)

+ 1

3k

∫

P3Q −
(∫

(|∇Q|2 + (μ + 3σω)Q2 − 9Q4 − 2P2Q2)

)

= 1

k

(∫ (

−|∇P|2 − (ω + 1)P2 + 1

9
P4 + 2P2Q2 + 1

3
P3Q

))

= 0.

Therefore, by denoting α0 = α′(0) and λ0 = λ′(0), we deduce, after some calcu-
lations using Lemma 2.2,

d2

dt2
E(�(t))

∣
∣
∣
t=0

= α0A
′(0) + λ0B

′(0)

= α2
0

[∫ (

− 2

9k2
P4 + 8

k
P2Q2 − 18Q4 +

(
2

3k
+ 1

9
− 1

3k2

)

P3Q

)]

+ 2α0λ0

[

2(3σ − μ)

∫

Q2 + (n − 2)
∫ (

1

9k
P4 − 9Q4 +

(
2

k
− 2

)

P2Q2

+
(

1

3k
− 1

9

)

P3Q

)]

+ λ20
n(2 − n)

4

∫ (
1

9
P4 + 9Q4 + 4P2Q2 + 4

9
P3Q

)

≡ A0α
2
0 + 2B0α0λ0 + C0λ

2
0.

In particular, the second derivative of E(�(t)) at t = 0 can be identified as a quadratic
form associated with a symmetric matrix. Hence, it suffices to show that this quadratic
form assumes negative values.

Assume first n = 2. Then, it suffices to show that the discriminant

D = A0C0 − B2
0 = −

(

2(3σ − μ)

∫

Q2
)2
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is negative. But this statement is true provided μ 
= 3σ .
Assume now n = 3. By taking (α0, λ0) = (0, 1) and using (2.7) and (2.3), we

obtain

d2

dt2
E(�(t))

∣
∣
∣
t=0

= −3

4

∫ (
1

9
P4 + 9Q4 + 4P2Q2 + 4

9
P3Q

)

= −
∫

(|∇P|2 + |∇Q|2), (5.7)

from which we deduce (5.6). The proof of Theorem 5.3 is thus completed. 
�

5.2 Stability

In this last section we study the orbital stability of the ground state given in Proposi-
tion 2.8. First of all, we shall rewrite (1.3) as a real pseudo-Hamiltonian system in the
form

∂X

∂t
(t) = �E ′(X(t)),

where we have written u = u1 + iu2, w = w1 + iw2, X = (u1, w1, u2, w2), � is the
skew-symmetric linear operator defined by

� =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1/σ

−1 0 0 0
0 −1/σ 0 0

⎞

⎟
⎟
⎠ (5.8)

and E is the energy function now given as

E(u1, w1, u2, w2) = 1

2

∫ {
|∇u1|2 + |∇u2|2 + |∇w1|2 + |∇w2|2 + u21 + u22

+ μ(w2
1 + w2

2) − 1

18
(u41 + 2u21u

2
2 + u42) − 9

2
(w4

1 + 2w2
1w

2
2 + w4

2)

− 2(u21 + u22)(w
2
1 + w2

2) − 2

9
(u31w1 + 3u21u2w2

− 3u1u
2
2w1 − u32w2

}
dx .

(5.9)

Our main theorem here reads as follows.

Theorem 5.4 Assume n = 1 and ω + 1 = μ + 3σω. Let (0, Q) be a ground state of
(1.7) according to Proposition 2.8. Then (0, e3iωt Q) is orbitally stable by the flow of
(1.3).
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Here, if necessary, we will use Qω instead of Q to emphasize that Q depends on ω.
In addition, throughout the section, we assume ω + 1 = μ + 3σω. In order to prove
Theorem 5.4 we will use the well-known Grillakis, Shatah and Strauss’ theory [11].
To simplify the notations, let � = (0, Q, 0, 0) and

L→ = S′′(�) =
(LR 0

0 LI

)

, (5.10)

where LR and LI are the 2 × 2 matrix diagonal operators defined by

LR =
(−� + (ω + 1) − 2Q2 0

0 −� + (μ + 3σω) − 27Q2

)

(5.11)

and

LI =
(−� + (ω + 1) − 2Q2 0

0 −� + (μ + 3σω) − 9Q2

)

. (5.12)

In order to describe the spectrum of Lω, we first study the spectral properties of the
following operators:

L1 = −� + (μ + 3σω) − 27Q2, L2 = −� + (μ + 3σω) − 9Q2 (5.13)

and

L3 = −� + (ω + 1) − 2Q2 (5.14)

More precisely, we have:

Theorem 5.5 Let (0, Q) be as in Proposition 2.8. Then:

(i) The operator L1 in (5.13) defined in L2(Rn) has only one negative eigenvalue.
Its kernel is given by Ker(L1) = span{Qxi ; i = 1, . . . , n} and the remainder
of the spectrum is bounded away from zero.

(ii) The operatorL2 in (5.13) defined in L2(Rn) has no negative eigenvalues. Zero is
a simple eigenvalue with associated eigenfunction Q. Moreover, the remainder
of the spectrum is bounded away from zero.

(iii) The operator L3 in (5.14) defined in L2(Rn) is a positive operator. Moreover,
the remainder of the spectrum is bounded away from zero.

Proof These are well-known results, see for instance [23,25]. Note that (iii) is a con-
sequence of (ii). 
�

As an immediate consequence, we have.

Corollary 5.6 Let (0, Q) be as in Proposition 2.8. Then the operator L→ has exactly
one negative eigenvalue, Ker(L→) is (n + 1)-dimensional and spanned by the set
{(0, 0, 0, Q), (0, Qxi , 0, 0); i = 1, . . . , n}. Moreover, the remainder of the spectrum
is bounded away from zero.
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Now we proof Theorem 5.4.

Proof (Proof of Theorem 5.4) In view of Corollary 5.6 and the theory in [11] it suffices
to prove that the second derivative of the function d(ω) = S(0, Qω) is positive. But
since (0, Qω) is a critical point of S we have

d ′(ω) = 1

2
M(0, Qω) = 3σ

2

∫

Q2
ω.

Note that if Q0 is the ground state of the equation

− �Q + (ω + 1)Q − 9Q3 = 0, (5.15)

with ω = 0, then (by uniqueness)

Qω(x) = (ω + 1)1/2Q0

(
(ω + 1)1/2x

)

is the ground state of (5.15) with ω > −1. Thus,

∫

Q2
ω = 1

(ω + 1)n/2−1

∫

Q2
0

and

d ′′(ω) =
(
1 − n

2

) 3σ

2(ω + 1)n/2

∫

Q2
0,

fromwhich we deduce d ′′(ω) > 0 for n = 1. This completes the proof of the theorem.

�
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