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a b s t r a c t

We prove that the geodesic flow on closed surfaces displays a hyperbolic set
if the shadowing property holds C2-robustly on the metric. Similar results are
obtained when considering even feeble properties like the weak shadowing and the
specification properties. Despite the Hamiltonian nature of the geodesic flow, the
arguments in the present paper differ completely from those used in Bessa et al.
(2013) for Hamiltonian systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The geodesic flow associated to a given metric describes the flow trajectory of a free particle not subject
to external forces. When studying the geodesic flow associated to negative curvature manifolds, Anosov
discovered a surprising and quite rigid dynamical property: uniform hyperbolicity [2]. Its main characteristic
is the uniform rate of contraction and expansion of the invariant directions under the tangent map to the
flow, i.e. the derivative of the flow with respect to the space variables.

Uniform hyperbolicity turned out to be a fundamental ingredient for the understanding of structurally
stable dynamical systems (see e.g. [25]). It allowed the construction of a fruitful geometric theory of
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invariant manifolds, a stability theory (uniform hyperbolicity is essentially equivalent to structural stability),
a statistical theory (smooth ergodic theory) and a numerical theory (shadowing and expansiveness).

It was however realized from an early stage that uniform hyperbolicity was far from covering the complete
scope of possible dynamical behaviours, even in a typical sense. A mechanical system which is uniformly
hyperbolic on each positive energy level is due to Hunt and MacKay [14], but other examples are scarce. Other
more flexible definitions of hyperbolicity began to arise like nonuniform hyperbolicity, partial hyperbolicity
(see e.g. [8] in the context of geodesic flows) and dominated splitting.

Uniform hyperbolicity was found to yield very interesting numerical properties unlike other kinds of
systems. For instance, the shadowing property holds for uniformly hyperbolic systems, i.e. almost orbits
affected with a certain error are approximated by true orbits. This amazing property which is rare even
for non hyperbolic but still partial hyperbolic systems [7], contains in itself much of the rigidity of the
strong assumptions of uniform hyperbolicity. Two other quite important properties are the specification
(Section 3.3) and the weak shadowing (Section 3.2) properties. The last mentioned one is more likely to
appear among partial hyperbolic systems.

The case of Hamiltonian systems yields some surprising consequences arising from numerical properties.
If we assume C2-robustness of shadowing, then the closure of the periodic points is a uniformly hyperbolic
set [6]. Thus, due to the general density theorem for Hamiltonians [22], the Hamiltonian is Anosov. In other
words, stability of a numerical property allows us to obtain geometrical, dynamical and also topological
knowledge.

A natural question is whether these results are extensible to the subclass of Hamiltonians formed by the
geodesic flows.

In this paper we restrict our study to surfaces and show that the robustness of the shadowing also implies
that the closure of the periodic points is a uniformly hyperbolic set (Theorem 1).

The perturbation tools for geodesic flows are very delicate as opposed to the general Hamiltonian case.
We can only perturb the metric, hence the perturbation is never a local issue in phase space. Furthermore,
the hyperbolic structure of the closure of the periodic orbits cannot be extrapolated to the whole energy
level due to the absence of a closing lemma for geodesic flows in the C1 topology i.e. C2 in the metric (cf. [23]
where the closing lemma is proved in the C1 topology of the metric). As a consequence we are not able
to assure global hyperbolicity. Other techniques not available in the geodesic flow context are the so-called
pasting lemma and suspension theorem which were crucial in [6].

Our proof of Theorem 1 relies on properties of the geodesic flow on surfaces, in particular on the twist
property of the Poincaré section map about a closed geodesic. The existence of invariant curves surrounding
elliptic points of area-preserving twist maps implies the splitting of the two-dimensional section into invariant
disjoint open sets, thus forbidden shadowing. So, under stability of shadowing the periodic points can only
be hyperbolic (Theorem 2). Finally, a well-known result by Contreras and Paternain [10] guarantees that
the closure of the periodic points is a uniformly hyperbolic set (Theorem 3).

In Section 2 we introduce the geodesic flow and the Poincaré section map. The definitions of the shadowing
properties appear in Section 3. We now state our main results and in Section 5 we present some interesting
applications.

Given a C∞ metric g on a surface M , i.e. g ∈ R∞(M), let ϕtg be the corresponding geodesic flow on the
unit tangent bundle,

P(g) := {γ : γ is a closed orbit under ϕtg}

and

Per(g) :=


γ∈P(g), t∈R

γ(t).
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Theorem 1. Let M be a surface. If g ∈ R∞(M) and the geodesic flow ϕtg satisfies any of the properties:

(a) is stably shadowable;
(b) is stably weak shadowable;
(c) has the stable weak specification property;

then Per(g) is a uniformly hyperbolic set.

Remark 1.1. It follows directly from the definitions that shadowing implies weak shadowing. Thus, showing
that stability of shadowing implies that Per(g) is a uniformly hyperbolic set follows from the same result
using weak shadowing.

The proof of Theorem 1 is an immediate consequence of Theorems 2 and 3.
Consider the Mañé star systems defined by the C2-interior of the metrics such that all closed orbits are

hyperbolic:

H (M) := {g ∈ R∞(M) : all γ ∈P(g) are hyperbolic}

and

F 2(M) := intC2H (M).

Clearly, g ∈ F 2(M) means that g ∈ H (M) and for any ĝ ∈ R∞(M), C2 close enough to g, we also have
that ĝ ∈H (M).

Theorem 2. Let M be a surface. If g ∈ R∞(M) and the geodesic flow ϕtg satisfies any of the properties:

(a) is stably shadowable;
(b) is stably weak shadowable;
(c) has the stable weak specification property;

then g ∈ F 2(M).

The proof is contained in Section 4. We point out that the proof of the Hamiltonian version of this
theorem in [6] uses a suspension theorem [5] which is unavailable for geodesic flows.

Theorem 3 ([10, Theorem D]). Let M be a surface. If g ∈ F 2(M), then Per(g) is a uniformly hyperbolic set.

Notice also that the general Hamiltonian version of Theorem 3 contained in [6] is stronger because it
requires the closing lemma, unknown for C1 geodesic flows.

2. Geodesic flow

2.1. The geodesic flow framework

Let (M, g) be a surface, i.e. a compact without boundary connected C∞ Riemannian manifold of dimension
2, with g ∈ Rr(M). Here Rr(M) stands for the set of Cr metrics on M with 2 ≤ r ≤ ∞. Given a tangent
vector v ∈ TxM at a point x ∈M , denote by

γx,v : R→M



M. Bessa et al. / Nonlinear Analysis 155 (2017) 250–263 253

the geodesic such that γx,v(0) = x and γ̇x,v(0) = v. The geodesic flow of g is the one-parameter family of
diffeomorphisms on the tangent bundle

ϕtg : TM → TM

(x, v) → (γx,v(t), γ̇x,v(t)) .

Since geodesics travel with constant speed, the unit tangent bundle

SgM = {(x, v) ∈ TM : gx(v, v) = 1}

is preserved by ϕtg. By writing the canonical projection π : SgM →M , we have that geodesics γ ⊂M lift to
orbits of the geodesic flow π−1γ ⊂ SgM . In order to simplify the language used in this work, we will always
refer to the orbits of the geodesic flow as geodesics.

It is widely known that the geodesic flow is a Hamiltonian flow given by (x, v) → 1
2gx(v, v) on TM for

a symplectic form depending on g (cf. [20]). This is related to another Hamiltonian flow on the cotangent
bundle T ∗M with a symplectic form which does not depend on the metric and it is defined in the following
way.

Let (x, p) ∈ T ∗M and η ∈ T(x,p)T
∗M . Using the canonical projection π̃ : T ∗M → M , consider the

one-form

λ(η) = p(dπ̃(x, p) η).

Notice that in local coordinates this form is simply given by p dx. Now, ω = −dλ is a symplectic form on
T ∗M (in local coordinates, ω = dx ∧ dp).

The Hamiltonian flow can be obtained from the fact that geodesics are solutions of the Euler–Lagrange
equation for the Lagrangian L(x, v) = 1

2gx(v, v), (x, v) ∈ TM . Using the Legendre transform L : TM →
T ∗M , the problem can be put into the Hamiltonian formalism by writing the Hamiltonian H = L ◦ L−1.

In local coordinates of M we can write for x ∈M and v ∈ TxM the metric

gx(v, v) = ⟨A(x)−1v, v⟩,

where A(x)−1 is a symmetric positive definite matrix, x → A−1(x) is C∞ and ⟨·, ·⟩ stands for the usual
inner product. The Legendre transformation L : TM → T ∗M is

L(x, v) = (x,A(x)−1v) = (x, p),

i.e. v = A(x) p. The Hamiltonian that generates the geodesic flow is then H : T ∗M → R with

H(x, p) = 1
2 ⟨A(x)p, p⟩.

Notice that H is actually a metric on T ∗M .
The Hamiltonian vector field generates the orbits of the Hamiltonian flow φtg which are the same for every

energy level up to a time reparametrization. That is, φstg (x, p) = φtg(x, sp).
It is therefore enough to consider one energy level, in particular the invariant unit cotangent bundle

S∗gM = H−1(1/2).

The flow φtg : S∗gM → S∗gM is called the Hamiltonian geodesic flow associated to g since π̃ ◦ φtg(x, p) =
γx,v(t). Moreover, the relation between the Hamiltonian geodesic flow φtg on T ∗M and the geodesic flow ϕtg
on TM is

ϕtg = L−1 ◦ φtg ◦ L. (1)

We shall denote by d(·, ·) the distance function in SgM . We point out that, since the methods we use in the
present paper have Hamiltonian flavour, we can adapt them in order to obtain an alternative proof of the
corresponding versions of the results in [6] for Hamiltonians in four-dimensional symplectic manifolds.
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Remark 2.1. A local perturbation of the Riemannian metric g supported in a set U ⊂ M , causes a change
of the geodesic flow in all fibers in SgU ⊂ SgM and not just in a neighbourhood in the phase space SgM .
This is a major difficulty for the use of local perturbations in the Riemannian metrics setting.

Since M is compact so is SgM . A transversal Σ to the geodesic flow at a regular point (x, v) in SgM is
a 2-dimensional smooth submanifold verifying

T(x,v)SgM = T(x,v)Σ ⊕ RXg(x, v)

where RXg(x, v) stands for the direction γ̇x,v(t). Note that Σ is a symplectic submanifold.
Consider a C1-family of transversals Σt := Σt(x, v) to the flow at ϕtg(x, v), t ≥ 0, and of small enough

neighbourhoods Ut ⊂ SgM of (x, v). The transversal Poincaré flow of g at (x, v) is defined to be the family
of C1-symplectomorphisms

P tg : Σ0 ∩ Ut → Σt

given by P tg(y, u) = ϕ
Θ(y,u,t)
g (y, u) with

Θ(y, u, t) = min{s ≥ 0: ϕsg(y, u) ∈ Σt}.

We assume that Ut is sufficiently small such that, by the implicit function theorem, Θ is C1 and Θ(Ut, t) is
bounded for a fixed t > 0.

The transversal linear Poincaré flow of g at (x, v) is the derivative of P tg at (x, v),

DP tg(x, v) : T(x,v)Σ0 → Tϕtg(x,v)Σt.

Given a regular point (x, v), we say that (x, v) is a periodic point of the geodesic flow ϕtg if ϕtg(x, v) = (x, v)
for some t. The smallest t0 > 0 satisfying the condition above is called period of (x, v); in this case, we say
that the orbit of (x, v) is a closed orbit of period t0. Nontrivial closed geodesics on M for g are in one-to-one
correspondence with the closed orbits of ϕtg. When (x, v) is periodic of period ℓ > 0 we call Pg := P ℓg (x, v)
the Poincaré map and Σ the Poincaré section.

In [4, Section 2.3] it was proved a result for Hamiltonians which can be translated into our context in
the following way: a ϕtg-invariant regular compact subset Λ ⊂ SgM is uniformly hyperbolic for ϕtg if and
only if the associated transversal linear Poincaré flow DP tg is uniformly hyperbolic on the tangent space of
ΣΛ := {Σt(x, v) : (x, v) ∈ Λ} denoted by TΣΛ. With this in mind we define the hyperbolic structures with
respect to the transversal linear Poincaré flow.

Given a C2-metric g and a ϕtg-invariant, compact and regular set Λ ⊂ SgM , we say that Λ is uniformly
hyperbolic if there exist θ ∈ (0, 1) and m > 0 and a DP tg -invariant splitting EsΛ ⊕ EuΛ of TΣΛ such that for
any (x, v) ∈ Λ we have ∥DPmg (x, v)|Es(x,v)

∥ ≤ θ and ∥DP−mg (ϕmg (x, v))|Eu
ϕmg (x,v)

∥ ≤ θ.
A periodic point (x, v) is called hyperbolic if its whole orbit is a uniform hyperbolic set. Equivalently, a

closed geodesic is hyperbolic if its transversal linear Poincaré flow on the period has no eigenvalue of modulus
1 (notice that the eigenvalues are independent of the choice of the transversal and of the point in the closed
orbit). If the eigenvalues are non-real and with modulus 1 the closed orbit is said to be elliptic, and if they
are irrational we say that the orbit is irrationally elliptic. The parabolic closed orbits have real eigenvalues
equal to 1 or −1. It is well-known that, fixing any T > 0, for an open and dense subset of metrics on surfaces
its geodesic flows display only elliptic or hyperbolic closed orbits with period less than T . This is basically
due to the bumpy metric theorem in [1] (see also [10, Section 2] after [15, Theorem 2]).

A locally maximal invariant set (or isolated set) is a compact subset Λ ⊂ SgM such that ϕtg(Λ) = Λ for
all t ∈ R and there is a neighbourhood U of Λ, called isolating block, such that Λ =


t∈R ϕ

t
g(U).
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3. Shadowing, weak shadowing and specification

In this section we introduce the dynamical properties that we shall deal with in the sequel.

3.1. The shadowing property

Let ϕtg : SgM → SgM be the geodesic flow associated to the metric g ∈ R∞(M). The notion of shadowing
developed in [6, Section 3.2] can be adapted to the geodesic flow. Indeed, in our case it is easier because it
is enough to consider a single energy level.

Let us fix real numbers δ, T > 0. We say that a pair of sequences [(xi, vi), (ti)]i∈Z, where (xi, vi) ∈ SgM ,
ti ∈ R, ti ≥ T , is a (δ, T )-pseudo-geodesic of ϕtg if

d(ϕtig (xi, vi), (xi+1, vi+1)) < δ for all i ∈ Z.

For the sequence (ti)i∈Z we write ς(n) = t0 + t1 + · · ·+ tn−1 if n > 0, ς(n) = −(tn+ · · ·+ t−2 + t−1) if n < 0
and ς(0) = 0.

Let (x0, v0) ⋆ t denote a point on a (δ, T )-chain t units time from (x0, v0). More precisely, for t ∈ R,

(x0, v0) ⋆ t = ϕt−ς(i)g (xi, vi) if ς(i) ≤ t < ς(i+ 1).

By Rep we denote the set of all increasing homeomorphism τ : R → R, called (time) reparameterizations,
satisfying τ(0) = 0. Fixing ε > 0, we define the set

Rep(ε) =

τ ∈ Rep :

τ(t)− τ(s)
t− s

− 1
 < ε, s,t ∈ R


,

of the reparameterizations ε-close to the identity.
A (δ, T )-pseudo-geodesic [(xi, vi), (ti)]i∈Z is ε-shadowed by some true geodesic of g if there is (x̃, ṽ) ∈ SgM

and a reparametrization τ ∈ Rep(ε) such that

d(ϕτ(t)
g (x̃, ṽ), (x0, v0) ⋆ t) < ε, for every t ∈ R. (2)

The geodesic flow ϕtg is said to have the shadowing property if, for any ε > 0 there exist δ, T > 0 such that
any (δ, T )-pseudo-geodesic [(xi, vi), (ti)]i∈Z is ε-shadowed by some geodesic of g. Finally, we say that the
geodesic flow ϕtg is stably shadowable if there exists a C2-neighbourhood V of g where for any C∞-metric
ĝ ∈ V the flow ϕtĝ has the shadowing property.

3.2. The weak shadowing property

The shadowing property in the weak sense first appeared in a paper by Corless and Pilyugin (see [11])
related to the genericity of shadowing among homeomorphisms, with respect to the C0-topology. In simple
terms weak shadowing allows to approximate “almost orbits” by true orbits, if one considers only the distance
between the orbit and the “almost orbit” as two subsets in the manifold, thus forgetting the time parameter-
ization. There exist dynamical systems without the weak shadowing property (see [21, Example 2.12]) and
dynamical systems satisfying the weak shadowing property but not the shadowing one ([21, Example 2.13]).

We recall the following definition of weakly shadowable systems and observe that the first result related
to ours was done by Sakai (see [24] and the references therein). Given a geodesic flow ϕtg : SgM → SgM

associated to the metric g ∈ R∞(M) and δ, T > 0, a (δ, T )-pseudo-geodesic [(xi, vi), (ti)]i∈Z is weakly ε-
shadowed by some true geodesic of g if there exists (x̃, ṽ) ∈ SgM such that {(xi, vi)}i∈Z ⊂ Bε(O(x̃, ṽ)),
where O(x̃, ṽ) stands for the orbit of (x̃, ṽ).

The geodesic flow ϕtg is said to have the weak shadowing property if, for any ε > 0 there exist δ, T > 0
such that any (δ, T )-pseudo-geodesic [(xi, vi), (ti)]i∈Z is weakly ε-shadowed by some geodesic of g.



256 M. Bessa et al. / Nonlinear Analysis 155 (2017) 250–263

Finally, we say that the geodesic flow ϕtg is stably weakly shadowable if there exists a C2-neighbourhood
V of g where for any C∞-metric ĝ ∈ V the flow ϕtĝ has the weak shadowing property.

3.3. The specification property

Consider a geodesic flow ϕtg : SgM → SgM associated to the metric g ∈ R∞(M) and a ϕtg-invariant
compact set Λ ⊂ SgM .

A specification S = (σ, P ) consists of a finite collection σ = {I1, . . . , Im} of bounded disjoint intervals
Ii = [ai, bi] of the real line and a map P :


Ii∈σ Ii → Λ such that for any t1, t2 ∈ Ii we have

ϕt2g (P (t1)) = ϕt1g (P (t2)).

The specification S is said to be K-spaced if ai+1 ≥ bi + K for all i ∈ {1, . . . ,m} and the minimal of such
K is called the spacing of S. If σ = {I1, I2}, then S is said to be a weak specification. Given ε > 0, we say
that S is ε-shadowed by (x, v) ∈ Λ if d(ϕtg(x, v), P (t)) < ε for all t ∈


Ii∈σ Ii.

We say that Λ has the weak specification property if for any ε > 0 there exists a K = K(ε) ∈ R such
that any K-spaced weak specification S is ε-shadowed by a point of Λ. In this case the geodesic flow ϕtg|Λ
is said to have the weak specification property. The geodesic flow ϕtg is said to have the weak specification
property if SgM has it.

We say that the geodesic flow ϕtg associated to g has the stable weak specification property if there exists
a C2-neighbourhood V of g where for any C∞-metric ĝ ∈ V the flow ϕtĝ has the weak specification property.

4. Proof of Theorem 2

Theorem 2 is an immediate consequence of the following results.

Proposition 4.1. Let M be a surface and g ∈ R∞(M). If the geodesic flow ϕtg satisfies any of the properties:

(a) is shadowable;
(b) is weak shadowable;
(c) has the weak specification property;

then there are no irrationally elliptic closed orbits.

Let M be a surface. Given a simple closed curve γ ∈ TM , we define the set of C∞- metrics that have γ
as an orbit of ϕtg by

R∞γ (M) = {g ∈ R∞(M) : γ ∈P(g)}.

Endow this set with the C2-topology and let

Bε,γ(g,D) = {g′ ∈ R∞γ (M) : ∥g′ − g∥C2 < ε, g = g′ on D}.

Moreover, for any g ∈ R∞γ (M) consider the map

Tγ : g → trDPg|γ
that gives the trace of the transversal linear Poincaré flow at γ. Below we use also the notation Bδ(a) =
{y ∈ R : |y − a| < δ}.

Lemma 4.2. Let ε > 0, g ∈ R∞(M) and γ be a closed orbit for ϕtg. Then, there is δ > 0 such that for any
tubular neighbourhood W ⊂M of πγ,

Bδ(Tγ(g)) ⊂ Tγ(Bε,γ(g,D)),

where D = (M \W ) ∪ πγ.



M. Bessa et al. / Nonlinear Analysis 155 (2017) 250–263 257

Proof. This follows from the version of Franks’ lemma for geodesic flows on surfaces [10,26]. �

If we have a parabolic or elliptic closed orbit of the geodesic flow for a given metric, by Lemma 4.2 there
is a nearby metric with the same closed orbit but irrationally elliptic. Proposition 4.1 then implies that the
shadowing properties cannot stably hold. This proves Theorem 2.

It remains to show Proposition 4.1.

4.1. Proof of Proposition 4.1(a) and (b)

The existence of an irrationally elliptic closed orbit implies the existence of invariant curves around the
corresponding fixed point of the Poincaré map. These curves split the Poincaré section and are a clear
obstacle to shadowing. We present below the details of the proof.

Assume that ϕtg has an irrationally elliptic closed point (x, v) which corresponds to a fixed point of the
Poincaré map Pg defined on a transversal section Σ at (x, v).

Since the eigenvalues of DPg(x, v) are irrational (non-resonant), the Birkhoff normal form theorem gives
us a good coordinate transformation on a small neighbourhood U of (x, v) that reduce Pg in U ∩ Σ to an
area-preserving twist map (see e.g. [12, Proposition 38.4] or [18]). Moreover, by introducing symplectic polar
coordinates h : Σ → A, we obtain an area-preserving twist map Qg = h ◦ Pg ◦ h−1 on A = T × [0,+∞),
where T = R/Z is the unit circle. This new map yields all the dynamics in the neighbourhood of the elliptic
fixed point (r = 0) and it is given by

Qg(θ, r) = (θ + τr + F (θ, r) mod 1, r +G(θ, r)), (θ, r) ∈ A, (3)

where τ ̸= 0, and F,G are small C∞ functions of order r. Notice that r = 0 is a segment of fixed points.
It is well-known that any invariant Jordan curve Γ ⊂ A homotopically nontrivial is the graph of a

Lipschitz function ψ : T→ R, i.e.

f(θ, ψ(θ)) = (φ(θ), ψ ◦ φ(θ)), θ ∈ T,

where φ is a homeomorphism of T with rotation number ρ(Γ ). We call such sets invariant circles. Denote
the set of all invariant circles by K. This set is not empty, in fact it contains a positive measure set consisting
of smooth curves given by KAM theory with all points in r = 0 being density points. This implies that in
any neighbourhood of r = 0 there is a smooth invariant circle with a diophantine rotation number (KAM
circle). In addition, every KAM circle is accumulated from above and below by other KAM circles (see
e.g. [16,13,17]).

If a connected component of the complement of K is homeomorphic to an annulus, i.e. the boundary
is the union of two disjoint invariant curves Γ−,Γ+ (which cannot be KAM circles), it is called a Birkhoff
zone of instability. Otherwise, the connected component of the complement of K corresponds to a chain of
heteroclinic orbits to hyperbolic periodic points. Thus, the boundaries are invariant curves with the same
rational rotation number, intersecting at the hyperbolic periodic points (see [16,13]). This last case does not
hold for generic area-preserving twist maps.

The result below guarantees the existence of orbits connecting the boundaries of a given Birkhoff zone of
instability.

Proposition 4.3 (Herman [13, Section I.5.9.2, Section I.5.9.3, Section I.5.9.4]). Consider a Birkhoff zone of
instability bounded by the invariant circles Γ− and Γ+ of any rotation number and let (θ, r) ∈ Γ−. Then,
for every neighbourhood W of (θ, r) we have that

Γ+ ∩

n∈Z

Qng (W ) ̸= ∅.
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Given δ′ > 0 and T ′ ∈ N, we define a (δ′, T ′)-pseudo-orbit of Qg to be a pair of sequences
[(θn, rn), (mn)]n∈Z such that (θn, rn) ∈ A, mn ∈ Z, mn ≥ T ′ and

d(Qmng (θn, rn), (θn+1, rn+1)) < δ′, n ∈ Z.

The distance in A is given by d((θ, r), (θ′, r′)) = max{minp∈Z |θ − θ′ + p|, |r − r′|}, where θ stands for a lift
to the universal cover R of θ ∈ T.

We will show that there is ε′ > 0 such that for any pair of parameters δ′ and T ′ we can find pseudo-orbits
which are not possible to shadow by an ε′-close real orbit. Take Γ0 = {r = 0}, two KAM circles Γ1 and Γ2
near Γ0 and

ε′ = 1
2 min
i ̸=j

d(Γi,Γj).

The above curves are graphs of the Lipschitz functions ψi with ψ0 = 0 < ψ1 < ψ2. So, any orbit cannot be
ε′-close to more than two of the above invariant sets since the region between two curves is invariant. We
are going to construct a pseudo-orbit of Qg which reaches the three curves.

Take any point (θ0, r0) ∈ Γ0, i.e. r0 = 0. Let the backward pseudo-orbit be the real backward orbit

(θn, rn) = (θ0, 0) ∈ Γ0 and mn = T ′, n < 0.

The forward pseudo-orbit will be built in order to end at or above Γ2.
Consider the canonical projection π(θ, r) = r. Let m0 = T ′. We choose (θ1, r1) to be δ′-close to

Qm0
g (θ0, r0) = (θ0, r0) and

r1 > π ◦Qm0
g (θ0, r0),

so that (θ1, r1) is in an invariant circle Γ between Γ0 and Γ1 (if δ′ is large enough we can actually have
Γ = Γ1).

If Γ is not a lower boundary of an instability zone or part of a chain of hyperbolic heteroclinic orbits,
we can choose any m1 ≥ T ′ and (θ2, r2) that is δ′-close to Qm1

g (θ1, r1) and inside the upper component of
A \ Γ , i.e. the one not containing r = 0.

If Γ is an invariant circle part of a chain of hyperbolic heteroclinic orbits, choose m1 large enough such
that Qm1

g (θ1, r1) is in the stable manifold close to the hyperbolic point. Take (θ2, r2) to be δ′-close and in
the region above the chain.

Finally, if Γ is the lower boundary of a Birkhoff zone of instability, we use the dynamics and Proposition 4.3
in the following way. Take m1 ≥ T ′. We choose (θ2, r2) to be δ′-close to Qm1

g (θ1, r1) and inside the zone of
instability such that for sufficiently large m2 we get that Qm2

g (θ2, r2) is δ′-close to the upper boundary of
the Birkhoff zone of instability, in particular to a point there defined to be (θ3, r3). This is possible due to
Proposition 4.3.

Repeating this process we are able to reach Γ1 (and also Γ2). We have thus constructed a pseudo-orbit
connecting Γ0 to Γ2.

Take now (xn, vn) = h−1(θn, rn) ∈ Σ , n ∈ Z, and

tn =
mn
i=0

Θ(h−1 ◦Qig(θn, rn), ℓ),

where Θ is the first return time to Σ and ℓ is the period of the periodic orbit. Notice that Θ(·, ℓ) is close to
ℓ and bounded away from zero. This defines a (δ, T )-pseudo-geodesic of g for given δ, T > 0. Notice that δ′
above is related to δ and T gives us a lower bound on T ′.

In conclusion, we have shown that there is ε > 0 such that for any δ, T > 0 we can find a (δ, T )-pseudo-
geodesic [(xn, vn), (tn)]n∈N which is not ε-shadowed by any true geodesic of g.

The above construction also implies that the pseudo-geodesic does not have the weak shadowing property.
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4.2. Proof of Proposition 4.1(c)

We say that ϕtg is topologically mixing if for any given open sets U, V ⊂ SgM we can find N > 0 such
that

U ∩ ϕtg(V ) ̸= ∅, t ≥ N.

Notice that topologically mixing implies topological transitivity. The next lemma is a particular case of
[3, Lemma 3.1].

Lemma 4.4. Let g ∈ R∞(M). If ϕtg has the weak specification property, then it is topologically mixing.

For surfaces we are able to show that topologically mixing excludes the existence of elliptic closed orbits,
thus completing the proof of Proposition 4.1(c).

Lemma 4.5. Let M be a surface. If g ∈ R∞(M) and ϕtg is topologically mixing, then there are no irrationally
elliptic closed orbits.

Proof. Assume that ϕtg has an irrationally elliptic closed orbit and the corresponding Poincaré (twist) map
has an irrationally elliptic fixed point. Again as in Section 4.1, the existence of invariant curves surrounding
the fixed point contradicts transitivity. Thus, ϕtg is not topologically mixing. �

5. Applications

5.1. A generic approach

5.1.1. Obtaining a nontrivial hyperbolic set
By using [10, Theorem 1.1] we obtain, for a dense subset of metrics, that Per(g) is a nontrivial uniformly

hyperbolic set. Thus, under a dense assumption, we can go further on the conclusions of Theorems 1 and
3. Still, we observe that the conclusions of Theorems 1 and 3 can be upgraded even if we consider a generic
setup. This was treated with detail in [9, Theorem D]. In fact, considering a metric in H , where H is the
residual subset of strongly bumpy metrics and satisfying a transversality property, if g ∈H ∩F 2(M), then
Per(g) is a nontrivial uniformly hyperbolic set. This slightly improves Theorem 1.

5.1.2. Shadowing and pointwise hyperbolicity
In previous section we obtained a generic result under the stability of shadowing (or the weak shadowing or

even the specification property), now we will obtain another generic result without this stability assumption.
For that let us consider the residual subset of metrics R such that (i) all closed orbits are hyperbolic or

elliptic and (ii) all elliptic closed orbits are irrationally elliptic. By Proposition 4.1 we obtain that under the
shadowing hypothesis on g ∈ R only hyperbolic closed orbits are allowed. Therefore, we obtain the following
result:

Corollary 1. There exists a C∞-residual subset R ⊂ R∞(M) such that for any g ∈ R, if g satisfies the
shadowing property (or the weak shadowing or even the specification property), then all closed orbits are
hyperbolic.

It is an interesting question to know if the closure of the hyperbolic closed orbits on Corollary 1 is a
uniformly hyperbolic set, say switch pointwise hyperbolicity by uniform hyperbolicity on the set of closed
orbits.
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5.2. Hyperbolic homoclinic classes

As discussed at the end of Section 1 it is not known if the closing lemma with respect to the C2-topology
on the metric holds for geodesic flows. Hence, on any manifold we are not sure if we have dense closed orbits
for C2-dense metrics. Clearly, if the manifold has negative curvature, the flow is Anosov and so, it displays
dense closed orbits without needing any perturbation (cf. [2]). Next we consider certain invariant a priori
proper subsets on the surface M with dense closed orbits and show that they spread to the whole manifold
under C2-stability of shadowing. We will prove that if these sets have the shadowing (or the weak shadowing
or even the specification property) property C2-robustly, then these sets are actually the whole manifold
and so the closed orbits are abundant in M . In overall, we obtain a sufficient condition to obtain closing
without the need of any perturbation.

We recall some basic definitions. We define the strong stable manifold and the stable manifold of (x, v)
as:

W ss(x, v) := {(x̃, ṽ) ∈ SgM : lim
t→+∞

d(ϕtg(x̃, ṽ), ϕtg(x, v)) = 0}

which, when (x, v) is hyperbolic, is a 1-dimensional set and

W s(O(x, v)) :=

t∈R

W ss(ϕtg(x, v)),

which, when (x, v) is hyperbolic, is a 2-dimensional set where O(x, v) stands for the orbit of (x, v). For
small ε > 0, the local strong stable manifold is an embedded disk contained in the global stable manifold
W ss(x, v) and is defined as

W ssε (x, v) := {(x̃, ṽ) ∈ SgM : d(ϕtg(x̃, ṽ), ϕtg(x, v)) < ε if t ≥ 0}.

By the stable manifold theorem, there exists an ε = ε(x, v) > 0 such that

W ss(x, v) =

t≥0

ϕ−tg (W ssε (ϕtg(x, v))).

Analogous definitions hold for unstable manifolds.
Any point (x̂, v̂) ̸= (x, v) in Wuu(x, v) ∩W ss(x, v) is called a homoclinic point. This intersection is said

to be transversal if the dimension of the subspace spanned by T(x̂,v̂)W
uu(x, v) and T(x̂,v̂)W

ss(x, v) is equal
to 2.

Given a hyperbolic point (x, v) ∈ SgM for ϕtg its homoclinic class, denoted H((x, v), ϕtg), is the closure
of the set of transverse intersections between the stable and unstable manifolds of all points in the orbit of
ϕtg(x, v). It is well-known by the Birkhoff–Smale Theorem that H((x, v), ϕtg) is a transitive set with dense
closed orbits.

All the definitions of shadowing, weak shadowing and specification given previously can be readapted to
a local point of view by considering those properties defined in isolated sets. Next we define them properly
so we have no ambiguity.

• (shadowing) The geodesic flow ϕtg is said to have the shadowing property in the isolated set Λ if, for any
ε > 0 there exist δ, T > 0 such that any (δ, T )-pseudo-geodesic [(xi, vi), (ti)]i∈Z in Λ is ε-shadowed by
some geodesic of g. We say that the geodesic flow ϕtg associated to g is stably shadowable in Λ if there
exists an isolating block U such that the flow ϕtĝ displays the shadowing property in Λĝ :=


t∈R ϕ

t
ĝ(U)

for any C∞ metric ĝ sufficiently C2-close to g.
• (specification property) The geodesic flow ϕtg is said to have the weak specification property in the isolated

set Λ if Λ has it. We say that the geodesic flow ϕtg associated to g has the stable weak specification property
in Λ if there exists an isolating block U such that the flow ϕtĝ has the weak specification property in
Λĝ :=


t∈R ϕ

t
ĝ(U), for any C∞ metric ĝ sufficiently C2-close to g.
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• (weak shadowing property) The geodesic flow ϕtg is said to have the weak shadowing property in the
isolated set Λ if, for any ε > 0 there exist δ, T > 0 such that any (δ, T )-pseudo-geodesic [(xi, vi), (ti)]i∈Z
in Λ is weakly ε-shadowed by some geodesic of g. We say that the geodesic flow ϕtg is stably weakly
shadowable in Λ if there exists an isolating block U such that the flow ϕtĝ displays the weak shadowing
property in Λĝ :=


t∈R ϕ

t
ĝ(U), for any C∞ metric ĝ sufficiently C2-close to g.

In this section we obtain the following result:

Theorem 4. If ϕtg is the geodesic flow on SgM , where M is a surface, and Λ ⊂ SgM is a homoclinic class
satisfying the shadowing property (or weak shadowing, or specification) C2-robustly, then ϕtg is Anosov.

The results that we proved before can be easily adapted in order to obtain the following result. We leave
the details of the proof to the reader.

Lemma 5.1. If ϕtg is the geodesic flow on SgM , where M is a surface, and Λ ⊂ SgM is a homoclinic class
satisfying the shadowing property (or weak shadowing, or specification) C2-robustly, then Λ is hyperbolic.

Then, the proof of Theorem 4 is derived directly from the following lemma which is based in a simple
but beautiful idea of Newhouse [19].

Lemma 5.2. If ϕtg is the geodesic flow on SgM , where M is a surface, and Λ ⊂ SgM is a hyperbolic
homoclinic class, then Λ = SgM and ϕtg is Anosov.

Proof. Since Λ is clearly closed and SgM is connected it is sufficient to prove that Λ is open. For any
(x, v) ∈ Λ we will show that there exists a product structure around (x, v) formed by stable/unstable local
manifolds of uniform size. Knowing that the geodesic flow has constant velocity (in particular do not have
equilibrium points) is crucial to go on with the proof and avoid singular-hyperbolicity thus non-uniform
sizes of invariant manifolds. Given Wuu(x, v) we claim that densely in Wuu(x, v) we have elements in Λ
and analogously in W ss(x, v) which is sufficient to obtain the product structure. Suppose, by contradiction,
that we have a hole in Wuu(x, v) without elements in Λ, say an open interval (a, b) ⊂ Wuu(x, v) without
elements in Λ. Since the periodic points are dense in Λ we can choose (x̂, v̂) ∈ Per(g)∩Λ very close to (x, v).
By continuity of the unstable manifold locally we have that Wuu(x̂, v̂) and Wuu(x, v) are C1-close. Now, by
invariance of Wuu(x, v) we can transport the hole (a, b) near (x, v) in order to obtain a more or less straight
rectangular box B, see Fig. 1, formed by:

• the base is a ϕtg-iteration of (a, b) with time between [0, τ ] for τ > 0 very small;
• the sides are formed by the weak local stable manifolds of a and b;
• the top is a ϕtg-iteration of (a′, b′) with time between [0, τ ] for τ > 0 very small where a′ = W ssδ (a) ∩
Wuu(x̂, v̂) and b′ = W ssδ (b) ∩Wuu(x̂, v̂).

By Poincaré recurrence theorem we have that Lebesgue almost every point in B return to B. Let T > 0 be a
return point for y ∈ B. Now, ϕtg will enlarge the length, decrease the height and keep the depth of B. Since
invariant manifolds do not have self intersections and the only way that ϕtg(B) intersects B is by having an
intersection of a ϕtg-iterate of an element in the base of B with the sides of B. But, this would imply that
there are elements in Λ in the base of B which is a contradiction with the existence of a hole. �
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