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Abstract 

Mixed Capacitated Arc Routing Problems (MCARP) aim to identify a set of vehicle trips 

that, starting and ending at a depot node, serve a given number of links, regarding the vehicles 

capacity, and minimizing a cost function. If both profits and costs on arcs are considered, the 

Profitable Mixed Capacitated Arc Routing Problem (PMCARP) may be defined. We present 

compact flow based models for the PMCARP, where two types of services are tackled, 

mandatory and optional. Adaptations of the models to fit into some other related problems are 

also proposed. The models are evaluated, according to their bounds quality as well as the 

CPU times, over large sets of test instances. New instances have been created from 

benchmark ones in order to solve variants that have been introduced here for the first time. 

Results show the new models performance within CPLEX and compare, whenever available, 

the proposed models against other resolution methods. 

 

Keywords: Routing; Arc Routing Problems; Profits; Flow-based Models. 

 

1.  Introduction 

We consider arc routing problems where a profit is associated with the service of 

the arcs in a given subset. In these problems we are faced with two conflicting 

objectives: maximizing the total collected profit and minimizing the travelling cost. 

This conflict can be addressed in different ways: i) by bicriteria optimization, ii) by 

combining both goals in the same objective function, in the so called profitable 

problems, iii) or by considering one as the objective and the other as a constraint. In 

the latter case, problems are known as orienteering or as prize-collecting problems, 

depending on if they consist of maximizing the collected profit or minimizing the 
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travelled cost, respectively. More in detail, a problem is called profitable when it 

consists of finding the route that maximizes the difference between the total collected 

profit and the traveling cost. In the orienteering (or team orienteering, if a fleet of 

identical vehicles is considered) problem the objective is to maximize the collected 

profit with a constraint that the maximum cost (or time or length) of the route does not 

exceed a given limit. Finally, in the prize-collecting problem we look for a minimum 

cost route collecting at least a given amount of profit. This characterization follows 

the one proposed by (Feillet, Dejax, & Gendreau, 2005a) for the node routing case.  

Profitable, orienteering and some other related capacitated arc routing problems 

defined on mixed graphs are considered in this paper, and, as far as we know, some of 

them are introduced here for the first time. In these problems, a mixed graph is given 

with three different types of links: mandatory, optional and deadheading. Mandatory 

and optional links are also called demand links or tasks and have an associated profit. 

All links have a deadheading cost associated with their traversal. In general, the 

objective is to find a set of tours that maximize a profit function, servicing all the 

mandatory tasks and maybe some of the optional ones, and respecting some side 

constraints. The profit of a demand link is available only once, and it is obtained when 

the service is performed.  

Specifically, in this article we present and evaluate computationally compact flow-

based formulations for several mixed capacitated arc routing problems with profits. 

Single-commodity flow models provide a general framework for modelling many 

routing problems. The pioneering work of Gavish and Graves (Gavish & Graves, 

1978) provided this kind of models for several routing problems. The reader is also 

referred to Toth and Vigo (Toth & Vigo, 2002) for other examples. There are several 

reasons that explain the wide use of these models. They are easy to understand, easy 

to implement and allow additional constraints to be handled easily. However, many of 

the routing problems modelled so far by the single-commodity flow models are node 

routing problems and not much has been done with such models for arc routing. This 

is the main purpose of this work, to provide and evaluate single commodity flow 

models for several arc routing problems with profits.  

The Mixed Capacitated Arc Routing Problems (MCARP or MP for short) is an 

NP-hard problem since it generalizes the undirected CARP (Golden & Wong, 1981), 
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which is known to be NP-hard. Therefore, all the versions of the MCARP studied in 

this paper are also NP-hard.  

In this paper, we consider: i) the Profitable Mixed Capacitated Arc Routing 

Problem (PMP), which tries to find a single vehicle tour maximizing the difference 

between the collected net profit and the total deadheading cost; ii) the penalised 

version of the PMP, which consists of maximizing an objective function that includes 

the total net profit, the total deadheading cost and the penalties paid for the not 

serviced tasks; iii) the Orienteering Mixed Capacitated Arc Routing Problem (OMP) 

where the objective is to find a tour maximizing the total collected (gross) profit and 

no deadheading cost is considered, although the tour length cannot be greater than a 

time limit  ; iv) the simpler case of the OMP where no demands are taken into 

account and which is called the Uncapacitated Orienteering Problem (UOMP). 

Finally, multiple vehicle versions of the same problems are also studied. 

The model presentation starts with the characterization of a set of feasible 

solutions that is the basis of all problems. The different problems are then defined, 

where, and as said above, both one vehicle and multiple vehicle cases are considered. 

For the multiple vehicle problems, an aggregate model is also presented and studied. 

Although non valid, the aggregate models generally produce good upper bounds, as it 

is confirmed by the computational experience. Benchmark instances are used for the 

variants already known from the literature and new ones have been adapted for the 

problems here proposed for the first time. Results show the new models performance 

within CPLEX and compare, whenever available, the proposed models against other 

resolution methods. 

 

2.  Literature review 

The first arc routing problem dealing with profits maximization is the Maximum 

Benefit Chinese Postman Problem (MBCPP) introduced by (Malandraki & Daskin, 

1993), who studied its directed version. In the MBCPP, a profit (also called benefit) is 

collected each time a demand arc is traversed, although the profit decreases as the 

number of traversals increases. As far as we know, no other paper on arc routing 

problems with profits has been published until the mid of the first decade of 2000, 

when, then, a number of new articles on the subject has appeared.  



  4/31 

Among the profitable problems, the Profitable Rural Postman Problem (PRPP, 

also called Prize-collecting Arc Routing Problem and Privatized Rural Postman 

Problem) was the focus of the work by (Aráoz, Fernández, & Zoltan, 2006) and 

(Araóz, Fernández, & Meza, 2009b). In this problem, only the edges in a given subset 

R have an associated profit and it is assumed that this profit can be collected only 

once, independently of the number of times the edge is traversed. This problem can be 

considered a special case of a MBCPP in which only a positive benefit is associated 

with the edges in R, while all the other edges have null benefit. The capacitated 

version of the PRPP was studied by (Irnich, 2010). A related problem, the Clustered 

Prize-collecting Arc Routing Problem (CPARP) was studied in (Aráoz, Fernández, & 

Franquesa, 2009) and (Corberán, Fernández, Franquesa, & Sanchis, 2011) for 

undirected and windy graphs, respectively. In the CPARP the connected components 

defined by the edges with profits (demand edges) are considered, and it is required 

that if an edge is serviced, then all the demand edges of its component are also 

serviced. That is, for each component either all or none of its demand edges have to 

be serviced. Besides the above mentioned paper by (Malandraki & Daskin, 1993), 

(Pearn & Wang, 2003), (Pearn & Chiu, 2005) and (Corberán, Plana, Rodriguez-Chía, 

& Sanchis, 2011b) also discuss and study the MBCPP. (Feillet, Dejax, & Gendreau, 

2005b) considered a more general problem, the Profitable Arc Tour Problem (PATP). 

In this case, the objective is to find a set of cycles in the graph that maximizes the 

difference between the collected profit and the travel costs; there are limits on the 

number of times that profit is available on each arc and the cycles cannot exceed a 

given length. (Deitch & Ladany, 2000) defined an orienteering problem where the 

objective is to design the route for a touristic bus that maximizes the "attractiveness" 

of the sites visited and the scenic routes traversed. The team orienteering version of 

the undirected Capacitated Arc Routing Problem is handled in (Archetti, Feillet, 

Hertz, & Speranza, 2010) and the uncapacitated version on a directed graph in 

(Archetti, Corberán, Plana, Sanchis, & Speranza, 2013). Table 1 summarizes the main 

characteristics of all these problems.  

Several applications are mentioned in the literature for routing problems with 

profits. For instance, the orienteering problem (Vansteenwegen, Souffriau, & 

Oudheusden, 2011), appears in sport games where a set of checkpoints is given, each 

one with an associated score, and competitors try to maximize the collected score that 
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is obtained by visiting a subset of checkpoints within a given time frame. (Hochbaum 

& Olinick, 2001) cite the problem of maximizing the reliability of cycles in 

telecommunication survival networks. The problem faced by private service 

companies that try to maximize operational profits (instead of minimizing the costs as 

in the public sector) by collecting a subset of demand edges also fits the class of 

profitable problems, as well as the previously mentioned bus touring problem (Deitch 

& Ladany, 2000). Finally, let us mention that the work of (Feillet, Dejax, & 

Gendreau, 2005b) focus a tactical freight transportation-planning problem arising in 

the car industry. In this context, a set of trips need to be planned for transporting 

freight between plants. Trips can either be round trips or direct trips. A round trip has 

the same origin and destination and is restricted to a given length. A direct trip is not 

constrained but is more expensive, even if, for example, a direct trip i - j is cheaper 

than a round trip i - j - i leaving the truck empty on its way back. Authors point out 

that this problem can be expressed as a PATP, where the set of freight transportation 

demands would be the set of arcs with profits, the number of times these 

transportation operations have to be planned would correspond to the number of times 

profits can be collected, and the differences in cost between round trips and direct 

trips would define the profits.  

 

<Insert Table 1: Main characteristics of the arc routing 

problems with profits in the Literature.> 

 

3.  Mixed arc routing problems with profits 

The problems under study are defined on a mixed graph   (      ). Edges in E, 

characterize narrow two way streets that may be served by only one traversal (zigzag 

services). Arcs, in   , represent either one way or large two way streets that must be 

served in both directions, in which case the street is modelled with two reverse arcs. 

An homogenous vehicle fleet is based at a depot node,    . 

Two types of links in      are distinguished: demand links or tasks, and 

deadheading links. Tasks are either mandatory (           − links that must be 

served by a vehicle) or optional (           − links that may be served but are 

not compulsory). Node set N represents the depot, the street crossings or the dead-end 

streets. N also includes a depot copy, the artificial node     , joined to the original 
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depot   by two deadheading reverse arcs of zero cost. Then we may assume that any 

vehicle will use exactly one arc leaving    and one arc entering it, and, if needed, 

vehicle tours may use node 0 as an intermediate node. 

A vehicle tour is a closed walk starting and ending at the depot copy. Each link 

contained in the tour can be just traversed (this is called deadheading) or, in the case 

of a demand link, it can also be served. The total demand of the links served by the 

vehicle cannot exceed its capacity. Each task has an associated profit that is collected 

at most once, whenever it is served. Each time a link is deadheaded, task or not, a cost 

is taken into account. The net profit associated with the service of a demand link is 

defined as the difference between its (gross) profit and its traversing cost.  

In what follows we present the notation used in order to define and model the arc 

routing problems with profits considered here.   

   (   ) is a directed graph, derived from  , by replacing each edge in E by 

two arcs with opposite directions, i.e.,      {(   ) (   )  (   )   }. 

   |  |  |  |  |  |  |  |. 

     is the set of arcs in G associated with the tasks, and its cardinality is 

| |    |  |  |  |. 

 For each task (   )   :     is its net profit,     its demand, and    
  is the time 

needed to serve it. 

     and    
  are the deadheading cost and time of traversing arc (   )   , 

respectively.  

   is the maximum number of vehicles, thus the maximum number of tours 

allowed. 

   is the capacity of each vehicle and   is the tour time limit. 

The problems we are studying here basically consist of finding a set of no more 

than   vehicle trips, satisfying the vehicles capacity, starting and ending at the depot, 

servicing all the mandatory tasks, and some of the optional ones. In some of the 

models additional constraints, as limiting the total time of the trips, will be 

considered. The goal is to maximize the collected profit, although in some models 

other terms are also included in the objective function.  

Single vehicle models are studied in Section 3.1, while multiple vehicles ones are 

discussed in Section 3.2.  
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3.1. Single vehicle mixed capacitated arc routing problems with profits 

We start by characterizing the feasible region for single vehicle mixed arc routing 

problems with a compact model using flow variables. Note that a feasible solution is a 

single tour, satisfying the capacity constraint, which serves all the mandatory tasks 

and some of the optional ones. As in (Gouveia, Mourão, & Pinto, 2010) we define the 

following variables: 

     {
        (   )             
                               

    

     is the number of times that arc (   )    is deadheaded. 

     is the flow traversing arc (   )    {(    )}. It is related to the 

remaining demand in the tour, or in a subtour of it. 

The set of feasible solutions is characterized by the following set of inequalities 

(see (Gouveia, Mourão, & Pinto, 2010)): 

∑    

  (   )  

 ∑    

  (   )  

 ∑    
  (   )  

 ∑    
  (   )  

                                        ( ) 

        (   )      (2) 

        (   )      (3) 

            (   )      (4) 

            (   )      (5) 

           (6) 

∑    
  (   )  

 ∑    
  (   )  

 ∑                                        

  (   )  

    {  }                      ( ) 

     ∑        

(   )  

                                                                                           ( ) 

      (       )  (   )    {(    )} (9) 

     {   }  (   )    (10) 

        (   )    {(    )} (11) 

         integer  (   )    (12). 

 

Conditions (1) imply the continuity of the tour at each node; the service of each 

mandatory arc and edge is guaranteed by (2) and (4), respectively; while optional 

services are allowed by (3) and (5); (6) fixes node    as the starting point of the trip, 

and jointly with (8) and (9) guarantees the vehicle capacity; (7) and (8) are flow 
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conservation constraints that together with the linking constraints (9) force the 

connectivity of the vehicle tour. Note that (7) are typical generalized flow 

conservation constraints on each node i, ensuring that if arc (   ) is served, then     

units of flow are absorbed by node i. Conditions (9) imply that a flow variable is 

positive only if the corresponding arc is traversed by the vehicle trip, being then 

essential to impose connectivity, as stated above. 

This set contains only ( | |    | |) variables and the number of constraints is 

 | |  | |   . In addition, note that if (2), (4) and (6) are properly used the model 

could even be simplified. Actually, these figures reduce, respectively, to  | |    

|  |   |  |  |  | and  | |  | |  |  |  |  |   . However, and to emphasize 

the relationship with the following formulations, these conditions are preserved.  

We next present compact formulations for single vehicle mixed capacitated arc 

routing problems with profits. Basically all of them share the set of feasible solutions 

defined by (1)−(12). They differ accordingly to their objective functions and/or some 

additional constraints. In fact, the so-called profitable problems are characterized by 

maximizing the difference between the net profit and the deadheading cost, while in 

the so-called orienteering problems the maximization of the gross profit is subject to a 

time limit constraint. Three main problems are discussed next: the profitable, the 

penalised profitable, and the orienteering mixed capacitated arc routing problems. As 

will be noted in Section 4, their associated polynomial models provide quite 

reasonable computational results. 

 

Profitable mixed capacitated arc routing problem  

We consider first the profitable mixed capacitated arc routing problem (PMP), which 

tries to find a single vehicle tour maximizing the difference between the total net 

profit and the total deadheading cost. A valid formulation for the PMP, denoted by F1, 

consists of constraints (1)−(12) and the following objective function: 

   ( ∑        

(   )  

 ∑        

(   )  

)                                                        (  ) 

Note that the objective function includes a fixed term associated with the total net 

profit of the mandatory tasks. Since the model has a polynomial number of variables 

and constraints, it can be directly used within an ILP package like CPLEX.  
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Penalised profitable mixed capacitated arc routing problem 

Consider now that, associated with each task (   )   , there is a penalty     that is 

paid if the task is not served. The penalised profitable mixed problem (PPMP) 

consists of maximizing an objective function that includes the total net profit, the total 

deadheading cost and the penalties paid for the not serviced tasks. Therefore, the 

formulation of the PPMP, denoted by F1P, consists of the objective function  

   ( ∑        

(   )  

 ∑        

(   )  

 ∑    (     )
(   )  

)                         (  ) 

and constraints (1) to (12). 

 

Orienteering mixed capacitated arc routing problem 

In the orienteering mixed capacitated arc routing problem (OMP) the objective is to 

find a tour maximizing the total collected (gross) profit and no deadheading costs are 

considered. However, the tour, in addition to the vehicle capacity constraint, has to 

satisfy a time limit  . 

Thus, to model the problem (OMP), we consider the objective function:  

   ∑    
     

(   )  

                                                                                       (  ) 

where    
  denotes the gross profit associated with servicing task (   )   . The 

following set of constraints, guaranteeing that the time limit is not exceeded, has to be 

added: 

∑    
     

(   )  

 ∑    
     

(   )  

                                                                 (  )  

This new model, with objective function (15) and constraints (1) to (12) and (16), 

is denoted by F1O.  

Note that, as for the capacity constraints, the time limit constraints (16) may be 

written by means of flow inequalities needing new flow variables     associated with 

each arc (   )    {(    )}: 

∑    

  (   )  

 ∑    

  (   )  

 ∑    
      

  (   )  

 ∑    
      

  (   )  

           {  }        (  )   

     ∑    
      

(   )  

 ∑    
      

(   )  

                                                                      (  )   



  10/31 

     (       )                               (   )    {(    )}                                (  )    

       (   )    {(    )} (  ). 

In the simpler case in which no demands are considered, we have the 

uncapacitated orienteering problem (UOMP), which can be formulated by using the 

objective function (15) and constraints (1)−(6), (10), (12) and (17)−(20). This 

formulation is denoted by F1OU. 

 

Strengthened models 

In an attempt of improving the linear relaxation bounds, and hopefully to speed up 

the integer solver, some valid inequalities can be added to the previous models. The 

valid inequalities we have used are described next and are taken from (Gouveia, 

Mourão, & Pinto, 2010). 

              (   )      (21) 

            (   )    (  {(    )})  (22). 

The first set of constraints specifies that the value of the flow on an arc served by 

the vehicle should be at least equal to its demand, while the second set relates the flow 

in deadheading arcs with the number of times they are deadheaded. Similar 

constraints can be added for the flow variables    . 

Each one of the presented models, when strengthened with constraints (21) and 

(22), is denoted by SF# (being F# the designation of the original model), yielding 

respectively models SF1, SF1P, and SF1O. Concerning model SF1OU, constraints 

(21) and (22) must be replaced by 

       
         

     ,  (   )              (23), 

       
     ,        (   )    (  {(    )}) (24) 

Table 2 summarizes the models proposed before for single vehicle mixed 

capacitated arc routing problems with profits. Next we extend these compact models 

to the multiple vehicles cases. 

 

3.2. Multiple vehicles mixed capacitated arc routing problems with profits 

The previously described models are here extended to the case where   vehicles are 

considered. A feasible solution for a multiple vehicles mixed capacitated arc routing 

problem with profits (K-MP) is then a set of   tours, satisfying the capacity 
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constraints, servicing all the mandatory tasks and some of the optional ones. Like in 

the single vehicle case, this section begins with the characterization of the feasible 

solutions by means of a compact model that uses flow variables. Then, the different 

profit problems for the multiple vehicles case are presented. Basically all these 

problems have a similar set of feasible solutions and differ in their objective functions 

and/or in some additional constraints.  

Again, the use of flow variables enables the description of feasible vehicle tours 

with a polynomial number of variables and constraints (see (Gouveia, Mourão, & 

Pinto, 2010)). For        , we define:  

    
  {

          (   )                            
                                                             

      (   )          

    
   is the number of times that arc (   )    is deadheaded during trip  ;  

    
  is the flow traversing arc (   )    {(    )} related with the 

remaining demand in tour   or in a subtour of it. 

The set of feasible solutions is defined by: 

∑    
 

  (   )  

 ∑    
 

  (   )  

 ∑    
 

  (   )  

 ∑    
 

  (   )  

                                 (  ) 

∑   
 

 

   

                                  (   )                                                                          (  ) 

∑   
 

 

   

                                  (   )                                                                          (  ) 

∑(   
     

 )

 

   

                    (   )                                                                          (  ) 

∑(   
     

 )

 

   

                      (   )                                                                          (  ) 

    
                   (30) 

∑    
 

  (   )  

 ∑    
 

  (   )  

 ∑        
 

  (   )  

            {  }                            (  ) 

    
  ∑        

 

(   )  

                                                                                      (  ) 

   
   (   

     
 )      (   )    {(    )}              (33) 

   
  {   }      (   )    {(    )}              (34) 
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         (   )    {(    )}              (35) 

   
      and integer     (   )                                    (36). 

 

Conditions (25) guarantee the continuity of the tours at each node; the service of 

each mandatory arc and edge is guaranteed by (26) and (28), respectively; while 

optional services are allowed by (27) and (29); (30) fixes node    as the starting point 

of each tour and, jointly with (32) and (33), ensures that vehicles capacity is satisfied; 

(31) and (32) are the flow conservation constraints, which together with the linking 

constraints (33) guarantee the connectivity of the trips. Note that (31) are typical 

generalized flow conservation constraints on each node i, meaning that if arc (   ) is 

served by vehicle k, then     units of flow are absorbed by node i. Conditions (33) 

imply that a flow variable is positive only if the corresponding arc is traversed by the 

tour, being then essential to ensure connectivity, as stated above.  

This set of feasible solutions is characterized with only  ( | |    | |) 

variables and  ( | |  | |)    constraints. Next we present compact formulations 

for several multiple vehicles mixed capacitated arc routing problems with profits.  

 

Profitable multiple vehicles mixed capacitated arc routing problem 

In the profitable multiple vehicles mixed capacitated arc routing problem, denoted 

by K-PMP, the objective function represents the total net profit collected minus the 

deadheading cost. Thus, a valid formulation for the K-PMP, referred as FK, 

incorporates constraints (25)−(36) and the following objective: 

   ∑( ∑        
 

(   )  

 ∑         
 

(   )  

)

 

   

                                                        (  ) 

Note that inequalities (30) imply that if a vehicle is used then it leaves the artificial 

depot only once. This would allow the addition to the model of fixed costs associated 

with the use of the vehicles.  

 

Penalised profitable multiple vehicles mixed capacitated arc routing problem 

In this problem, for each task (   )   , a penalty     is paid if arc (   ) is not served. 

The penalised profitable multiple vehicles mixed arc routing problem (K-PPMP) 
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consists of maximizing an objective function including the total net profit, the total 

deadheading cost and the penalties paid for the arcs not served.  

   ∑( ∑        
 

(   )  

 ∑        
 

(   )  

)

 

   

 ∑    (  ∑   
 

 

   

)
(   )  

                (  ) 

The formulation of the K-PPMP, denoted by FKP, consists of (38) and constraints 

(25) to (36). 

 

Team orienteering mixed capacitated arc routing problem 

The team orienteering mixed capacitated arc routing problem (K-OMP) generalizes 

the orienteering problem to the case of multiple vehicles. The aim is to find a set of 

tours maximizing the total collected (gross) profit, satisfying the capacity constraints 

and a time limit L for each vehicle tour. A similar problem, defined on an undirected 

graph and without mandatory tasks, is studied in (Archetti, Feillet, Hertz, & Speranza, 

2010). 

The objective function of the K-OMP is:  

   ∑( ∑    
     

 

(   )  

)

 

   

                                                                                    (  ) 

where    
  denotes the gross profit of servicing task (   )   . The constraints, 

guaranteeing that the time limit per trip is not exceeded, are:  

∑    
     

 

(   )  

 ∑    
     

 

(   )  

                                                   (  )  

This new model, which maximizes (39) subject to (25) to (36), and (40), is 

denoted by FKO.  

As in the single vehicle case, the time limit constraints (40) can be replaced by 

the following new flow inequalities that have to be added for each        : 

∑    
 

  (   )  

 ∑    
 

  (   )  

 ∑    
     

 

  (   )  

 ∑    
     

 

  (   )  

             {  }        (  )  

    
  ∑    

     
 

(   )  

 ∑    
     

 

(   )  

                                                                          (  ) 

   
   (   

     
 )                           (   )    {(    )}                                      (  ) 

   
     (   )    {(    )} (  ). 
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If no demands are considered, a simpler uncapacitated model, denoted by FKOU, can 

be defined. It consists of the objective function (39), and constraints (25) to (30), (34) 

to (36), and (41) to (44). 

 

Strengthened multiple vehicles models 

The above formulations can be strengthened by the addition of some valid 

inequalities proposed in (Gouveia, Mourão, & Pinto, 2010). Let us denote by    the 

total mandatory demand, i.e.    ∑    (   )      
. Then the following inequality, 

which states the minimum number of vehicles that have to be used in order to serve 

all the mandatory demand, is valid. 

∑    
 

 

   

 ⌈
  

 
⌉                                                                                              (  )  

The following constraints, similar to the ones described for the single vehicle 

case, are also valid.  

   
         

               (   )                                                              (  )  

   
     

                (   )    (  {(    )})                             (  )  

Note that the multiple vehicles formulations are highly symmetric since any 

permutation of the vehicle routes defines different solutions that are in fact identical in 

practice. The existence of this kind of alternative integer solutions, only differing in 

their vehicle indexes, may lead to huge computing times. The next set of constraints 

breaks some of these symmetries, and is used for the instances with no mandatory 

tasks: 

    
      

                                                                                   (  )  

 

In a solution with     tours, these inequalities remove all the equivalent 

solutions with vehicle indexes greater than  . 

In the presence of mandatory tasks, and in order to avoid at least partially this 

symmetry, we introduce the following set of constraints that have also been used in 

(Benavent, Corberán, Plana, & Sanchis, 2009). Let (       ) be any ordering of the 

mandatory links, where      {  |  |  |  |}. The idea is to force the numbering 

of vehicles to follow the numbering of the smallest index link they service, which can 

be done as follows: 
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  ∑   

   

   

   

                                                                           (  ) 

   
                               

where    
     

   if       , and    
     

     
   if     (   )    . 

Vehicle   will serve link   . The second set of constraints state that if a mandatory 

link    is served by vehicle   then at least one "previous" link             , has 

to be served by the vehicle    . The last set of constraints prevents links      

        from being served by vehicles with indices greater than  .  

We have noticed that the value of the above inequalities depends to a great extent 

on the ordering chosen for the mandatory links. A good choice is as follows: the first 

mandatory link is the farthest one from the depot; the second link is the farthest one 

both from the depot and from the first link; and so on. 

Model FK# strengthened with constraints (45) to (49) is denoted by SFK#, thus 

resulting in SFK, SFKP and SFKO models. As in the single vehicle case, constraints 

(46) and (47) may be adapted and written with Flow variables    
  to get the 

strengthened uncapacitated model SFKOU.  

 

Aggregate relaxations of multiple vehicles models  

The number of variables and constraints of multiple vehicles formulations, 

although polynomial, is too large. This makes difficult to solve them optimally. The 

aggregated versions of these formulations provide valid relaxations that can be used to 

get upper bounds in short computing times. These aggregate formulations are next 

presented and discussed. We define     ∑    
  

     (   )   ;     ∑    
  

    and 

    ∑    
  

      (   )   . Note that     takes value one, if and only if, task (   ) is 

served by any vehicle, while     is the total number of times that arc (   ) is 

deadheaded.  

The aggregate formulation of FK#, denoted Agg(FK#), is obtained by adding each 

family of constraints (30) to (36) for all vehicles and using the above defined 

aggregate variables. The models thus obtained are analogous to the ones presented for 

the single vehicle cases. Note that the aggregate models are non-valid formulations for 
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the original problems. Nevertheless, these models are useful to obtain valid and good 

upper bounds, as it is confirmed by the computational results. 

It can be shown (see (Gouveia, Mourão, & Pinto, 2010)) that the linear 

programming relaxation bounds of the aggregate and original models are equal. In 

fact, from the variables definition in Agg(FK) it is easy to transform a feasible 

solution of the linear relaxation of FK, LFK, into a feasible solution of the linear 

relaxation of Agg(FK) with the same objective value. And vice-versa, given a feasible 

solution of the linear relaxation of Agg(FK),  ̅    ̅     ̅ , a feasible solution of LFK 

with the same objective value may also be defined by:    
  

 ̅  

 
    

  
 ̅  

 
    

  
 ̅  

 
. 

The aggregate models may be strengthened with the aggregate versions of the 

inequalities (45) to (47). Strengthened aggregate models are represented by Agg(SF#). 

Multiple vehicles models, including the corresponding relaxations, are summarized in 

Table 2, lines 9−18. It can also be proved that the optimal values of the linear 

relaxations of the models and their strengthened aggregate versions are equal.  

 

4. Computational results 

The proposed models are analysed over some benchmark instances from the literature 

and others that have been generated for those problems that were not previously 

studied. The computational results were obtained using CPLEX 12.1 in a computer 

with 2 AMD Opteron 6172 processors (24 cores) at 2.1GHz and with 64 GB RAM. A 

time limit of one hour was established. 

 

4.1. Data instances 

Single vehicle models are tested on instances generated from the sets of instances 

alba, madri and alda proposed by (Corberán, Mejía, & Sanchis, 2005) for the Mixed 

General Routing Problem (MGRP). The MGRP consists of finding a minimum cost 

tour traversing a given subset of required edges and arcs (     ) and visiting a 

given subset of required vertices (  ). Multiple vehicle models are tested on instances 

based on the ones used in (Belenguer, Benavent, Lacomme, & Prins, 2006) and 

(Gouveia, Mourão, & Pinto, 2010) for the mixed CARP, and on the ones proposed in 

(Archetti, Feillet, Hertz, & Speranza, 2010) and (Archetti, Corberán, Plana, Sanchis, 

& Speranza, 2013)  for the team orienteering arc routing problem. 
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Table 2: Problems and instances.  

Line Problem 
Special 

characteristics 

Objective 

function 
Constraints Model Instances 

1 
PMP     (13) 

(1)-(12)  F1 palba; 

pmadri; 

palda 2 (1)-(12), (21), (22)  SF1 

3 
PPMP     (14) 

(1)-(12) F1P ppalba; 

ppmadri; 

ppalda  4 (1)-(12), (21), (22) SF1P 

5 
OMP     (15) 

(1)-(12), (16)  F1O oalba; 

omadri; 

oalda 6 (1)-(12), (16), (21), (22) SF1O 

7  

UOMP 

    

Uncapacitated 
(15) 

(1)-(6), (10), (12), (17)-(20)  F1OU uoalba; 

uomadri; 

uoalda 8 (1)-(6), (10), (12), (17)-(20), (23),(24)  SF1OU 

9 
K-PMP  − (37) 

(25)-(36)  FK pmval; 

plpr 10 (25)-(36), (45)-(49)  SFK 

11 K-PMP 

relaxation 
− Agg(37) 

Agg(25)-Agg(36) Agg(FK) pmval; 

plpr 12 Agg(25)-Agg(36), Agg(45)-Agg(47)  Agg(SFK) 

13 K-PPMP − (38) (25)-(36), (45)-(49) SFKP 
ppmval; 

pplpr 14 
K-PPMP 

relaxation 

− 
Agg(38) Agg(25)-Agg(36), Agg(45)-Agg(47) Agg(SFKP) 

15 K-OMP  − 

(39) 

(25)-(36), (40), (45)-(49) SFKO 
tval; 

toval 

16 K-UOMP  Uncapacitated (25)-(30), (34)-(36), (41)-(49) * SFKOU thertz 

17 
K-OMP 

relaxation 
− 

Agg(39) 

Agg(25)-Agg(36), Agg(40),  

Agg(45)-Agg(47) 
Agg(SFKO)  

tval; 

toval 

18 
K-UOMP 

relaxation 
Uncapacitated 

Agg(25)-Agg(30), Agg(34)-Agg(36),  

Agg(41)-Agg(47)* 
Agg(SFKOU) thertz 

* (46)-(47) should be rewritten using flow variables    . 

 

The above instances are modified, when necessary, to generate instances for all 

the problems under study. The additional data required is generated as follows.  

For each required link (   ) in the original data sets: 

(i) mandatory/optional links: Let   be a random number between   and  . Given a 

value for   {             }, each required link is made mandatory if     , 

and optional otherwise. Note that by varying  , each initial instance is 

transformed into three instances. 

(ii) net profit:     ⌊ ̅         ⌋, where  ̅ is the average cost of the links, and     

is a random uniform number generated in the interval (             ). 

(iii) gross profit:    
           . 

(iv) demand:      is a random uniform integer number in (              ). 



  18/31 

(v) penalty:      is a random uniform integer number in (             ). 

(vi) deadheading and service times (in minutes): we compute first a speed     as a 

random number in (     ), and then 

        deadheading time:    
  ⌈

   

   
  ⌉; 

        service time:    
        

 , where:    

    {

 
                                           

                              

                                          

   

and     
  

|     |
 . 

Moreover, the vehicle capacity, in the single vehicle models (   ), and the time 

limit are generated as follows: 

(vii) time limit per trip:   was set to 95% of the time spent by a feasible solution 

computed with F1. 

(viii) vehicle capacity:        (        ) with    representing the total 

optional demand and   {          }.  

 

4.2. Results for single vehicle problems 

Single vehicle models are tested on instances based on the benchmark MGRP ones of 

(Corberán, Mejía, & Sanchis, 2005). The authors generated three sets of MGRP 

instances, alba, alda and madri, from the street networks of three Spanish towns 

(Albaida, Aldaya and Madrigueras). The original data has the following 

characteristics:  

• alba: | |     ; |   |     ;   |  |     ;   |  |      

• madri: | |     ; |   |     ;    |  |     ;   |  |     .  

• alda:  | |     ; | |     ; | |     ;   |  |     ;   |  |     .  

Since in the MGRP there are required nodes that have to be necessarily visited 

and this is not the case in our models, each      not incident with a required link is 

here replaced by the arc task (      ), each arc with end node   is replaced by an arc 

entering at   , and arcs leaving   are replaced by arcs leaving    , while each edge 

(   ) incident with   is substituted by two arcs (     ) and (    ). The cost of arc 
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(      ),       , is a random number generated in the interval (    ̅     ̅), where  ̅  

represents the average cost of all the links in the original graph. 

Table 3 shows the main characteristics of the generated sets of instances. Their 

names can be found in the first column and include the percentage of optional links 

among the required ones in the original instances. For example, palba25 denotes the 

set of instances gathered from set alba by generating profits and randomly selecting 

25% of the required links in the original instance as optional. The number of instances 

and the average values of the characteristics in each set of instances are shown in the 

other columns. Moreover, for each instance, two different vehicle capacities are 

considered by varying   {        } in (viii). The name of the instance sets will also 

include this characteristic, thus palba25_W50 and palba25_W80, for example, denote 

the set of instances in palba25 where vehicle capacity is obtained using       and 

     , respectively, in (viii).   

Table 3: Instance characteristics (average values) 

Name 
# of 

instances 
| | | | |  | |  | | | |  | |  | 

palba25 25 146,8 165,7 14,4 45,6 76,8 14,2 44,2 

palba50 25 146,8 165,7 30,4 29,6 76,8 28,9 29,6 

palba75 25 146,8 165,7 44,8 15,2 76,8 43,9 14,5 

pmadri25 25 243,2 292,6 28,7 79,8 131,6 24,1 72,3 

pmadri50 25 243,2 292,6 55,8 52,8 131,6 47,6 48,7 

pmadri75 25 243,2 292,6 81,7 26,8 131,6 72,5 23,9 

palda25 31 263,7 320,5 27,3 83,0 152,1 27,8 79,2 

palda50 31 263,7 320,5 54,5 55,8 152,1 54,2 52,7 

palda75 31 263,7 320,5 81,5 28,8 152,1 80,8 26,2 

 

Profitable mixed capacitated arc routing problem  

The computational results obtained for the profitable mixed capacitated arc routing 

problem with models F1 and SF1 on the above sets of instances are shown in Table 4. 

Third column presents the average percentage values of the optional demand 

effectively collected in the corresponding optimal solutions. Average gap values (in 

percentage) for models F1 and SF1 are displayed in columns 4 and 6, respectively. 

Gap values are computed from the differences between the best upper bounds found 

by the branch-and-bound procedure, within a time limit of an hour, and the optimal 

values, if known, or the profit of the best feasible solutions found. Columns 8 and 9 

show the average gap values for the upper bounds obtained with the linear relaxations 
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of the above models, which are denoted as LF1 and LSF1, respectively. Columns 

headed by #OS indicate the number of instances solved to optimality with each 

integer model. Finally, last three rows present the minimum, average and maximum 

computing times for each model in all the instances. 

As may be seen in Table 4, model F1 is able to solve to optimality most of the 

instances (450 out of 486)  in small computing times, which proves the effectiveness 

of this model in solving medium size instances. On the other hand, SF1 requires 

slightly larger computing times and solves optimally 437 instances, probably due to 

the fact that a less number of branch-and-bound nodes can be explored. Concerning 

linear relaxations LF1 and LSF1, it can be seen that they are very low time 

consuming, and that both provide similar upper bounds that are not good in general.  

Table 4: Results for the profitable mixed capacitated arc routing problem (PMP) 

   

F1 SF1 LF1 LSF1 

Name 
# of 

instances 
    gap (%) #OS gap (%) #OS gap (%) gap (%) 

palba25_W80 25 79,7 0,0 24 0,0 24 26,2 26,2 

palba50_W80 25 79,3 0,0 25 0,0 25 28,0 28,0 

palba75_W80 25 77,7 0,0 25 0,0 25 31,7 31,7 

pmadri25_W80 25 79,9 0,2 21 0,3 22 15,0 15,0 

pmadri50_W80 25 79,7 0,1 21 0,3 22 15,4 15,4 

pmadri75_W80 25 79,0 0,1 21 0,2 21 16,4 16,4 

palda25_W80 31 79,9 0,0 27 0,2 24 10,4 10,4 

palda50_W80 31 79,9 0,1 27 0,1 25 10,9 10,9 

palda75_W80 31 79,6 0,1 29 0,1 28 10,9 10,8 

palba25_W50 25 49,9 0,0 23 0,0 23 38,5 38,4 

palba50_W50 25 49,9 0,0 25 0,0 25 51,3 51,2 

palba75_W50 25 49,7 0,0 25 0,0 25 39,4 39,3 

pmadri25_W50 25 50,0 0,2 23 0,4 22 20,1 20,1 

pmadri50_W50 25 49,9 0,1 23 0,2 21 19,1 19,1 

pmadri75_W50 25 49,9 0,1 23 0,1 22 18,8 18,8 

palda25_W50 31 50,0 0,0 28 0,2 25 13,9 13,9 

palda50_W50 31 50,0 0,1 30 0,2 29 13,9 13,9 

palda75_W50 31 49,9 0,1 30 0,2 29 12,5 12,5 

Total/average 486  0,1 450 0,1 437 21,8 21,3 

   F1  SF1  LF1 LSF1 

Cpu time (s) 

Min  0,7  0,2  0,0 0,01 

Av  436,7  553,7  0,0 0,01 

max  3600  3600  0,1 0,01 

 

Penalised profitable mixed capacitated arc routing problem 

In order to test models F1P and SF1P for the penalised profitable problem (PPMP), 

arc penalties, computed as shown in (v), have been added to the preceding instances 

to obtain the sets of instances denoted by ppalba, ppmadri and ppalda. The results are 

shown in Table 5, which has the same structure as Table 4. 
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Table 5: Results for the penalised profitable mixed capacitated arc routing problem (PPMP) 

   F1P SF1P LF1P LSF1P 

Name # of instances     gap (%) #OS gap (%) #OS gap (%) gap (%) 

ppalba25_W80 25 79,8 0,0 25 0,0 25 36,5 36,5 

ppalba50_W80 25 79,6 0,0 25 0,0 25 34,5 34,4 

ppalba75_W80 25 78,8 0,0 25 0,0 24 35,5 35,4 

ppmadri25_W80 25 80,0 0,1 19 0,3 20 19,9 19,9 

ppmadri50_W80 25 79,8 0,2 22 0,3 21 18,4 18,4 

ppmadri75_W80 25 79,4 0,1 23 0,2 23 18,1 18,1 

ppalda25_W80 31 80,0 0,0 24 0,2 22 13,8 13,8 

ppalda50_W80 31 79,9 0,1 25 0,2 23 13,2 13,1 

ppalda75_W80 31 79,7 0,1 30 0,1 30 11,9 11,9 

ppalba25_W50 25 49,9 0,0 24 0,0 24 166,8 166,5 

ppalba50_W50 25 49,9 0,0 25 0,0 25 58,4 58,3 

ppalba75_W50 25 49,7 0,0 25 0,0 25 52,4 52,4 

ppmadri25_W50 25 50,0 0,2 23 0,5 22 39,8 39,8 

ppmadri50_W50 25 50,0 0,3 22 0,3 21 27,4 27,4 

ppmadri75_W50 25 49,9 0,1 24 0,1 23 22,4 22,4 

ppalda25_W50 31 50,0 0,0 28 0,5 26 25,6 25,6 

ppalda50_W50 31 50,0 0,0 30 0,2 28 19,3 19,3 

ppalda75_W50 31 49,9 0,2 30 0,2 29 14,6 14,6 

Total/average 486  0,1 449 0,2 436 34,9 35,8 

   F1P  SF1P  LF1P LSF1P 

Cpu time (s) 

Min  1,1  0,1  0,0 0,01 

Av  469,0  586,7  0,0 0,01 

max  3600  3600  0,1 0,01 

 

As may be seen in Table 5, model F1P solves to optimality all but 37 instances, 

while SF1P cannot solve 50 of them. The penalties that have to be paid if no service is 

made on the optional tasks seem to make the problem harder to solve, with worse 

linear relaxation bounds.  

 

Orienteering mixed capacitated arc routing problem  

The sets of instances oalba, omadri and oalda, used to test the models proposed for the 

orienteering mixed capacitated arc routing problem, have been generated from the sets 

palba, pmadri and palda, respectively, as follows. First, the net profit of each task is 

substituted by the gross profit computed as in (iii). Then, service and deadheading 

times for the arcs are computed as in (vi), and (vii) is used to calculate the time limit 

 . The total number of instances in Table 6 and Table 7 reduces to 477 due to 

infeasibilities caused by the time limit constraint.  

Table 6: Results for the orienteering mixed capacitated arc routing problem (OMP) 

 
# of 

 
F1O 

 
SF1O LF1O LSF1 

Name instances     gap (%) #OS gap (%) #OS gap (%) gap (%) 

oalba25_W80 25 76,4 0,0 24 0,0 24 4,9 4,9 

oalba50_W80 25 72,5 0,0 25 0,0 25 4,8 4,8 

oalba75_W80 25 58,0 0,0 25 0,0 25 5,3 5,3 

omadri25_W80 25 77,1 0,1 21 0,1 21 3,4 3,4 

omadri50_W80 25 73,5 0,1 21 0,2 20 3,5 3,5 

omadri75_W80 24 61,7 0,2 20 0,3 20 3,9 3,9 

oalda25_W80 31 78,4 0,0 28 0,1 22 2,8 2,8 

oalda50_W80 31 75,0 0,2 26 0,2 24 3,3 3,3 

oalda75_W80 31 65,1 0,2 28 0,2 28 3,8 3,8 
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# of 

 
F1O 

 
SF1O LF1O LSF1 

Name instances     gap (%) #OS gap (%) #OS gap (%) gap (%) 

oalba25_W50 25 48,5 0,0 23 0,0 23 6,4 6,4 

oalba50_W50 25 43,6 0,0 25 0,0 24 0,0 6,6 

oalba75_W50 21 28,2 0,0 21 0,0 21 7,3 7,3 

omadri25_W50 25 48,4 0,2 20 0,3 20 5,1 5,1 

omadri50_W50 25 44,7 0,3 20 0,4 20 5,3 5,3 

omadri75_W50 22 28,2 0,0 22 0,0 22 6,4 6,4 

oalda25_W50 31 49,1 0,0 23 0,4 17 4,1 4,1 

oalda50_W50 31 45,8 0,2 25 0,7 24 5,0 5,0 

oalda75_W50 30 31,5 0,2 28 0,1 29 6,2 6,2 

Total/average 477  0,1 425 0,2 409 4,5 4,9 

   F1  SF1  LF1 LSF1 

Cpu time (s) 

Min  1,1  0,6  0,01 0,02 

Av  572,7  715,5  0,07 0,02 

max  3600  3600  0,18 0,01 

 

The results included in Table 6 show that most of the instances are solved to 

optimality with both models, F1O (425 of 477) and SF1O (409 of 477). The bounds 

provided by the linear relaxations are tighter than the previous ones.  

To evaluate the uncapacitated orienteering mixed arc routing models, F1OU and 

SF1OU, we consider the instance sets soalba, somadri and soalda that are obtained 

from oalba, omadri and oalda just by ignoring the arc demands and the vehicle 

capacity. Although the vehicle capacity is not considered, the names of the instances 

 a        uff x “80”    “50”       n  fy       ff   n   alu    f       m  l m   L. In fac , 

 n  anc        “80”  uff x,   fl c    a  L  a  b  n        95%  f       m  u    by a 

feasible solution in F1 for instances “W_80”,    l   n “50”     L  alu     c mputed 

  m la ly bu  f   “W_50”.  

Table 7: Results for the uncapacitated orienteering mixed CARP (UOMP) 

 
# of  F1OU SF1OU LF1OU LSF1OU 

Name instances       gap (%) #OS gap (%) #OS gap (%) gap (%) 

uoalba25_80 25 76,6 0,0 24 0,0 24 6,6 6,6 

uoalba50_80 25 72,5 0,0 25 0,0 25 6,2 6,2 

uoalba75_80 25 58,0 0,0 25 0,0 25 6,6 6,6 

uomadri25_80 25 77,2 0,1 20 0,1 19 4,3 4,3 

uomadri50_80 25 73,5 0,1 20 0,2 21 4,2 4,2 

uomadri75_80 25 61,0 0,4 20 0,5 21 4,7 4,7 

uoalda25_80 31 78,5 0,0 27 0,3 21 3,9 3,9 

uoalda50_80 31 75,1 0,2 26 0,4 24 3,9 3,9 

uoalda75_80 31 64,8 0,3 29 0,4 26 4,2 4,2 

uoalba25_50 25 49,6 0,0 24 0,0 24 12,5 12,5 

uoalba50_50 25 43,7 0,0 25 0,0 25 19,3 11,5 

uoalba75_50 21 28,2 0,0 21 0,0 21 10,4 10,4 

uomadri25_50 25 49,5 0,3 21 0,4 21 8,2 8,2 

uomadri50_50 25 45,0 0,3 21 0,8 20 7,4 7,4 

uomadri75_50 22 28,2 0,0 22 0,1 20 7,6 7,6 

uoalda25_50 31 50,3 0,0 25 0,9 20 7,2 7,2 

uoalda50_50 31 45,9 0,2 28 0,4 25 7,2 7,2 

uoalda75_50 29 31,4 0,3 26 0,2 26 7,5 7,5 

Total/average 477  0,1 429 0,3 408 7,3 6,9 

   F1OU  SF1OU  LF1OU LSF1OU 

Cpu time (s) 

Min  0,4  0,4  0,0 0,02 

av  608,8  755,5  0,1 0,06 

max  3600  3600  0,2 0,17 
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Again, results in Table 7 show that most of the instances are solved to optimality 

with both models, F1O (429 of 477) and SF1O (408 of 477). The bounds provided by 

the linear relaxations are also tighter than the ones in Table 4 and Table 5.  

 

4.3. Results for multiple vehicle problems 

The performance of the multiple vehicle profitable and penalised models is analysed 

using instances pmval and pmlpr, generated from the mval and mlpr instances used in 

(Belenguer, Benavent, Lacomme, & Prins, 2006) and (Gouveia, Mourão, & Pinto, 

2010) for the mixed CARP. Team orienteering models are studied on the tval, toval 

and thertz instances generated by (Archetti, Feillet, Hertz, & Speranza, 2010) and 

(Archetti, Corberán, Plana, Sanchis, & Speranza, 2013) from the val instances of 

(Benavent, Campos, Corberán, & Mota, 1992) and the Hertz instances (Hertz, 

Laporte, & Nanchen-Hugo, 1999). Additional data for the above instances have been 

generated as described in Section 4.1. 

The following tables showing the results obtained with the multiple vehicle models 

also include those obtained with the aggregate models, which are not valid but 

provide good upper bounds in short computing times.  

 

Profitable mixed capacitated arc routing problem with multiple vehicles 

The main characteristics of the instance sets are shown in Table 8. As in Table 3, their 

names can be found in the first column and include the percentage of optional links 

among the required ones in the original instances.  The number of instances and the 

average values of their characteristics for each set of instances are shown in the other 

columns. Again, for each instance, two different vehicle capacities are considered by 

varying   {        } in (vii). 

Table 8: Instance characteristics (average values) 

Name # | | | | |  | |  | | | |  | |  |   

pmval25 34 36 63 15 48 25 6 19 7 

pmval50 34 36 63 31 32 25 12 13 7 

pmval75 34 36 63 47 16 25 19 6 7 

pmlpr25 15 168 335 68 88 88 21 67 11 

pmlpr50 15 168 335 135 129 88 44 44 11 

pmlpr75 15 168 335 198 66 88 65 23 11 
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Table 9 shows the computational results obtained for this problem with models 

FK, Agg(FK) and SFK on the above sets of instances with a time limit of one hour. 

The name of each set includes the percentage of mandatory demand and the 

percentage value used to compute the vehicles capacity. Note that the profitable 

mixed capacitated arc routing problem with multiple vehicles is a hard problem and 

none of the models we have tried was able to find even a feasible solution in many of 

the instances. In fact, second column of Table 9 gives the number of instances for 

which a feasible solution was found by models FK and SFK. Average gap values (in 

percentage) for models FK, Agg(FK), SFK and LFK (linear relaxation of FK)  are 

computed as 
()   

  
    , where () represents the upper bound obtained with the 

corresponding model and LB is the best lower bound obtained from FK and SFK. 

Columns headed by #OS, for models FK and SFK, show the number of instances 

solved to optimality with these models. Since model Agg(FK) cannot produce feasible 

solutions, column #OV gives the number of times the optimal value was reached with 

this model. Note that the average gaps shown in the table have been computed taking 

into account only the instances for which a feasible solution is known.  

Table 9: Results for the multiple profitable mixed capacitated arc routing problem (K-PMP) 

  FK Agg(FK) SFK LFK 

Name #FS gap(%) #OS gap(%) #OV gap(%) #OS gap(%) 

pmval25_W50 34 3,37 1 2,85 0 2,51 3 4,35 

pmval50_W50 34 5,11 2 4,51 1 4,27 5 6,02 

pmval75_W50 33 3,67 4 3,22 2 3,25 6 4,59 

pmval25_W80 33 3,15 2 2,62 1 2,58 2 3,90 

pmval50_W80 33 3,51 5 3,04 4 5,59 6 4,26 

pmval75_W80 33 3,11 1 2,52 3 3,72 4 3,87 

pmlpr25_W50 6 0,28 3 0,24 4 0,24 5 1,23 

pmlpr50_W50 7 1,24 5 1,12 0 2,35 5 2,12 

pmlpr75_W50 6 0,19 5 0,02 5 0,19 5 1,02 

pmlpr25_W80 7 4,19 5 4,19 5 4,24 5 4,69 

pmlpr50_W80 7 0,85 4 0,84 5 0,85 5 1,86 

pmlpr75_W80 6 0,12 4 0,02 5 0,02 5 0,92 

Sum 239  41  35  56  

  FK  Agg(FK)  SFK  LFK 

Cpu time (s) 

min 3,20  2,92  2,11  0,20 

Av 3084,9  35,25  2952,4  0,61 

max 3600,0  287,02  3600,0  0,98 

 

From Table 9 we may infer that strengthened and non-strengthened models 

performed very similarly. The results in the table show that SFK is better than FK in 

the number of optimal solutions found, although they both produce similar gaps. The 

results obtained with Agg(FK) show that this relaxation achieve small gap values in 

short computing times. In fact, a good number of optimal values were found for the 
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pmlpr instances.  Finally, the linear relaxation LFK provides quite good results in 

negligible times.  

 

Penalised profitable multiple vehicles mixed capacitated arc routing problem 

Instances used to test the models for the penalised case have been generated from 

instance sets pmval and pmlpr by adding the penalties computed as shown in (v) (see 

Section 4.1). 

Table 10 depicts the results in the same order as Table 9. Results are very similar 

to the previous ones, but the introduction of the penalties seems to make the problem 

harder. In fact, gap values tend to be worse and the number of optimally solved 

instances decreases, although the number of optimal values reached by the aggregated 

model increases from 35 to 37. 

Table 10: Results for the penalised profitable multiple vehicles mixed capacitated arc routing 

problem (K-PPMP). 

  FK Agg(FK) SFK LFK 

Name #FS gap(%) #OS gap(%) #OV gap(%) #OS gap(%) 

ppmval25_W50 34 6,05 2 5,37 1 4,86 4 7,53 

ppmval50_W50 34 8,41 1 7,68 1 7,48 4 9,63 

ppmval75_W50 32 3,67 4 3,10 2 2,98 7 4,64 

ppmval25_W80 32 3,42 3 3,55 2 2,90 3 4,33 

ppmval50_W80 33 6,65 4 6,20 4 11,81 6 7,51 

ppmval75_W80 33 5,08 3 5,20 1 4,70 3 6,11 

pplpr25_W50 7 1,37 5 1,34 5 9,66 5 2,09 

pplpr50_W50 7 1,75 3 1,69 3 1,75 3 2,45 

pplpr75_W50 7 2,06 3 1,94 5 0,20 5 3,04 

pplpr25_W80 7 10,99 4 12,63 4 10,99 4 11,31 

pplpr50_W80 7 6,59 2 6,29 4 0,49 2 7,10 

pplpr75_W80 6 0,14 2 0,04 5 1,73 5 0,86 

Sum 239  36  37  51  

  FK  Agg(FK)  SFK  LFK 

Cpu time (s) 

min 2,56  2,73  2,16  0,46 

Av 3121,5  34,97  2999,3  0,76 

max 3600,0  229,32  3600,0  1,29 

 

Team orienteering mixed capacitated arc routing problem 

Models for the K-OMP are tested with the benchmark instances of (Archetti, Feillet, 

Hertz, & Speranza, 2010) that were generated from the 34 val ones of (Benavent, 

Campos, Corberán, & Mota, 1992). These are grouped in two classes: 

tval,  containing 102 instances with vehicle capacity equal to 30 and a time limit 

of 40, and 

toval, containing 102 instances for which the vehicle capacity   ranges from 20 

to 250, and the time limit   ranges from 27 to 133.  
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Furthermore, instances in each class have been grouped accordingly to their size: 

Group I - 24 nodes; Group II - 30 to 34 nodes; Group III 40 or 41 nodes; and Group 

IV - 50 nodes. There are no mandatory links in these data sets and the number of 

vehicles considered is 2, 3 or 4.  

Since the results for the initial and strengthened models are very similar, only those 

obtained for the strengthened ones are shown in Table 11. Average gap values are 

computed as  
()   

  
    , where LB is the lower bound value obtained with the 

strengthened model (SFKO) and () is the upper bound value under analysis, i.e., for 

the strengthened model (SFKO), for the aggregated model (Agg(SFKO)) and for the 

linear relaxation (LSFKO). Columns headed by #OS, for model SFKO, and by #OV, 

for model Agg(SFKO), show the number of instances solved to optimality and the 

number of times the optimal value was reached with these models, respectively.  Last 

two columns compare the results obtained with model SFKO and those obtained by 

(Archetti, Feillet, Hertz, & Speranza, 2010). In this last paper a branch-and-price 

algorithm and several metaheuristics for the K-OMP are presented. Column headed 

by dif(%) shows the average value of   
      

  
    , where LBA is the cost of the 

best solution found by any of the algorithms proposed by (Archetti, Feillet, Hertz, & 

Speranza, 2010), while as before LB stands for the cost of the best solution found with 

model SFKO. Last column shows the number of optimal solutions found by the 

branch-and-price algorithm of (Archetti, Feillet, Hertz, & Speranza, 2010) in one hour 

of CPU time. 

Table 11: - Results for the team orienteering mixed capacitated arc routing problem (K-OMP). 

  SFKO Agg(SFKO) LSFKO Archetti et al. 

Name 
# of 

instances 
gap(%) #OS gap(%) #OV gap(%) dif(%) #OS 

tval I 27 5,94 25 11,68 12 17,14  0,00 18 

tval II 30 5,09 19 5,88 3 10,66  0,30 30 

tval III 21 3,97 9 4,05 0 7,55  0,40 21 

tval IV 24 5,06 6 4,55 1 9,49 0,20 13 

Sum 102  59  16   82 

toval I 27 1,26 21 1,70 13 3,63  0,05 14 

toval II 30 1,87 12 1,90 5 4,79 -0,09 1 

toval III 21 1,98 7 1,95 2 6,08 -0,20 3 

toval IV 24 2,82 9 2,14 4 5,60 -0,49 0 

Sum 102  49  24   18 

  SFKO Agg(SFKO) LSFKO   

Cpu time 

(s) 

Min 0,1 0,1 0,03   

Av 1861,1 1478,0 1,2   

max 3600,0 3600,0 10,7   
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Model SFKO is able to optimally solve 59 out of the 102 tval instances and 49 

out of 102 toval instances. In comparison, Agg(SFKO) is worse than SFKO since, 

although in some cases it gives a better gap, the number of optimal values reached is 

much lower than the number of optimal solutions obtained by SFKO. Linear 

relaxation LSFKO is solved very quickly but produces large gaps. The comparison 

with the work of (Archetti, Feillet, Hertz, & Speranza, 2010) shows that SFKO is able 

to provide feasible solutions of similar quality, despite the fact that the results given 

by (Archetti, Feillet, Hertz, & Speranza, 2010) are obtained using not only an exact 

method but also several metaheuristics. It can be seen that the (Archetti, Feillet, Hertz, 

& Speranza, 2010) results are slightly better for tval instances, while SFKO is slightly 

better for toval ones. 

The strengthened model SFKOU for the uncapacitated team orienteering mixed 

arc routing problem (K-UOMP) is tested on instances proposed by (Archetti, et al., 

2012) for the team orienteering arc routing problem, that were generated from those 

described in (Hertz, et al., 1999). These instances are defined on directed graphs, i.e. 

there are no edge tasks (nor mandatory neither optional). The number of nodes varies 

from 17 to 55, the number of arcs is between 138 and 429, the number of arc tasks 

ranges from 8% to 24%, and the number of vehicles is between 2 and 4.  These 

adapted instances are renamed as thertz  , where   {     } indicates different 

graph types, and   {        } represents the percentage of mandatory tasks among 

the total number. 

Results of the uncapacitated models are shown in Table 12. Third column 

indicates the number of instances for which a feasible solution was found by model 

SFKOU. As before, average gap values are computed as   
()   

  
    , where LB is 

the lower bound value obtained with the strengthened model (SFKOU) and () is the 

upper bound value under analysis. Columns headed by #OS, for model SFKOU, and 

by #OV, for model Agg(SFKOU), show the number of instances solved to optimality 

and the number of times the optimal value was reached with these models, 

respectively. Last two columns show the results obtained with the branch-and-cut 

algorithm proposed by (Archetti, Corberán, Plana, Sanchis, & Speranza, 2013). As 

before, column headed by dif(%) is the average value of   
      

  
    , where LBA 

is the cost of the best feasible solution found by the branch-and-cut of (Archetti, 

Corberán, Plana, Sanchis, & Speranza, 2013). 
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Note that model SFKOU seems to work well, both in the number of optimal 

solutions found and in the average gaps, and it performs similarly to the capacitated 

model. From this table we may also conclude that the branch-and-cut by (Archetti, 

Corberán, Plana, Sanchis, & Speranza, 2013) performs better for all the sets of 

instances tested, although it must be noted that this method was specially devised to 

deal with completely directed instances.  

Table 12: Results for the uncapacitated team orienteering mixed arc routing problem (K-UOMP) 

   SFKOU Agg(SFKOU) LSFKOU Archetti&al 

Instance 
# of 

instances 
# FS gap(%) #OS gap(%) #OV gap(%) dif(%) #OS 

thertzd00 81 81 6,61 22 12,09 6 16,27 1,34 65 

thertzd25 81 51 2,91 25 5,61 5 10,40 0,37 50 

thertzd50 81 35 3,38 24 10,25 10 16,51 0,16 34 

thertzg00 81 81 5,28 38 6,73 22 11,08 0,37 61 

thertzg25 81 65 3,13 36 4,36 20 8,42 0,32 59 

thertzg50 81 56 1,88 36 4,10 28 8,26 0,17 52 

thertzr00 60 58 3,12 41 20,84 7 28,12 0,07 58 

thertzr25 60 56 4,32 44 19,93 11 27,34 0,48 56 

thertzr50 60 57 3,53 46 14,49 21 26,54 0,60 57 

Sum 666 540  312  130   492 

   SFKOU Agg(SFKOU) LSFKOU Archetti&al 

Cpu time 

(s) 

  0,02 0,01 0,00 0,09 

  1779,3 99,1 0,3 394,9 

  3600,0 3600,0 4,3 3600,0 

 

5. Final Remarks 

Single-commodity flow models provide a general framework for modelling many 

routing problems. However, many of the variants modelled by these flow models are 

node routing problems and not much has been done with such models for arc routing 

problems. In this paper, we have provided and evaluated single-commodity flow 

models for several arc routing problems with profits, including the single and multiple 

vehicle cases. For all the studied problems, which include some that have been 

introduced here for the first time, exact and relaxed models are presented. 

The performance of these models is analysed over a large set of benchmark 

instances derived from some well-known instances in the literature. Whenever 

possible, results obtained by the proposed models when solved with CPLEX are 

compared with previous published ones.  

From the computational results we may conclude that the behaviour of the 

proposed models for the single vehicle variants is quite good. Strengthened as well as 

initial models succeed in finding the optimum of the problems studied, namely: 

profitable (PMP), penalised (PPMP), and both orienteering versions (OMP and 
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UOMP). Linear programming relaxations produce, in general, better bounds for the 

orienteering cases. The corresponding average CPU times are usually a few seconds. 

Gaps for multiple vehicles profitable (K-PMP) models are still reasonably good, 

whilst the penalised (K-PPMP) problem seems to be harder to solve, as can be seen by 

the increase on the gap values. Aggregated relaxations have the same behaviour, 

finding better upper bounds in the first case. Note that, in general, these models 

provide quite quickly good bounds as can be seen by the small CPU time values. 

Lower bounds for the team orienteering capacitated models are very similar to the 

bounds reported in (Archetti, Feillet, Hertz, & Speranza, 2010), while, for the 

uncapacitated case, our models provide worse results than those by (Archetti, 

Corberán, Plana, Sanchis, & Speranza, 2013).  

We stress that the proposed models consist of a base model complemented by a 

few additional constraints that allow formulating different arc routing problems with 

profits. Note also that, as models are built for mixed graphs, they can be applied over 

other types of graphs. Therefore, an advantage of this approach is that new arc routing 

problems may be easily modelled, simply by adding new constraints to the base 

model. To sum up, from a base model, aggregated and valid models providing good 

bounds in short computing times have been derived for several arc routing problems 

with profits. This approach may thus be considered a new and useful tool to deal with 

arc routing problems. 
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Table 1: Main characteristics of the arc routing problems with profits in the Literature.  

Classification Named as Graph Depot? 
Objective to 

maximize 

Particularities 

References Profit 
collected 

Vehicles 
 

# C; U 

Profitable 

Maximum benefit 
CPP 

D yes 

net profit 

Se
ve

ra
l  

ti
m

es
 

1 U 
• Profit paid as a decreasing function with 

the increasing number of traversals;  
• Includes routing cost. 

(Malandraki & Daskin, 1993) 
(Pearn & Chiu, 2005) 

Maximum benefit 
CPP 

U yes 1 U 
(Pearn & Wang, 2003) 
(Corberán, Plana, Rodriguez-
Chía, & Sanchis, 2011b) 

Profitable arc tour 
problem 

D 
complete 

graph 
no net profit K U 

• Limits on the number of times each 
profit is available; 

• Maximum length per cycle; 
• Includes routing cost. 

(Feillet, Dejax, & Gendreau, 
2005b) 

Prize-collecting RPP U yes net profit 

o
n

ce
 

1 U • Includes routing cost; 

(Aráoz, Fernández, & Zoltan, 
2006) 
(Araóz, Fernández, & Meza, 
2009b) 

Profitable 
capacitated RPP 

U yes   net profit 1 U 
• Time limit; 
• Includes routing cost. 

(Irnich, 2010) 

Clustered prize-
collecting ARP 

U yes   net profit 1 U 

• Includes routing cost; 
• Edges are serviced in clusters (for each 

cluster, either all or none of its edges are 
serviced) 

(Aráoz, et al., 2009a) 

Windy clustered 
prize-collecting ARP 

W yes net profit 1 U 

• Edges are serviced in clusters (for each 
cluster, either all or none of its edges are 
serviced); 

• Includes routing cost. 

(Corberán, Fernández, 
Franquesa, & Sanchis, 2011) 

Orienteering/ 
Team Orienteering 

Bus touring 
problem 

U yes attractiveness 1 U • Time limit. (Deitch & Ladany, 2000) 

Capacitated ARP 
with profits 

U yes profit K C 
• Time limit per vehicle;  
• Objective does not include routing cost. 

(Archetti, Feillet, Hertz, & 
Speranza, 2010) 

Team orienteering 
ARP 

D yes profit K U 
• Time limit per vehicle; 
• Objective does not include routing cost. 

(Archetti, et al., 2012) 
(Archetti, et al., 2013) 

Graph: D: directed; U: undirected; W: windy.        #: vehicles number (   ).       Vehicles: C:capacitated; U:uncapacitated 


