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In this paper, the optimal timing for investing in high-speed rail projects under uncertainty in relation to
the utility provided to railway users was investigated. To accomplish this, a continuous time real options
analysis framework using a stochastic demand model was developed to determine the optimal time to
invest. Uncertainty upon investment expenditures was also added in an extended framework. The value of
the option to defer and the investment opportunity value were also assessed.
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1. Introduction

Under uncertainty, it is important for a firm to be flexible with the products it is creating, to
accommodate for technological changes and competition shifts. Flexibility is also crucial to limit
potential losses related to unexpected adverse scenarios (Trigeorgis 1996).

Real option analysis (ROA) emerged in the academy to value investments in real assets under
uncertainty (Brennan and Schwartz 1985; McDonald and Siegel 1986; Dixit 1989; Pindyck 1991;
and Dixit and Pindyck 1994, amongst others). Nowadays ROA has already made an impact in
the business world, since an increasing number of companies and managers are adopting a real
options perspective. This new paradigm has been used in the area of capital budgeting analysis
and in the assessment of strategic positioning and competitiveness (Paddock, Siegel and Smith
1988; Nichols 1994; Kallberg and Laurin 1997; Moel and Tufano 2002; Smit 2003).

Transport infrastructures are critical for sustainable growth and the development of an econ-
omy. According to Wilson (1986), since the year 1870, economists have drawn their attention to
transportation, where rail transport assumes an important role. The same author suggested that
poor transportation policies and investment mistakes in transport infrastructures may compromise
economic growth. To prevent this compromise in growth, it is important to develop and apply
suitable decision criteria based on a thorough cost/benefit analysis.

Infrastructure investments, such as in seaports, airports, railways, energy networks, and road
systems, have provided huge economic benefits and have leveraged economic growth. The size,
budget and impact of these investments on the global economic activity led transportation invest-
ments to assume the role of strategic options. Almost all transportation investments include a
portfolio of options to protect the enormous funds required to implement the investments.
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Rose (1998) valued the concession of a toll road in Australia, considering the existence of two
options interacting with each other. Similarly, Brandão (2002) applied the Copeland andAntikarov
(2001) framework to value options embedded in a highway investment project in Brazil. Two other
empirical ROA studies focused on the valuation of structural investments in the transportation
sector: Smit (2003) and Bowe and Lee (2004). The first analyzed the expansion of a European
airport. Smit (2003) combined ROA and game theory, in a discrete time framework, to fill a
gap in the real options literature regarding competition effects. The second analyzed a railway
transportation investment. Bowe and Lee (2004) applied binomial analysis to evaluate high-speed
train investment in Taiwan.

The valuation framework proposed in this paper was inspired by a set of investments in high-
speed rail (HSR) across Europe. The structural nature of the HSR investments for the countries
involved; the need to renew the railway sector; the huge amounts of money required; the uncer-
tainty about the timings to invest; and the economic challenge inherent in developing a conceptual
setting for a decision that needs to consider the interest of all European taxpayers, all play a part
in providing relevance to the study of the ideal time to invest and the embedded options to be
deferred.

The framework proposed draws on the work of Salahaldin and Granger (2005) on the valuation
of sustainable systems of urban transport aimed at relieving air pollution. Like their framework,
ours will be comprised of a unique change, from an inactive to an active state; it will also consider a
single stochastic variable, extended afterwards to two uncertainty factors. However, our framework
is distinct, because it incorporates the time to build, combining it with the benefits of travel time
saved. In addition, fixed and variable operating costs will be incorporated.

Transportation investment analysis rarely incorporates real option theory. As a result, this paper
will introduce the transportation investment analysis of the HSR investment valuation in contin-
uous time, providing some closed form solutions. Although Pereira et al. (2006) studied these
issues, their work focused on airport construction. Our ROA framework will support the utility
balance for the user between different rail speed services.

Compared to classical works in the economic literature, such as McDonald and Siegel (1986),
we will extend the methodology regarding closed form solutions for the value of waiting to invest.
We also broaden the applications of ROA to HSR investments and incorporate issues related to
elasticity in ROA frameworks. We hope insights provided by this new valuation framework will
be useful in many areas of the transportation industry. For example, it may help improve the
investment flexibility in order to reduce the delay in the optimal time to invest.

The rest of the paper will be structured as follows. In Section 2, we develop the valuation
framework. In Section 3, we provide the numerical results. In Section 4 uncertainty upon invest-
ment expenditures is added in an extended framework. The paper’s primary conclusions and
recommendations for future studies are presented in Section 5.

2. Investment valuation using a real options framework

In HSR investment, the owner of the investment holds the possibility of acquiring the future cash
flow generated, at any moment in time, in exchange for the payment of the corresponding imple-
mentation costs. Thus, we will be investigating an option to invest. Considering the investment in
HSR as an optimal stopping problem permits us to determine the value of the embedded option
to defer. Following the work of McDonald and Siegel (1986) and Salahaldin and Granger (2005),
our model will allow us to determine the optimal time period to invest. The model considers an
a priori dimensioned HSR project.
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In this paper, we will assume that the option to defer is perpetual in nature (T = ∞), but also that,
once implemented, the investment will produce perpetual benefits. Without major technological
changes, the impact of these assumptions in the global valuation should not be unreasonable for
two reasons. First, because the present value of the more remote cash flows tends naturally to zero.
Second, because maintenance and conservation expenses tend to restore the operational aptitude
of the assets and the corresponding flow of benefits.

2.1 Optimal timing to invest

The decision to implement an investment in a non-optimal way implies the destruction of value.
Finding the optimal timing to invest provides us with the possibility to value the ability to delay the
project, as well as also its corresponding impact on the investment opportunity value. The optimal
timing to invest may be given by a demand threshold supporting, in a rational way, the decision
of implementing the investment. Once implemented, the investment expenditures become sunk
costs, since there is no other use for railways.

Because investment in infrastructures, like HSR, will affect the economic and social conditions
of future generations, it should be assessed in terms of economic welfare. The value per railway
user is calculated based on utility theory, namely on the consumption capacity of each user.
Investing in a moment other than the optimal timing implies a reduction in the global level of utility
achieved by the users, compromising the HSR investment success. In such circumstances, any
potential user may maintain his/her current level of utility, choosing to travel on the conventional
railway, rather than in the new HSR. If a suboptimal investment timing is chosen, the ability of
the HSR to attract users will be strongly distressed.

The framework does not explicitly account for the competition between railway transportation
and other alternative transport modes. Implicitly competition effects are incorporated in railway
demand stochastic process parameters. Indeed, any user from other alternative transport modes,
such as road or air flights, is a potential railway user. However, facing two similar railway travel
services, users will decide for HSR if at least utility remains. Note that competition effects from
the conventional railway or other alternative transport modes through its fare, frequency or bet-
ter service improvements should also be implicitly incorporated in the HSR demand stochastic
process parameters.

At any moment, users may choose to travel by the conventional railway, without any constraints.
Consequently, to maintain the users’ level of utility, the fraction of the new investment supported
by each one must be identical to the sum of the benefits earned from the reduction in travel time and
the conventional railway travel fare saved, net of the variable and fixed operational costs upheld.
Given fixed investment expenditures, the higher the demand, the higher the expected net benefit
per capita. Consequently, higher levels of demand tend to lead to the anticipation of the optimal
invest timings. The main source of uncertainty is derived from the level of future HSR demand.

We will consider that the demand for the new HSR, xt , follows a geometric Brownian
motion process:

dxt = μxxtdt + σxxtdwt, (1)

where μx represents the growth rate and σx represents the standard deviation of HSR demand.
We assume that both parameters are constant in time. The Wiener process, wt , has a zero mean
and standard deviation of σx

√
dt . Under these circumstances, it is reasonable to expect that, in

the future, the HSR demand will reach a level capable of providing a rational reason to invest.
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Similar assumptions were found in Rose (1998), who modeled highway traffic, Salahaldin and
Granger (2005), who modeled the dynamics of a city’s population, and Marathe and Ryan (2005)
and Pereira et al. (2006), who modeled airline demand. Emery and McKenzie (1996), on the other
hand, implicitly assumed that income from the railway followed a geometric Brownian motion
process.1 Bowe and Lee (2004) implicitly assumed the discrete time analogue of a geometric
Brownian motion for the operational cash flows of an HSR investment.

Assuming that each user will face a cost for travel between two cities, ψ , that is a function of
the total value of travel time for the user, η, and the travel fare, p. According to the literature,
both of these variables exhibit a relationship to railway demand (vide Owen and Phillips 1987;
Wardman 1994; and Wardman 1997).

The following functional form illustrates the relationship between the total value of travel time
and the demand for faster railway travel (Owen and Phillips 1987; Wardman 1994):

η(xt ) = β x
δβ

t , (2)

where δβ represents the elasticity between the total value of travel time, η, and the HSR demand, x.
Consequently, β is the scale parameter between HSR demand, x, and the total value of travel
time, η.

The relationship between the travel fare and the HSR demand is given by the following
functional form (Owen and Phillips 1987):

p(xt ) = αx
δα

t , (3)

where the elasticity between the fare value, p, and the HSR demand, x, is represented by the
parameter δα . The scale parameter α relates HSR demand, x, and the travel fare, p.

We now assume a risk neutral user with a utility function U(c) = c. This utility is solely the
function of the mean consumption per user, in which c represents the mean consumption of all
users. The budget constraint is given by

mt = ct − ψ(xt ) (4)

where ψ represents the travel cost and m the individual disposable income by unit of time.
Replacing the level of consumption in the utility function, we obtain the following value

function, V , representative of the value that each user confers to a railway trip:

V (xt ) = U(ct ) = mt − ψ(xt ). (5)

The relationship between HSR demand, xt , and the total value of travel time, (i) in the period of
time that precedes the investment, η0; (ii) during the investment’s implementation, η1; and (iii)
after the investment’s implementation, η2, is represented, respectively, by β0, β1 and β2. Since
the HSR will save travel time and, consequently, will reduce the total value of travel time from
η0 to η2, it will be reasonable to expect that from the pre-investment period to the operational
period, β0 will become β2, with β0 > β2. The difference between β0 and β2 reflects the decrease
in travel time.

Large investments need time to be implemented. Thus, it is crucial to incorporate the time-to-
build in the ROA framework. During the building period, n, the cost of travelling is given by ψ0

and the relationship between demand and travel costs, β1, remains equal to β0 (β1 = β0). When
the HSR begins to operate, the cost of travelling will change to ψ2 and β2 reflects the decrease
in travel time. Analytically, the cost of travelling by a conventional railway, ψ0, and the cost of
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travelling by the HSR, ψ2, will be represented by the following equations:

ψ0(xt ) = β0 x
δβ

t + α0x
δα

t , (6)

ψ2(xt ) = β2x
δβ

t , (7)

where the conventional railway travel cost, ψ0, includes both the total value of the travel time
lost and the travel fare. In contrast, the HSR travel cost function, ψ2, is not affected by the
corresponding travel fare, p2, because the current valuation framework implicitly assumes that
each user will bear his/her part of the investment expenditure plus the corresponding operating
costs per user. Hence, a socially acceptable HSR travel fare is already implicitly considered in
the valuation framework. Consequently, it does not make sense to duplicate it.

The conventional railway with a travel fare p0 enables us to identify the relationship between
HSR demand, xt , and the price of a substitute service (Owen and Phillips 1987; Wardman 1997)
given by Equation (3).

Until the HSR begins to operate, the value function per user will be given by

V0(xt+n) = mt+n − β0x
δβ

t+n − α0x
δα

t+n (8)

After the investment is implemented, the users will continue to face a value for travel time, but it
will be a smaller travel time. However, since the analysis performed here takes into consideration
all costs and benefits induced by the HSR investment (including the investment expenditure, fixed
and variable operating costs), the new value function per user will be given by

V2(xt+n) = mt+n − β2x
δβ

t+n − ω − ϕ

xt+n

− ργ eρn

xt+n

, (9)

where γ represents the capital investment expenditure, ρ the discount rate, ω the variable operating
costs and ϕ the fixed operating costs. Notice that ϕ/xt and ργ/xt represent the fixed operating
costs and the investment expenditure per unit of time for each HSR user. We implicitly assume
that the HSR investment cash flows will last for an unlimited time horizon.

Using the objective function of Ramsey–Koopmans to compute the net benefits generated by
the HSR investment, according to the appendix, the investment opportunity value, here denoted
by v(x), is given by

v(x) =
∫ ∞

0
e−ρ(t+n)E[V2(xt+n) − V0(xt+n)]dt . (10)

The purpose of the model is to calculate the optimal timing to invest preserving utility function
balance. For that, it is necessary to locate the HSR demand threshold, x∗, above which it will be
optimal to invest. Thus one wants to find the optimal value x∗ such that

v(x∗) = sup
x

v(x). (11)

The investment opportunity value is determined through the maximization of the following
equation (appendix):

v(x∗) = Atc(x
∗)θβ + Btc(x

∗)θα + Ftc(x
∗) + Ctc + D (12)
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with

Atc = 2(β0 − β2)e(μxθβ+(1/2)θβ (θβ−1)σ 2
x −ρ)n

2ρ − 2μxθβ − θ2
βσ 2

x + θβσ 2
x

(13)

Btc = + 2α0 e(μxθα+(1/2)θα(θα−1)σ 2
x −ρ)n

2ρ − 2μxθα − θ2
ασ 2

x + θασ 2
x

(14)

Ctc = −ϕ e−ρn

ρ
(15)

Ftc = −ωe(μx−ρ)n

ρ − μx

(16)

D = −γ (17)

To include economic intuition, note that: Atc reflects the present value of travel time savings;
Btc reflects the present value of conventional railway travel fare; Ctc reflects the present value
of fixed operating costs; D represents the present value of investment expenditures; and Ftc

represents the present value of variable operating costs. The subscript tc, used above, indicates
the time-to-build effect.

Now, as the investment opportunity function, v(·), is a function of the demand process {xt }
that follows a geometric Brownian motion, if we apply Ito’s lemma to v(xt ), we end up with the
following ordinary differential equation:

1

2
σ 2

x x2v′′(x) + μx x v′(x) − ρv(x) = 0 for x �= x∗ (18)

subject to the boundary equations:

v(0) = 0 (19)

v(x) = Atcx
θβ + Btcx

θα + Ftcx + Ctc + D with x = x∗ (20)

v′(x) = θβAtc xθβ−1 + θαBtcx
θα−1 + Ftc with x = x∗ (21)

Note that the first condition means that the process is absorbing when the HSR demand is 0; the
second is the value-matching condition; and the third is the smooth-pasting condition.

Therefore the investment opportunity function, v(·), considering the current HSR demand, is
given by the supremum of Equation (11), that satisfies the differential Equation (18).

Since Equation (18) is a Cauchy–Euler second order homogeneous differential equation, the
solution may be written as

v(x) = a1x
r1 , (22)

where r1 is the positive root of the quadratic equation:

1

2
σ 2

x r(r − 1) + μxr − ρ = 0 (23)

given by

r1 = ((1/2)σ 2
x − μx) + √

(μx − (1/2)σ 2
x )2 + 2ρσ 2

x

σ 2
x

(24)
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Using the condition v(x∗) = Atcx
∗θβ + Btc x∗θα + Ftc x∗ + Ctc + D, we calculate the coefficient

a1 = Atc x∗θβ−r1 + Btc x∗θα−r1 + Ftc x∗1−r1 + Ctc x∗−r1 + Dx∗−r1 , concluding that the solution of
Equation (18) is

v(x) = [Atc x∗θβ−r1 + Btc x∗θα−r1 + Ftc x∗1−r1 + Ctc x∗−r1 + Dx∗−r1] xr1 (25)

For a given value of x in t = 0, the value of x∗ that maximizes v(x) is given by the numerical
solution of the equation:

Atcx
∗θβ−r1(θβ − r1) + Btcx

∗θα−r1(θα − r1) + Ftcx
∗1−r1(1 − r1) − Ctcx

∗−r1r1 − Dx∗−r1r1 = 0
(26)

with r1 given by Equation (24).
The HSR demand threshold, x∗, may only be found through a numerical solution of Equation

(26), except if two assumptions are made. The first assumption, related to the equality between the
total value of travel time/HSR demand elasticity and the conventional railway travel fare/HSR
demand cross elasticity, equaling θβ = θα = θ . This assumption means that the conventional rail-
way travel fare and the value of travel time have a similar trend. The second assumption comes
from the possibility of neglecting the operational variable costs, Ftc = 0, considering the opera-
tional characteristics of the HSR investment. Operational variable costs include essentially those
related to ticket printing, since for an a priori dimensioned HSR project with a pre-established
operation schedule, all the major operational costs tend to be fixed.

Considering these two assumptions, the HSR demand threshold, x∗, obtains the following
closed form solution:

x∗ = exp

[
ln((−r1(Ctc + D))/((Atc + Btc)(r1 − θ)))

θ

]
(27)

When the HSR demand threshold, x∗, is reached, it justifies (becomes optimal) an immediate
implementation of the HSR investment, which will begin to operate n periods afterwards. This
solution preserves the utility balance for users between the HSR and the conventional railway,
making the optimal solution independent of the original income, m, and the initial HSR demand,
x0. Because the framework deals with an economic welfare issue, based on the utility balance
for users between two similar transportations, this framework is especially adequate to analyze
governmental scale investment decisions.

Using traditional capital budgeting analysis, based on the net present value (NPV), the rationale
for making the decision would be similar. The investment should only be implemented when the
reduction in the cost of travelling provided by the HSR and measured by the difference between
ψ0 and ψ2 is enough to cover the investment expenditure plus the operating costs. Analytically,
for θ = θβ = θω, Ftc = 0 and any n ≥ 0, we have

β0x
θ
t+n + α0x

θ
t+n > β2x

θ
t+n + ϕ + ργ eρn (28)

Considering xθ
t+n ≡ xθ

t eθμn, it would only become optimal to invest when the HSR demand
reaches the threshold x̂,

xt > x̂ =
[

ϕ + ργ eρn

(β0 − β2 − α0)eθμn

]1/θ

(29)

with x̂ representing the HSR demand threshold given by the traditional capital budgeting analysis.
The comparison between the optimal decision to invest, given by ROA Equation (27) and by

the traditional capital budgeting analysis, becomes evident if in an investment implemented in
one single period of time, we consider θ = 1, as well as no fixed and variable costs (ϕ = ω = 0).
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In this case, Equations (27) and (29) would become:

x∗ = −r1D

(r1 − 1)(Atc + Btc)
(30)

x̂ = ργ

(β0 − β2 + α0)
(31)

Equations (30) and (31) illustrate that x∗ > x̂. Thus, when x̂ < xt < x∗, the decision to invest
based on a traditional capital budgeting analysis results in a value reduction for the investment.
In this situation, the investment opportunity value will be smaller than the sum of the investment
expenditure and the value of the (sacrificed) option to defer. The ability to delay has value, because
it allows the uncertainty resolution.

2.2 Valuation of an HSR investment using an ROA framework

Consider the investment value function given by Equation (25), for a given HSR demand, x, with
t = 0. The investment opportunity value when x < x∗ is given by

v (x) =
( x

x∗
)r1 [

Atc x∗θβ + Btc x∗θα + Ftc x∗ + Ctc + D
]

(32)

while for x ≥ x∗, the investment opportunity value is given by

v(x) = [
Atc xθβ−r1 + Btc xθα−r1 + Ftc x1−r1 + Ctc x−r1 + D x−r1

]
xr1 (33)

Assuming θ = θβ = θα and Ftc = 0, we may replace the HSR demand threshold, x∗, given by
Equation (27) in the second part of the RHS of Equation (32). After simplifying, the investment
opportunity value may be rewritten in the following terms:

v(x) =

⎧⎪⎨
⎪⎩

( x

x∗
)r1

[
θ(Ctc + D)

θ − r1

]
for x < x∗

(Atc + Btc)x
θ + Ctc + D for x ≥ x∗

(34)

with Ctc, D, r1, Atc and Btc given by Equations (15), (17), (24), (13) and (14).
In accordance to previous studies (vide McDonald and Siegel 1986; and Dixit and Pindyck

1994), from the moment τ , in which the HSR demand threshold is reached, x∗, the value of the
option to defer is zero. As a result, it is always better to invest and receive in exchange the NPV –
given by Atcx

θβ + Btcx
θα + Ftcx + Ctc + D – of the expected decrease in the cost of travelling.

As long as the optimal timing to invest has not been reached, t < τ , there is always an inherent
value of waiting for new information about the HSR demand. In this case, the value of the option
to defer is given by the difference between the investment opportunity value, v(x), and the NPV
calculated, using the expected HSR demand at that moment. In addition, for allowing the inclusion
of the (i) time-to-build, (ii) fixed operating costs and (iii) variable operating costs, in the investment
opportunity value, these developments take into consideration the elasticity between the value of
travel time and demand. As the framework is developed, considering the users utility balance
between the HSR and conventional railway travel, factors other than those related to travelling
(e.g. income) are assumed to be constant and do not influence the outcome.

The HSR transport uses clean energy. However the impact of the fuel price expectations on
fuel dependent transport modes is captured indirectly thought the HSR demand stochastic process
parameters.
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Whenever the elasticity between the total value of travel time and the HSR demand is null
(δβ = 0 ⇒ θβ = 1), we are implicitly assuming no real changes in the value of travel time. Real
changes imply positive levels of elasticity. Similarly, the conventional railway travel fare remains
constant in real terms whenever δα = 0 ⇒ θα = 1. If θβ > 1, increases in the value of travel
time will be directly related to the demand growth rate. The demand behavior for faster rail
transportation when the value of travel time rises is economically rational, as supported by Owen
and Phillips (1987) and Wardman (1994). Therefore, it is acceptable that increases in the HSR
demand are, at least partially, due to increases in the value of travel time. When θα > 1, the
cross elasticity between the conventional railway travel fare and the HSR demand is positive.
According to Owen and Phillips (1987) and Wardman (1997), an increase in the travel fare of
substitute services justifies increases in the railway demand.

The investment opportunity value determined by this ROA framework includes the ability to
wait for an uncertainty resolution, provided by the option to defer. When the ability to delay
does not exist, as in the traditional capital budgeting decision analysis, this component is not
taken into consideration, underestimating the investment opportunity fair value. The value of the
option to postpone the investment comes from the incorporation of the “good tail” of the HSR
demand uncertainty. The “bad tail” of demand uncertainty is limited by the option to defer the
HSR investment until the situation becomes attractive enough (McDonald and Siegel 1986; Dixit
and Pindyck 1994).

3. Numerical illustration

Assume a project for the construction of an HSR connecting two cities. The basic parameters
values will include those in Table 1, supported by the released Portuguese Government data on
the HSR investment. The construction period is 5 years and the investment expenditure’s present
value is 15 billion Euros. According to HSR demand studies provided, the actual HSR demand
is 3 million passengers and should rise 3.5% per year with 20% standard deviation. However, the
expected HSR demand growth rate and standard deviation could be estimated by the mean and
variance of demand instantaneous growth rate upon historical data.

Table 1. Base-case parameters for the HSR investment.

Parameter Value

x – HSR demand at the actual moment 3 M
γ – Present value of the investment expenditures ¤5000 M
η0 – Total value of travel time by the conventional railway ¤30
η2 – Total value of travel time by the HSR ¤10
p0 – Conventional railway travel fare ¤25
ω – Variable operating costs ¤1
ϕ – Fixed operating costs ¤90 M
ρ – Discount rate 0.09
μx – HSR demand expected growth rate 0.035
σx – HSR demand standard deviation 0.20
n – Time-to-build (years) 5
δβ – Elasticity between the total value of travel time and the HSR demand 0.60
δα – Cross elasticity between the conventional railway travel fare and the HSR demand 0.40

Note: M, millions.
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Table 2. HSR investment valuation results.

Output Value

x∗ – HSR demand threshold 10.777 M
v(x) – Investment opportunity value ¤3743.3 M
npv – Net present value ¤254.2 M

vod – Value of the option to defer ¤3489.1 M

The conventional railway operates between the same two cities. The new HSR will reduce the
travel time to one third comparative to the conventional railway travel. Therefore, a 3-hour journey
by the conventional railway will be around 1 hour by HSR. Using official data provided by the
EU guide to appraise infrastructural investments, the estimated value of travel time per hour in
Portugal is 10 Euros. It is also considered that 65% of the passengers travel on non-working time
and 35% on working time. The total value of travel time by the conventional railway and HSR is
given by the multiplication of the value of travel time per hour and the travel time spent for each
railway service.

Table 2 presents the HSR investment valuation results for the base-case parameters.
According to the results (Table 2), the HSR construction should only begin when the demand

reaches 10.777 million passengers. Because investment expenditures and operational costs were
considered as a priori known, the demand threshold obtained is therefore suitable only for an
a priori dimensioned HSR project. Although the HSR investment has a slightly positive NPV, it
should not be implemented at the current time. The HSR demand uncertainty forces a delay in
the HSR investment. Maintaining “alive”, this investment opportunity has a value of 3743 million
Euros. The value of the option to defer the investment represents 93.21% of the investment
opportunity value.
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Figure 1. Investment opportunity value, NPV and value of the option to defer.
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Figure 2. The impact of the growth rate.

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
9

10

11

12

13

14

15

16

17

Discount rate (r) Discount rate (r)
0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

12000

14000

D
em

an
d 

th
re

sh
ol

d 
(x

* ) 
m

ill
io

n 
of

 p
as

se
ng

er
s

V
al

ue
 in

 m
ill

io
n 

eu
ro

s 
(M

)

Investment opportunity
npv
Option to defer

Figure 3. The impact of the discount rate.
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Figure 4. The impact of the investment expenditures.

Figure 1 illustrates the investment opportunity value, the NPV and the option to defer when
the HSR demand increases over time. As we may observe, if the demand exceeds 10.777 million
passengers, the option to defer the investment no longer has a value. Thus, from this point on, the
decision to immediately invest is the one which maximizes the investment value for its owners.
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Figure 5. The impact of the HSR demand volatility.
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Figure 6. The impact of the time-to-build.
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Figure 7. The impact of the total value of travel time savings.

Figure 2–7 illustrate the sensibility of the valuation results regarding the variation of various
input parameters.

Thus, the HSR demand threshold, x∗, varies inversely with the HSR demand growth rate, μx

(Figure 2), and with the total value of travel time savings given by (η0 − η2)/η0 (Figure 7). For
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Figure 8. The impact of both the HSR demand volatility and the discount rate.

4000
5000

6000
7000

0
0.05

0.1
0.15

0.2
5

10

15

20

25

Investment expenditures (g)Discount rate (r)

4000
5000

6000
7000

0
0.05

0.1
0.15

0.2
2000

3000

4000

5000

6000

7000

Investment expenditures (g)Discount rate (r)

V
al

ue
 o

f t
he

 o
pt

io
n 

to
 d

ef
er

 (
M

)

D
em

an
d 

th
re

sh
ol

d 
(x

* ) 

m
ill

io
n 

of
 p

as
se

ng
er

s

Figure 9. The impact of both the investment expenditures and the discount rate.

higher HSR demand growth rates, μx , and with a major total value of travel time savings, the
present value of the HSR benefits increases, justifying investment anticipation.

The other parameters analyzed assume a direct relationship with the HSR demand threshold, x∗.
Larger discount rates (Figure 3), larger investment expenditures (Figure 4), larger HSR demand
volatility (Figure 5) or more construction time needed (Figure 6) instigates significant delays in
the optimal time to invest.

Behind variations in any of the input parameters, the investment opportunity value and the
NPV have the same trend, for each one of the parameters, although with different drifts. Figure 5
illustrates that the NPV increases with the increase in uncertainty. This finding is related to the
elasticity between the total value of travel time and HSR demand and the cross elasticity between
the conventional railway travel fare and HSR demand. This specificity of the framework results
in a value of the option to defer that slightly diminishes with an increase in uncertainty. These
findings are also revealed in Figure 8, where it is assumed that the discount rate remains unchanged
when volatility changes.

If a larger time-to-build is required, the increase in uncertainty throughout time and the delay
in the HSR operation benefits reduce the investment opportunity value and the NPV (Figure 6).

Figure 9 illustrates the joint impact of both the discount rate ρ and the investment expenditures
γ on the HSR demand threshold, x∗, and on the value of the option to defer. In both cases, there is a
direct relationship between these two input parameters, turning the option to defer more valuable
when the value of these input parameters increases. As illustrated in Figures 3 and 4, this is due
to a deeper decrease in NPV than the one registered in the investment opportunity value.
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4. Extensions

Let us also consider that investment expenditures follow a geometric Brownian motion process
(McDonald and Siegel 1986):

dγt = μγ γtdt + σγ γtdwt (35)

where μγ represents the growth rate and σγ represents the standard deviation of investment
expenditures. We assume that both parameters are constant in time. The Wiener process, wt , has
a zero mean and standard deviation of σγ

√
dt .

Adding uncertainty upon investment expenditures to the previous framework, the optimal timing
to invest is given by

q∗ =
[

(l + 1)

(Atc + Btc)

] [
s1

s1 − 1

]
(36)

Note that in order to get a closed form solution, we must set:

1. The fixed operating costs as a proportion (l) from the investment expenditures; and
2. The optimal decision dependent on the threshold g∗, which represents the optimal ratio between

HSR demand and the investment expenditures, given by xθ/γ .

In Equation (36), Atc and Btc are given by Equations (13) and (14). The positive root, s1, of the
quadratic equation similar to (23), is given by

s1 =
((1/2)σ 2

q − μq) +
√

(μq − (1/2)σ 2
q )2 + 2σ 2

q (ρ − μγ )

σ 2
q

(37)

with, σ 2
q = σ 2

x θ2 − 2σxσγ corrx,γ θ + σ 2
γ and μq = μxθ + (1/2)σ 2

x θ(θ − 1) − μγ .
Under the same assumptions, this optimal timing threshold is consistent with the one obtained

when only HSR demand is stochastic. The difference between Equations (27) and (36) reflects
the additional impact from investment expenditure uncertainty.

If a positive growth in the investment expenditures is expected, this extended framework sup-
ports an anticipation of the optimal timing to invest, regarding the optimal timing to invest when
the uncertainty comes only from HSR demand. The increase in investment expenditures under
uncertainty justifies an anticipation of the HSR investment implementation taking advantage from
lower investment expenditures (McDonald and Siegel 1986).

With v(x, γ ) = γf (q), the investment opportunity value can be computed if at any moment of
time, the investment expenditure, γ , is known. Hence, we have

v(x, γ ) =

⎧⎪⎪⎨
⎪⎪⎩

(
q

q∗

)s1
[

(l + 1)

(s1 − 1)

]
γ for q < q∗

[(Atc + Btc)q − l − 1] γ for q ≥ q∗.

(38)

In the continuation region, while threshold q∗ is not reached, Equation (38) incorporates the value
of the option to defer, which represents the value of waiting for new information about demand
and investment expenditures. When the threshold q∗ is reached, the HSR investment should be
implemented immediately.

In the stopping region, q ≥ q∗, the investment opportunity value is given by NPV.
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This extended framework assesses simultaneously the impact of investment expenditures and
HSR demand uncertainties on the optimal timing to invest and on the investment opportunity value.

5. Conclusions

This paper developed a framework to determine the optimal timing to invest in HSR, in an
uncertain environment. We introduced several extension adjustments to the original option to
the defer valuation framework by McDonald and Siegel (1986) and to the optimal stopping
framework of Salahaldin and Granger (2005). Those extensions were made, given the need to
design an adequate framework for HSR investments in an environment of stochastic demand,
combined afterwards with stochastic investment expenditures. An ROA closed form solution to
value railway investments has never been conducted previously.

The HSR investment analysis was incremental regarding conventional railways. The users’
utility balance between the HSR and the conventional railway quantified the benefits to the HSR
users. The optimal timing to invest was calculated with the HSR demand threshold model. The
developments regarding the optimal timing to invest and the investment opportunity value present
the advantage of offering a clear way to evaluate the HSR investment opportunity at each moment
in time, for the set of potential users. The numerical illustration and simulation of some important
input parameters demonstrated the consistency of the framework.

We recommend that future research enriches the framework to include more uncertainty factors,
such as travel fare and demand random shocks. Additionally, we expect to extend the empirical
application and use it to carry out additional improvements in the structure of the valuation
framework.
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Note

1. It is easy to illustrate that if the travel fare is non-stochastic, the number of passengers follows a geometric Brownian
motion process.
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Appendix

Note that the entire framework might be understood as an intergenerational welfare problem. Because of this situation,
we may use the objective function of Ramsey and Koopmans, adopted by Salahaldin and Granger (2005). Analytically,
we have

supx∗Ex

(∫ τ

−n

xt+ne−ρnV0(xt+n)e
−ρt dt +

∫ +∞

τ

xt+ne−ρnV2(xt+n)e
−ρt dt

)
, (A1)

where

τ is the moment of time at which the optimal value is achieved;
V0(xt+n) is the value function per user per unit of time until the HSR begins to operate;
V2(xt+n) is the value function per user per unit of time after the HSR begins to operate;
n is the time-to-build (construction); and
xt is the HSR demand, given by Equation (1).

Considering the global value of all users before and after the HSR begins to operate, and replacing V0 and V2 in
Equation (A1) for (8) and (9), we obtain

supx∗Ex

⎛
⎜⎜⎜⎝

∫ τ

−n

e−ρt
[(

mt+nxt+n − β0x
θβ

t+n − α0x
θα
t+n

)
e−ρn

]
dt

+
∫ +∞

τ

e−ρt
[(

mt+nxt+n − β2x
θβ

t+n

)
e−ρn − ωxt+ne−ρn − ϕe−ρn − ργ

]
dt

⎞
⎟⎟⎟⎠ (A2)

assuming θβ = 1 + δβ and θα = 1 + δα .
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Simplifying and excluding the components that do not depend on τ and x∗, it is possible to obtain the following
objective function:

supx∗Ex

(∫ +∞

τ

e−ρt [(β0 − β2)x
θβ

t+ne−ρn + α0x
θα
t+n − ωxt+ne−ρn − ϕe−ρn − ργ ]dt

)
(A3)

Equation (A3) maximizes the net benefits generated by the HSR investment. The decision to implement the investment
requires n building periods before the HSR begins to operate.

With v denoting the investment opportunity value, let

v(x∗) = Ex

(∫ +∞

τ

e−ρt [(β0 − β2)x
θβ

t+ne
−ρn + α0x

θα
t+n − ωxt+ne

−ρn − ϕe−ρn − ργ ]dt

)
(A4)

Using the strong Markov property from Oksendal (2003) on the RHS, we obtain

Ex

[∫ +∞

τ

e−ρt [(β0 − β2)x
θβ

t+ne−ρn + α0x
θα
t+n − ωxt+ne−ρn − ϕe−ρn − ργ ]dt

]

= Ex∗
[∫ +∞

0
e−ρt [(β0 − β2)x

θβ

t+ne−ρn + α0x
θα
t+n − ωxt+ne−ρn − ϕe−ρn − ργ ]dt

]
(A5)

Under the dominated convergence theorem, we have

Ex∗
(∫ +∞

0
e−ρt [(β0 − β2)x

θβ

t+ne−ρn + α0x
θα
t+ne−ρn − ωxt+ne−ρn − ϕe−ρn − ργ ]dt

)

=
∫ +∞

0
e−ρt [(β0 − β2)Ex∗ (x

θβ

t+n)e
−ρn + α0Ex∗ (xθα

t+n)e
−ρn − ωEx∗ (xt+n)e

−ρn − ϕe−ρn − ργ ]dt (A6)

Since HSR demand, xt , follows a geometric Brownian motion described by Equation (1), then

Ex∗ (xθ
t+n) = (x∗)θ e(θμx+(1/2)θ(θ−1)σ 2

x )(t+n) (A7)

To assure the optimal timing to invest, the condition ρ − θμx − (1/2)θ(θ − 1)σ 2
x > 0 is required. This condition also

imposes the HSR demand growth rate to be lower than the discount rate, thus providing a rational economic interpretation
to the mathematical developments. Simplifying again, we have

∫ +∞

0
e−ρt [(β0 − β2)Ex∗ (x

θβ

t+n)e
−ρn − ωEx∗ (xθω

t+n)e
−ρn − ϕe−ρn − ργ ]dt

= 2(β0 − β2)(x
∗)θβ e(μxθβ+(1/2)θβ (θβ−1)σ 2

x )ne−ρn

2ρ − 2μxθβ − θ2
βσ 2

x + θβσ 2
x

+ 2α0(x
∗)θα e(μxθα+(1/2)θα(θα−1)σ 2

x )ne−ρn

2ρ − 2μxθα − θ2
ασ 2

x + θασ 2
x

− ω(x∗)e(μx−ρ)n

ρ − μx

− ϕe−ρn

ρ
− γ (A8)

Rewriting Equation (A3) after simplifying, we obtain

v(x∗) = 2(β0 − β2)(x
∗)θβ e(μxθβ+(1/2)θβ (θβ−1)σ 2

x −ρ)n

2ρ − 2μxθβ − θ2
βσ 2

x + θβσ 2
x

+ 2α0(x
∗)θα e(μxθα+(1/2)θα(θα−1)σ 2

x −ρ)n

2ρ − 2μxθα − θ2
ασ 2

x + θασ 2
x

− ω(x∗)e(μx−ρ)n

ρ − μx

− ϕe−ρn

ρ
− γ (A9)


