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1 Introductory notes

In Econometrics, the expression “serial correlation problem” usually has a negative
sense: it is the problem of serial correlation (or autocorrelation) of the errors.

GLS and FGLS estimation will not be addressed: GLS because it is usually irre-
alistic and FGLS because it rarely is a good solution. Grayham Mizon: “autocor-
relation correction: Don’t!”

2 Introduction

In the model yt = x′tβ+ut, t = 1, 2, . . . , T with E(u|X) = 0, the asssumption
that

Var(u|X) = E(uu′|X) = σ2I,



may not hold, and instead

Var(u|X) = E(uu′|X) = Ω = σ2V �= σ2I,

because the errors are serially correlated:

∃t �= s : Cov(ut, us) = E(utus) �= 0.

Assuming that they are stationary:

Ω =




γ0 γ1 γ2 . . . γT−1
γ1 γ0 γ1 . . . γT−2
γ2 γ1 γ0 . . . γT−3
. . . . . . . . . . . . . . .
γT−1 γT−2 γt−3 . . . γ0



= γ0




1 ρ1 ρ2 . . . ρT−1
ρ1 1 ρ1 . . . ρT−2
ρ2 ρ1 1 . . . ρT−3
. . . . . . . . . . . . . . .
ρT−1 ρT−2 ρt−3 . . . 1



,

where γ0 denotes the error variance (assumed as common), i.e., σ2. The second

matrix is the V matrix, V = [vts] =
[γ|t−s|

γ0

]
= [ρ|t−s|], i.e., the matrix of the

autocorrelation coefficients.



3 Sources of “residual autocorrelation”

“Symptoms of residual autocorrelation”: what does this means?

According to a modern perspective, the errors of a correctly specified model should
not be autocorrelated. Everything that is systematic, that has a pattern, must
be in the main part of the model, must not be left to the “noise” component.

Symptoms of autocorrelation are often the outcome of:

a) errors of functional form specification;

b) omitted regressors, and in particular an insufficient dynamic specification.

Autocorrelation must not be seen as a problem intrinsic to the errors. It often is
only the result of an inadequate specification.



4 The case of strict exogeneity

By assumption, E(ut|X) = 0,∀t ⇒ Cov(xtj, us) = 0,∀t, s, j.

Purpose: to test a certain economic hypothesis (ex.: rational expectations hy-
pothesis; MEH). The interest does not rely on analysing dynamic effects, or in
getting a precise description of the economy, etc. . There is no freedom to change
the specification of the model. The equation is fixed. It is not changeable.

1. Unbiasdness. The OLS estimator is still unbiased, E(β̂) = β (because
E(u|X) = 0).

2. Covariance matrix. But the covariance matrix is no longer the usual



σ2(X′X)−1:

Var(β̂|X) = E[(β̂−β)(β̂−β)′|X]
= E[(X′X)−1X′uu′X(X′X)−1|X]
= (X′X)−1X′ΩX(X′X)−1

= σ2(X′X)−1X′VX(X′X)−1.

3. Inference. Since Var(β̂|X) = σ2(X′X)−1 was the basis for inference, usual
methods cease to be valid. Therefore, incorrect inferences are more frequent
than it is assumed.

Example: yt = β1 + β2xt + ut, with ut = ρut−1 + ǫt, |ρ| < 1, ǫt ∼
iid(0, σ2) and x̄ = 0. Then:

Var(β̂2|X) =
σ2u

TSSx
+ 2

σ2u
TSS2

x

T−1∑

t=1

T−t∑

j=1

ρjxtxt+j,

where TSSx is the variation of the regressor,
∑
x2t . The first term is

Var(β̂2|X) when ρ = 0 (there is no autocorrelation, ut ≡ ǫt). Since the



estimator of Var(β̂2|X) “forgets” the second term and the autocorrelation
is usually positive (both of ut and of xt), generally the variance is underes-
timated. This underestimation can be large: β̂2 appears to be much more
precise than it really is.

Therefore, when testing hypothesis about β2, H0 will be rejected (much)
more frequently than it should whenH0 is true (much more than the 100α%).
The denominators of the t-statistics become deflated. Real size can be
(much) larger than nominal size: there will be over-rejections of the true
H0 (or size distortions). Sometimes these are called spurious rejections.

Monte Carlo illustration. The DGP is

yt = 2 + 1xt + ut, ut = ρut−1 + ǫ1t, |ρ| < 1, with

xt = λxt−1 + ǫ2t, |λ| < 1,

[
ǫ1t
ǫ2t

]
∼ iidN

([
0
0

]
,

[
1 0
0 1

])
.



A test of the true null hypothesis

H0 : β2 = 1, vs. H1 : β2 �= 1,

is performed with T = 50. The MC results with 20, 000 replications are:

Percentual rejections (in %) for 5% nominal tests with λ = 0.9

ρ 0.0 0.2 0.4 0.6 0.8 1.0
% reje. 5.40 10.48 17.60 26.27 38.92 54.43

When there is no autocorrelation, estimated real size (5.4%) is very close to
nominal, but with ρ growing rejection frequencies tend to grow very quickly, and
when the errors have a unit root rejections exceed 50%.

The issue here is better defined than the one of heteroskedasticity: usual over-
estimation of the OLS precision and over-rejection of true null hypotheses.

Note: spurious regressions are a particular case of this problem (more later).



4. Consistency. If

plim
(
1

T
X′X

)
= plim


 1

T

T∑

t=1

xtx
′
t


 = Σxx,

plim
(
1

T
X′u

)
= plim


 1

T

T∑

t=1

xtut


 = plim(ḡ) = E(gt) = 0,

and if

plim
(
1

T
X′VX

)
= Q∗,

is a positive definite matrix, it can be shown that plim(β̂) = β. What do the
conditions require? Stationarity and ergodicity both of regressors and errors.

5. Asymptotic normality. Problem: it is not possible to employ a CLT for
non-autocorrelated variables because

1√
T
X′u =

1√
T

T∑

t=1

xtut



is a sum of autocorrelated variables.

There is however a CLT that allows autocorrelation but requires stationary
and ergodicity of regressors and errors: Gordin’s CLT (see Hayashi, 2000).

Unless in extreme cases:

β̂|X a∼ N [β, σ2(X′X)−1X′VX(X′X)−1].

6. Efficiency. Gauss-Markov theorem is no longer valid: OLS is no longer
BLUE.

But GLS (BLUE) demands that the V matrix is known and EGLS or FGLS
may not be more efficient than OLS.

7. Robust inference. HAC. Provided OLS is consistent, and provided its
covariance matrix is consistently estimated, asymptotically valid inference is
feasible.



With autocorrelation, estimation is more complex than with heteroskedas-
ticity. The Newey and West estimator (1987) ou HAC (heteroskedastic and
autocorrelation consistent) estimator is:

Ŝ∗ = Ŝ0 +
1

T

l∑

j=1

T∑

t=j+1

ωjetet−j(xtx
′
t−j + xt−jx

′
t)

with weights ωj usually given by ωj = 1 − j
l+1, j = 1, . . . , l (Bartlett

weights), to ensure that the matrix is, at least, semi-definite positive.

l is the lag truncation parameter, it is the maximum order considered for
the autocorrelations of the errors; the order l + 1 is already considered as
negligible. l is also called “bandwidth”. If the errors follow a MA process this
order is low. But the autocorrelation coefficients of an AR do not become
zero. Loose rule: l = 0.75T 1/3. However, usually one should try several
values for l, aiming to get robustness.

The weights ωj are called the “kernel”. In this case it is Bartlett’s kernel.
When using TSP (recall cha. 1): GMM (HET/NOHET,NMA=L,INST=(regressors)) EQ;



Monte Carlo example. The DGP is the same

yt = 2 + 1xt + ut, ut = ρut−1 + ǫ1t, |ρ| < 1, with

xt = λxt−1 + ǫ2t, |λ| < 1,

but λ = 0.7. Test of the true null H0 : β1 = 1 vs. H1 : β2 �= 1 with:

• tOLS;

• tNW−5, with a se given by the Newey-West matrix with l = 5;

• tNW−10 idem but with l = 10.

Sample size is T = 100. Objective: how good is the quality of HAC inference
made with the NW estimator in a reasonably large sample?



Estimates of real size (in %) with tests with nominal 5% and λ = 0.7

ρ 0.0 0.2 0.4 0.6 0.8 1.0
tOLS 4.87 8.76 14.39 21.76 30.67 38.84
tNW−5 5.99 6.90 8.27 9.98 12.68 15.53
tNW−10 6.25 6.90 7.75 8.90 10.86 12.64

a) the over-rejection problem becomes rather serious for OLS when ρ > 0.2;

b) the two statistcs based on NW estimation reduce the problem but they never
remove it completely;

c) with ρ = 0.8 and L = 10 even the NW method is affected by significant
size distortions;

d) it is very likely that samples with T > 100 are required for the NW method
to work well;

e) if ρ is small there is no advantage making l = 10. But it suffices that
ρ = 0.4 only for the test with l = 10 to become better than with l = 5.



Actually, the procedure needs large samples. Gordin’s theorem:

1√
T

T∑

t=1

gt
d→ N (0,S),

where S =
∑∞

j=−∞Γj, with

Γj = E[(gt−µ)(gt−j−µ)′] = E(gtg
′
t−j),

is the long run covariance matrix of the process gt. Since

S = lim
T→∞

Var


 1√

T

T∑

t=1

gt


 = lim

T→∞
Var(

√
T ḡ),

to better understand the problems consider the case of a scalar gt:



Var( 1√
T

∑T
t=1 gt) =

1
TVar(g1 + g2 + . . .+ gT )

= 1
T [Cov(g1, g1 + ...+ gT ) + Cov(g2, g1 + g2 + . . . gT ) + . . .+
Cov(gT , g1 + g2 + . . .+ gT )]

= 1
T [(γ0 + γ1 + . . .+ γT−1) + (γ1 + γ0 + γ1 + . . .+ γT−2) + . . .
(γT−1 + γT−2 + . . .+ γ1 + γ0)]

= 1
T [Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2 + . . .+ 2γT−1]

= γ0 + 2
∑T−1

j=1 (1−
j
T )γj.

lim
T→∞

Var(
1√
T

T∑

t=1

gt) = γ0 + 2
∞∑

j=1

γj =
∞∑

j=−∞
γj.

Now, how to estimate an infinite number of autocovariances? If we estimate only
a few ⇒ the estimator is inconsistent. If we estimate a large number ⇒ the
estimator is inefficient. A balance is achieved making l depend on T , but this
can be insufficient.

Note: however, there are good parametric estimators (no need to follow the herd).



Empirical example. This example is not typical.

Equation 1

============

Method of estimation = Ordinary Least Squares

Dependent variable: DLC

Number of observations: 30

Std. error of regression = .018050

R-squared = .652677

Durbin-Watson = 1.73048 [.079,.454]

Breusch/Godfrey LM: AR/MA1 = .508995 [.476]

Breusch/Godfrey LM: AR/MA3 = 2.75500 [.431]

Estimated Standard

Variable Coefficient Error t-statistic P-value

C .018740 .460240E-02 4.07185 [.000]

DLR .330562 .100103 3.30221 [.003]

DLS .375609 .085867 4.37429 [.000]

DINF .294196E-02 .853164E-03 3.44830 [.002]



GENERALIZED METHOD OF MOMENTS

=============================

WITH STARTING VALUES VIA:

NONLINEAR TWO STAGE LEAST SQUARES

EQUATIONS: EQ

INSTRUMENTS: C DLR DLS DINF

CONVERGENCE ACHIEVED AFTER 1 ITERATIONS

Number of observations = 30 E’PZ*E = .122894E-31

Standard

Parameter Estimate Error t-statistic P-value

BEQ0 .018740 .447534E-02 4.18745 [.000]

BEQ1 .330562 .096896 3.41151 [.001]

BEQ2 .375609 .084745 4.43221 [.000]

BEQ3 .294196E-02 .793705E-03 3.70662 [.000]

Standard Errors computed from quadratic form of analytic first derivative

(Gauss)

(also robust to autocorrelation: NMA= 4, Kernel=Bartlett)



Notes:
a) there is no support to use HAC estimation; this is just to illustrate the estima-
tion of the covariance matrix with the Newey-West method;
b) the bandwidth parameter was set equal to 4, which is a small but (more than)
adequate value in this case, justified both by the small sample size and the ab-
sence of autocorrelation symptoms;
c) the NOHET option was chosen, i.e., robustness is searched only with respect to
autocorrelation;
d) the estimated parameters are denoted with BEQ0 to BEQ3 and they are obvi-
ously the same as OLS; the corrected standard errors differ so slightly from the
original that the robust t-statistics are also practically the same.

Often the evidence for positive first order autocorrelation is strong and it advisable
to use one (or several) large value(s) for l. Often, the robust standard errors are
much larger than the (OLS) originals, and a finding for significance is reverted,
the robust t-statistic insufficiently large (in absolute value) to allow rejecting the
null hypothesis.



5 The case of dynamic models

Objective: to provide a good description of the intertemporal relationships be-
tween variables. I assume that one of the regressors is yt−1. Now we are free to
change the specification of the model.

A new case of endogeneity: certain forms of serial correlation of the errors com-
bined with the presence of at least one lagged dependent variable as regressor:

E(gt) = E(xtut) �= 0 ⇒ plim


 1

T

T∑

t=1

xtut


 = plim

(
1

T
X′u

)
�= 0 ⇒ plimβ̂ �= β,

since the orthogonality condition fails, the OLS estimator of the regression coef-
ficients (besides biased) is not (even) consistent.

Simple example. In the AR(1) stationary model

yt = βyt−1 + ut, |β| < 1, with ut ≡ ǫt ∼ iid(0, σ2),



the regressor yt−1 is pre-determined and the OLS estimator of β is biased but
consistent. Suppose now that

ut = ρut−1 + ǫt, |ρ| < 1.

The status of the regressor yt−1 changes:

Cov(yt−1, ut) = Cov(βyt−2 + ut−1, ρut−1 + ǫt)
= βρCov(yt−2, ut−1) + ρσ2u
= βρCov(yt−1, ut) + ρσ2u,

Therefore,

Cov(yt−1, ut) =
ρσ2u

1− βρ
�= 0 (if ρ �= 0).

Hence,

E(yt−1ut) �= 0 ⇒ plim(β̂) �= β,

that is, the OLS estimator becomes inconsistent because the regressor turned into
endogenous.

In summary: frequently, the status of lagged dependent variables depends upon



the serial correlation properties of the errors. The solution cannot be “OLS +
HAC”. Why?

Objective: to find a dynamically complete model. The model yt = x′tβ + ut
(where x′t may contain lagged variables) is dynamically complete if

E(yt|xt, yt−1,xt−1, yt−2, . . .) = E(yt|xt),
that is, if additional historical (past) information, not yet included in the model, is
irrelevant; given the information that the model already contains (in xt), it does
not add anything useful; it doesn’t help to explain the behaviour of yt besides the
explanation that is already provided by xt.

It can be shown that if a model is dynamically complete, then its errors satisfy

E(ut|xt, ut−1,xt−1, ut−2, . . .) = 0, ∀t,
which is the sufficient condition for gt (gt = xtut) to be a m. d. s. (assump-
tion H5’ of the model with pre-determined regressors). Therefore, if a model is
dynamically complete its errors are not autocorrelated since

E(ut|ut−1, ut−2, . . .) = 0,∀t.



Therefore, autocorrelation symptoms can be interpreted as indirect evidence that
the model is not dynamically complete.

COMFAC. “LSE school”: we achieve valid inferences only by eliminating speci-
fication errors, not by “correcting” the estimation method with an AR(1) (FGLS)
for the errors. Mizon (1995): “autocorrelation correctors: Don’t!”. Otherwise,
we may end up with an inadequate model and an inconsistent estimator.

“The story”: someone starts with a static model and assumes that ut ∼ iid:

M0 : yt = x′tβ + ut, ut ∼ iid(0, σ2u),

where xt contains only contemporaneous information. It is very likely that the
model exhibits symptoms of serial correlation, that the practitioner tries to correct
assuming an AR(1) for the errors, ut = ρut−1 + ǫt, |ρ| < 1, and estimates the
model:

yt = x′tβ + ρ(yt−1 − x′t−1β) + ǫt,

that is,

M1 : yt − ρyt−1 = (x′t − ρx′t−1)β + ǫt.



Denoting with γ the vector of coefficients of xt−1 in the unrestricted model, the
model M1 imposes the non-linear restrictions

γ = −ρβ.
That is, M1 is the restricted version of the more general model

M2 : yt = x′tβ + ρyt−1 + x′t−1γ + εt, εt ∼ iiid(0, σ2),

where M1 is nested: M0 ⊂ M1 ⊂ M2.

The initial rejection of the no autocorrelation hypothesis may be due to the
fact that M2 and not M1 is the DGP. Therefore, rather than “correcting”
autocorrelation estimating M1, which implies untested restrictions and hence an
estimator that can be inconsistent, it is better to first estimate M2 and test the
restrictions of M1.

This test is the common factors test (COMFAC):

M1 : (1− ρL)yt = (1− ρL)x′tβ + ǫt,



M2 : (1− ρL)yt = x′tβ + Lx′tγ + εt
= x′t(β + γL) + εt,

L denoting the lag operator (Lpzt = zt−p). In M1 but not in M2 the common
factor (1 − ρL) is present. M1 imposes a restriction of one common factor in
the autoregressive polynomials of yt and xt.

One must begin with M2, the most general model. Afterwards the restrictions
are tested and we must estimate M1 only in the case that data do not reject
them .

GTS (general-to-specific): begin with a general model and test restrictions to
simplify it, not the other way around. To act in reverse may leave us with an
inadequate model and an inconsistent estimator.

How to test these restrictions: using the “delta method” for non-linear restric-
tions.

For the AR(1) case TSP provides automatically a statistic when the model does
not contain yt−1: it is the Wald test, called “Wald nonlin. AR1 vs. lags”.



Autocorrelation symptons + significant test statistic ⇒ respecify the model in-
troducing lags of all variables.

6 Tests for serial correlation

Menu:
a) t-test for the case of strictly exogenous regressors (review),
b) the Durbin-Watson test (drawbacks),
c) the Ljung-Box tests (review) and
d) the Breusch-Godfrey (and h-alt) tests.

Common basic idea: the unobserved errors are replaced by the residuals.



6.1 t-test for AR(1) with strict exogeneity

Assumed model: ut = ρut−1 + ǫt, |ρ| < 1 (AR(1)). Test of

H0 : ρ = 0 vs. H1 : ρ > 0 (or H1 : ρ �= 0).

In the auxiliar regression et = ρet−1 + vt, tρ = ρ̂/se(ρ̂)
a∼ N (0, 1) under

H0.

Critical region: one-sided right or two-sided.

The test has also power for other forms of first order serial correlation.

6.2 Durbin-Watson test

The DW or d statistic was the only available to test serial correlation in the
regression model for many years.



Shortcoming 1: model ut = ρut−1 + ǫt, |ρ| < 1 (AR(1)).

Shortcoming 2: it requires strict exogeneity. In particular, if yt−1 is a regressor
the test becomes biased towards non-rejection, that is, powerless.

Shortcoming 3: ut is assumed as normally distributed and the model must contain
an intercept.

Statistic:

DW = d =

∑T
t=2(et − et−1)

2

∑T
t=1 e

2
t

≈ 2(1− ρ̂).

Shortcoming 4: the statistic does not have a small sample distribution indepen-
dent from the X matrix. Even when Var(u|X) = σ2I,

Var(e|X) = σ2M.

Therefore:



a) even when ut ∼ iid the residuals, et, will be serially correlated (M �= I);

b) Since M = f(X), it is not possible to obtain a distribution independent
from the particular X.

Shortcoming 5: the solution for the previous problem is obtained at cost of an
inconclusive region for the test.

Informally: values below 1 or 1.1 or 1.2 indicate (loosely) evidence for positive
first order autocorrelation.

6.3 Ljung-Box tests

They are imported from time series literature. Let ρ1, ρ2, . . . , ρj, denote the
autocorrelation coefficients of the errors. The test is

H0 : ρ1 = ρ2 = . . . = ρp = 0, vs. H1 : ∃ρj �= 0, j = 1, . . . , p.



Objective: to analyse the autocorrelations of all orders until order p (portmanteau

test).

Denoting with rj the empirical coefficients of the residuals, the Ljung-Box statistic

Q∗ = T (T + 2)
p∑

j=1

r2j

T − j

a∼ χ2(p) under H0.

Choice of p:

a) if p is too low, the test is unable to detect autocorrelation at a high order;

b) if p is too high, tests may loose power because significant low order autocor-
relations may become dissolved.



Order p = 1 is mandatory: (usually) it is the most recent past the most important
in explaining the present.

Usually one more test is performed at the cost of raising the overall size above
5%. p depends on the data frequency:
a) annual: p = 2 or 3;
b) quarterly: p = 4 (is there unexplained seasonality?);
c) monthly: p = 12 (idem).

Godfrey (1998): in regression models the properties of these tests are not well
known; hence it is better to use Breusch-Godfrey tests.

6.4 Breusch-Godfrey tests

These tests generalize Durbin’s h-alt test for AR(1) errors when yt−1 is a regres-
sor: H0 : ρ = 0 vs. H1 : ρ �= 0 in ut = ρut−1 + ǫt.



In the auxiliar regression et = x′tα+ φet−1 + vt, h− alt = tφ
a∼ N (0, 1)

under H0.

If one or more regressors are not strictly exogenous, et is not a good estimate of
ut. The inclusion of x′t aims to “clean” the residuals.

H0 and H1 can be the same as those of LB’s test. But also

H0 : ut not autocorrel. vs. H1 : ut ∼ ARMA(m, q),∀m, q : m+ q = p.

The procedure is similar to the h-alt test:

i) auxiliar regression:

et = x′tα+ φ1et−1 + . . .+ φpet−p + errort,

ii) test H0 : φ1 = φ2 = . . . = φp = 0, vs. H1 : ∃φj �= 0, j = 1, . . . , p,
with the usual LM statistic

BG(p) = TR2
e

a∼ χ2(p) under H0,



where R2
e is the R2 of the auxiliar regression.

7 Empirical example

The example illustrates mainly the presence of symptoms of autocorrelation re-
sulting from a model with a poor dynamic specification.

Portuguese economy, quarterly data from 1977:1 to 1995:4, a money demand
(static) equation

LMRt = β1 + δ1Qt1 + δ2Qt2 + δ2Qt3 + β2 t+ β2LGDPt + β4 rt + ut,

LMR is logged money (M1),Qtj, j = 1, . . . , 4 are quarterly dummies, LGDP is
logged GDP and r is an interest rate on term deposits. It contains a deterministic
trend term (t) but it is purely static.



Equation 1

============

R-squared = .936480

LM het. test = .486913 [.485]

Durbin-Watson = .846703 ** [.000,.000]

Breusch/Godfrey LM: AR/MA1 = 33.5133 ** [.000]

Breusch/Godfrey LM: AR/MA4 = 34.6787 ** [.000]

Wald nonlin. AR1 vs. lags = 16.1423 ** [.000]

Estimated Standard

Variable Coefficient Error t-statistic P-value

C 1.82332 1.08542 1.67983 [.098]

Q1 -.072107 .014877 -4.84672 [.000]

Q2 -.068193 .014631 -4.66077 [.000]

Q3 -.049859 .014505 -3.43744 [.001]

T -.649085E-02 .103312E-02 -6.28277 [.000]

LGDP 1.02708 .146509 7.01035 [.000]

R -2.46789 .112671 -21.9036 [.000]



The model fails completely in what concerns the absence of error autocorrela-
tion: DW < 1, and BG(1) and BG(4) are highly significant, with p-values
equal to 0.000. [ The critical regions are RCBG(1) = {BG(1) : BG(1) >
3.841}, RCBG(4) = {BG(4) : BG(4) > 9.488}].

Note: the presence of the seasonal dummies, Qtj, j = 1, 2, 3, does not ensure
that seasonality is totally captured.

Wald nonlin. AR1 vs. lags rejects that the first order serial correlation prob-
lem could be solved with an estimation “correction” (FGLS).

Slight modification (in this case): introduction of the lagged dependent variable
as regressor (LMRt−1). Important: this is not a general procedure (one must
start from a more general model). Purpose: to illustrate that the problem appears
to be only one of a poor dynamic specification.

Both the h-alt (BG(1)) and the BG(4) statistics become clearly insignificant. We
are not sure about the source of the problems. But empirical evidence clearly
supports the argument of the insufficient dynamic specification.



Equation 2

============

R-squared = .976019

LM het. test = .251423 [.616]

Durbin-Watson = 1.95318 [.132,.760]

Durbin’s h alt. = -.054748 [.956]

Breusch/Godfrey LM: AR/MA1 = .299737E-02 [.956]

Breusch/Godfrey LM: AR/MA4 = 1.45031 [.835]

Estimated Standard

Variable Coefficient Error t-statistic P-value

C 1.16358 .681946 1.70626 [.093]

Q1 -.119098 .010311 -11.5504 [.000]

Q2 -.058601 .914345E-02 -6.40912 [.000]

Q3 -.038966 .907600E-02 -4.29334 [.000]

T -.177309E-02 .782624E-03 -2.26557 [.027]

LMR(-1) .623910 .059107 10.5556 [.000]

LPIB .325642 .113377 2.87221 [.005]

R -.954095 .160583 -5.94144 [.000]


